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EXPLICIT CONSTRUCTIONS OF DEPTH-2 MAJORITY CIRCUITS
FOR COMPARISON AND ADDITION*

NOGA ALON" AND JEHOSHUA BRUCK

Abstract. All Boolean variables here range over the two-element set {- 1, }. Given n Boolean variables
x xn, a nonmonotone MAJORITY gate (in the variables xi) is a Boolean function whose value is the
sign of Z 7-- ei x, where each e is either or 1. The COMPARISON function is the Boolean function of two
n-bits integers X and Y whose value is -1 if and only if X > Y. An explicit sparse polynomial whose sign
computes this function is constructed. Similar polynomials are constructed for computing all the bits of the
summation ofthe two numbersXand Y. This supplies explicit constructions ofdepth-2 polynomial-size circuits
computing these functions, which use only nonmonotone MAJORITY gates. These constructions are optimal
in terms of the depth and can be used to obtain the best-known explicit constructions of MAJORITY circuits
for other functions like the product of two n-bit numbers and the maximum of n n-bit numbers. A crucial
ingredient is the construction of a discrete version ofa sparse "delta polynomial"None that has a large absolute
value for a single assignment and extremely small absolute values for all other assignments.

Key words, threshold function, majority circuits, comparison function, addition function, error-correcting
codes
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1. Introduction. In this paper, we address the problem of computing the COM-
PARISON and ADDITION functions oftwo n-bit numbers using circuits of(nonmono-
tone) MAJORITY gates. Throughout this paper, a Boolean function will be defined as
f: { 1, -1 _. { 1, -1 }, namely, logical 0 and logical are represented by and -1,
respectively.

We first define a few concepts.

1.1. Definitions.
DEFINITION 1. A linear threshold function f(X) is a Boolean function such that

ifF(X)>0,
f(X) sgn (F(X))

-1 ifF(X) < 0,

where

F(X Wo + , Wi Xi
i=1

The coefficients w; are called the weights of the threshold function. We denote the class
oflinear threshold functions by LTI. Note that the weights can be arbitrary real numbers.
It is more interesting to consider the subclass of LT1, which we call LT1 of functions
that can be written with "small" weights. Each function

f(X) sgn Wo + wi xi
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in LT is characterized by the property that the weights w are integers bounded by a
polynomial in n, namely, ]w;] _-< n for some constant c > 0.

Note that, when we say that a Boolean function belongs to a certain complexity
class (like LT1 ), we actually mean that the family of Boolean functions (as defined for
all n) belong to that class.

In this paper, we will be mostly interested in linear threshold functions in which
the weights are either or -1. Clearly, the elements that compute those functions are
nonmonotone analogues of usual MAJORITY gates, which we call here, for short,
MAJ gates.

DEFINITION 2. An MAJ gate computes a linear threshold function with weights
that are either or -1.

We are interested in circuits that consist of MAJ gates. Define MAJk to be the class
of Boolean functions that can be computed by a polynomial-size depth-k circuit ofMAJ
gates, where the depth of the circuit is the number of gates on the longest path from the
input to the output. Note that MAJk is equivalent to the class LT, which is the class of
Boolean functions that can be computed by depth-k polynomial-size circuits of linear
threshold elements with polynomial weights.

After presenting the computational model, let us introduce the functions that we
would like to compute.

Let X (xn, xn_ x and Y (y,, Yn-1 Yl be two vectors in { 1, } .
Let a and b be the integers that correspond to Xand Y, respectively. Since our convention
is that a logical 0 is represented by and a logical is represented by -1, this means
that a ;= Xi)2 i-2 and b -_ yi)2 i- 2.

DEFINITION 3. The COMPARISON function C(X, Y) is the Boolean function that
is- if and only if a >= b.

DEFINITION 4. Let c a + b and let Z (z +l, z, zl) be the binary repre-
sentation of c. Then the ADDITION function is ADD (X, Y) Z.

1.2. Motivation and known results. Why is it interesting to consider these two
functions?

It was proved in [15] that the PRODUCT of two n-bit numbers is in MAJ4.
However, the proof is nonconstructive. Our construction for the ADDITION function
can be used to explicitly describe a depth-4 MAJ circuit for PRODUCT. A different way
of obtaining such an explicit depth-4 circuit has been recently found independently
in 10 ]. We note here that depth 3 is the lower bound 11 ].

2) It was proved in [15] that any LT function (one that can have large weights)
is in MAJ3. This proof is also nonconstructive. Our construction for COMPARISON
can be used to explicitly construct a depth-3 MAJ circuit for any LT function.

3) The construction for COMPARISON can be used also as a building block for a
depth-3 circuit that sorts n n-bits numbers (see 8 ], 16 ], 17 ]).

It is known [8], [17] that COMPARISON 6 MAJ3 and ADDITION 6 MAJ4. It
was also observed in [15] that COMPARISON LT, namely, the COMPARISON
function can be computed by a single linear threshhold element. However, this linear
threshold element has exponentially big weights. As shown in [15 ], COMPARISON
LTd. On the other hand, using the results in [7], it was proved in [15] that both COM-
PARISON and ADDITION are in MAJ2. The proofs in [15] are existence proofs, while
finding explicit constructions was left as an open problem, which we solve here.

1.3. The main contribution. Our main contributions in this paper are explicit con-
structions ofdepth-2 polynomial size circuits ofMAJ gates that compute the COMPAR-
ISON and ADDITION functions. Actually, we show that the COMPARISON and AD-
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DITION functions can be computed as sign functions of explicit sparse polynomials
(i.e., polynomials with no) monomials and with 1, -1-coefficients). In [6 it is proved
that any function that can be computed as a sign of such a polynomial is also in MAJ2.
Hence, COMPARISON and ADDITION are in MAJ2. The key to the construction is
the idea that we can construct sparse polynomials that have the property of a "discrete
delta function" in the sense that the value of the polynomial is very large for X being the
all- vector and extremely small for all other values. The construction ofthese polynomials,
which we call delta polynomials, is presented in the next section. In 3 we use the delta
polynomials as a building block in the construction of depth-2 MAJ circuits for COM-
PARISON and ADDITION. These constructions can be practical, as they may be used
in the actual design of small depth circuits for addition and multiplication based on MAJ
gates. Section 4 contains some concluding remarks, extensions, and open problems.

2. Character sums, linear codes, and delta polynomials. Let xl,..., xn be n variables,
2where each xi ranges over the two-element set {- 1, ). Since x for all i, every

polynomial in the variables xi can be represented as a multilinear polynomial. We thus
define a monomial in the variables x to be a product of a subset of the set of variables
with a coefficient + or -1, i.e., a product of the form ej. HieA Xi, where ej- {-1, }
andA

___
{1 ,n).

A polynomial in the variables x;, above, is called t-sparse if it is the sum of at most
monomials. We are mainly interested in the case that is at most n).

For a vector e e,..., en), where e {- 1, }, and for a positive real c, we call
a polynomial P(x x) a delta polynomial for e and c if there are two positive
constants a and b satisfying a/b >= c such that (i) P(el, e) a and (ii) for all
(x,..., x,) {-1, 1}", which satisfies (x, x,) 4: e, ]P(xl,..., x,)l --< b.

Therefore, P is a delta polynomial for e and c if it attains a positive value at e and
the absolute value of P on any other point in {- 1, } is smaller by at least a factor
ofc.

Observe that the polynomial ]-I ’- + x is a delta polynomial for 1, 1,...,
and any positive c. However, this polynomial is a sum of exponentially many monomials.
Our objective in this section is to explicitly construct relatively sparse delta polynomials.
A probabilistic construction follows from the techniques presented in 7 ], 15 ]; however,
their explicit construction seems to be more difficult.

We can easily check that, if P(x, x) is a delta polynomial for 1,
and c, then, for any vector (e,..., e) 1, ) , P(eXl enxn) is a delta polynomial
for e and c, which has exactly the same number ofmonomials as P. Thus we may restrict
our attention to the construction of sparse delta polynomials for 1, 1, ).

Our construction can be obtained by using linear error-c0rrecting codes over GF(2)
that have certain distance properties. We discuss this general approach at the end of the
section. Now we present in more detail one such construction, which is based on the
properties ofthe quadratic residue character that are proved using Weil’s famous theorem,
known as the Riemann hypothesis for curves over finite fields [18]. These properties
have been used before to derive the pseudorandom properties of Paley graphs and qua-
dratic tournaments [9] (see also [5], [2]) and have also been used in the analysis of
certain randomized algorithms for various number-theoretic problems (see [4], [13]).
Other constructions can be given based on some of the ideas of[l] and [12 ], together
with the known constructions of expander-graphs or based on the results of[ 3 ]. For our
purposes, the quadratic residue construction suffices, and we thus only describe this
construction in detail and comment briefly at the end of the section on how to obtain
additional similar constructions.
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Let q be an odd prime power and let x be the quadratic residue character defined on
the elements of the finite field GF(q) by x(y) y(q-l)/2. Equivalently, X(y) is if y is
a nonzero square, 0 if y is 0, and -1, otherwise. Suppose that q >_- n and let B
{ bl bn } be an arbitrary subset of cardinality n of GF(q). Consider the following
polynomial in the n variables xl, xn"

-1 + X(y- bi) + xi(1 X(y- bi)
PB(X1,..., Xn) yGF(q)\B =111 2

Observe that P is a sum ofexactly q n monomials, since, for each fixed y in GF(q)\B,
the quantity + X(y bi) + xi( x(y bi)))/2 is either or x;.

THEOREM 1. For every odd prime power q andfor every subset B ofcardinality n
ofGF(q), the polynomial P defined above satisfies

(i) P(1, 1,..., 1)=q-nand
(ii) For every (xl, xn) {-1, 1) that is not (1, 1,..., 1),

Ie(x x,)l <= (n 1)q /2.
Therefore, PB is a (q n)-sparse delta polynomial for 1, 1, and c (q n)/
(n )ql/2.

Note that, when q is a prime and B is simply the set { 1, 2 n }, the expression
for the polynomial P is relatively simple.

To prove Theorem 1, we need the following known estimate for character sums,
due to Weil [18] (see also [14, Thm. 2C, p. 43 ]; the lemma stated below is a spe-
cial case).

LEMMA 1. Let q be an odd prime power and let F be thefield GF( q). Letf(y) be
a nonconstant polynomial over F that decomposes into the product ofm distinct linear
factors. Then, for the quadratic character x,

, x(f( y))
yF

<= (m 1)q/2

Proof of Theorem 1. Since PB is a sum of q n monomials, it is (q n)-
sparse. Moreover, since the coefficient of every monomial is 1, it follows that PB( 1, 1,

1) q n. Suppose now that (x, x) 4: (1, 1, 1) is a vector
in { 1, ". Put I { -_< =< n, x; }, J { bi 6 1 }. By substituting the values
ofthe variables xi and by the fact that the quadratic character is multiplicative, we obtain

fi + X(y- bi) + xi(1- x(y- bi) ]--1 x(y-b;) x( II (y- bi) )2 iI iI

Define f(y) I-[i (y bi ). Observe that, for the quadratic character X, x(f(y)) 0
whenever y is equal to one of the elements bi for I. Therefore,

/’(x, x.) - + X(y- bi) + xi(1 x(y- bi)

yGF(q)\B =ll 2

y GF(q)\B

x(f(y))
y6 GF(q)\(B\J)

x(f(y))- ] x(f(y)).
y GF(q) yBXJ
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Observe that, since I is not empty and since the elements bi are distinct, we can apply
Lemma to f(y) and obtain, by the triangle inequality,

eB(xl,..., Xn)l <= , x(f(y)) + , (f(Y)) <= (III 1)ql/2 + n III.
y GF(q) yB\J

The quantity (I II )ql/2 + n III is clearly an increasing function of II, and, since
[II =< n, this quantity is at most (n )ql/2. This completes the proof.

Linear codes and delta polynomials. The above argument can be modified to obtain
a similar construction of a delta polynomial from any linear error-correcting code over
GF(2) with length that is polynomial in the dimension and with the property that the
Hamming weight of any nonzero codeword is sufficiently close to half the length. Here
is a sketch of the argument. Let A (ao) <=i<=n, _j<=t be the generating 0, 1-matrix of a
linear error-correcting code of length and dimension n and suppose that the Hamming
weight of each nonzero codeword is between e)(t/2) and + e)(t/2). Let PA
PA(Xl, Xn) be the polynomial defined by

PA(Xl, Xn) E E Xi.
j i;a0

Clearly, PA( 1, t, and it is not difficult to check that, for every (x x,)
{-1, 1}" that is not (1, 1),

P(x x.)l -<- a,
since PA(X, X) is precisely the difference between the number of O’s and the number
of l’s in the codeword defined by the sum (in GF(2)) of all rows of A such that
X -1.

The polynomial P described in Theorem is a special case of the above construc-
tion, which corresponds to a linear error-correcting code of dimension n and length
q n, in which the Hamming weight of any nonzero codeword is between (q n)/2
(n )q/2/2 and (q n)/2 + (n )q/2/2. Three additional simple constructions
of linear codes whose parameters are asymptotically comparable to this one (up to some
polylogarithmic factors) are given in 3 ], and any of these can be used for constructing
a sparse delta polynomial in the manner described above.

3. The constructions. In this section, we prove that the COMPARISON and AD-
DITION functions can be computed as sign functions of (explicit) sparse polynomials.
From a (simple) result in [6 ], this implies that both functions can be computed by an
explicit depth-2 polynomial-size circuit of MAJ elements. Both constructions apply the
delta polynomials described in the previous section.

First, we note that the following is an equivalent description of the COMPARISON
function: For X, Y e { 1, } , C(X, Y) if and only if either X Y or there exists
an i, _-< =< n such that xi -1 and Yi and also xj yj for all j, such that <
j _-< n. The following theorem gives the construction for COMPARISON.

THEOREM 2. Let mk(X, Y) P(xny,, x,_ly,_ xk+ly+l) and let
m(X, Y) q n, where P(.) is the delta polynomial described in Theorem with
q >= n 4 an odd prime power. Define

(S, Y)= too(X, Y)+ (Yi- xi)mi(X, Y).
i=1

Then C(X, Y) sgn (-t(X, Y)).
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Proof. We consider the two cases (X >= Y or X < Y) and prove that C(X, Y)
sgn (-(2(X, Y)) in both cases.

First, assume that X is strictly greater than Y. Hence, there is an such that
xi -1 and Yi and also xj yj for all j, <j _-< n. Hence, (Yi xi)mi >-- 2(q n)
and

t(X, Y)>=Z(q-n)-Zn(n- l)q>0.
IfX Y, then clearly ((X, Y) q- n > 0. Hence, if X >_- Y, then -1 C(X, Y)
sgn (-t2(X, Y)).

Similarly, if X < Y, then ((X, Y) =< -2(q- n) + 2n(n 1)Uq < 0. Hence,
C(X, Y) sgn -(X, Y)) in this case as well, completing the proof. U]

Next, we consider the ADDITION function. To compute the bits of the sum ofthe
two n-bit numbers Xand Yas signs of sparse polynomials, it suffices to construct a sparse
polynomial for each of the carry bits. This is because the ith bit in the result of the
addition is xi y; c;, where ci is the corresponding carry bit. If we can compute ci as a sign
of a sparse polynomial, say ci sgn (p(X, Y)), then we can also compute xiyc

sgn (x yp(X, Y)) as a sign function of a sparse polynomial. We will henceforth concen-
trate, without loss of generality, on proving that the carry to the last bit (i.e., cn) can be
computed as a sign of a sparse polynomial. We denote the carry function to the last bit
as CAR (X, Y) and prove that it can be computed as a sign function ofa sparse polynomial.

TIEOREM 3. Let l,(X, Y) P(-xn- yn- 1, -x-2Yn-2, --Xk + lYk + 1) and
let l,_ I(X, Y) q n, where P( is the delta polynomial described in Theorem with
q >_- 4n 4 an odd prime power. Letfl(w, w2) Wl w2 + WlW2). Let

n-I

CAR (X, Y) 2 fl(xi, yi)li(X, Y).
i=1

Then CAR (X, Y) sgn (2q CAR (X, Y)).
Proof. Note thatf(-1, -1) 4 and J](1, 1) =J](1, -1) =J](-1, 1) 0.
First, assume that there is carry to bit n in the addition ofX and Y, namely, that

CAR (X, Y) -1. In such a case, we have carry generation and propagation. Namely,
there is an < n such that xi -1 and Yi --1 in which the carry is generated, and,
in addition, x 4 y for all j, < j < n (so that the carry will propagate). Note that the
carry will also propagate in the case where x y -1. However, without loss of gen-
erality, we can consider the leftmost place in which the carry was generated. Since
f xi Yi l >-_ 4 q n then, by the properties of the delta polynomials,

CAR (X, Y) >= 4(q- n)- 4(n 2)(n 1)q > 2q.

Hence, if there is carry, then CAR (X, Y) sgn (2q CAR (X, Y)).
Next, we consider the case in which there is no carry. The reason for not having a

carry is that, for each index i, either there is no carry generation (and then J] (x, y
0) or there is a carry generation but there is no carry propagation. In the latter case,

l; (X, Y)I --< (n q. Hence, for this case

AR (X, Y) =< 4(n 1)2}Uq < 2q.

Hence, if there is no carry, then CAR (X, Y) sgn (2q CAR (X, Y)), completing
the proof.
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4. Concluding remarks and extensions. A family ofvectors Fin { 1, ) n is a linear
subspace if, for every x (x, x,) and y (y y,) in F, the vector x,y
(xy, x,,y) is also in F. (This is the usual definition of a subspace together with
our mapping that replaces 0 and by and -1, respectively.) Similarly, A is an affine
subspace if it is the set of all vectors of the form x,y for some fixed vector x as y ranges
over all vectors of a linear subspace. Generalizing the notion of a delta polynomial, we
can construct, for every afflne subspace, a sparse polynomial whose value on the members
of the subspace is much larger than one whose value on vectors is outside the subspace.
(The delta polynomials correspond to the case that the subspace contains only one point.)
This enables us, among other things, to explicitly express every function that is the char-
acteristic function of a union of polynomially many affine subspaces as a sign of a sparse
polynomial. To construct the generalized delta polynomials, we first observe that it suffices
to construct those for linear subspaces. For every linear subspace of codimension k in
{- 1, } ", there are k monomials in x,..., x such that a vector (x x) is in the
subspace if and only if all these monomials evaluated in the coordinates of the above
vector are 1. We can thus simply substitute these monomials in the delta polynomial of
2 and obtain the desired generalized sparse polynomial. We omit the details.

The delta polynomials can be used to construct a sparse polynomial for the MAX-
IMUM function, which gets as input n integers (n bits each) and outputs -1 if and only
if the first integer is the maximum. The construction for MAXIMUM is a simple gen-
eralization of the one for the COMPARISON function.

By a nonconstructive argument, we can prove that there is a (q n)-sparse poly-
nomial P(x,..., x,) satisfying somewhat stronger properties than those given by Theo-
rem 1; namely,

(i) P(1, 1,..., 1)=q-nand
(ii) For every (x x) 6 {- 1, } ", which is not 1, ),

P(x, x)[ =< O(n/q/-).
It would be interesting to find an explicit construction of such polynomials. (This will
supply, of course, smaller depth-2 MAJ-circuits for the functions considered in 3.)
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THE NUMBER OF DEGREE-RESTRICTED ROOTED MAPS
ON THE SPHERE*

EDWARD A. BENDER" AND E. RODNEY CANFIELDz

Abstract. Let D be a set of positive integers. Let m(n) be the number of n edged rooted maps on the
sphere all of whose vertex degrees (or, dually, face degrees) lie in D. Using Brown’s technique, the generating
function for m(n) implicitly is obtained. It is used to prove that, when gcd (D) is even,

m(n) C(D)n-5/z,(D)".

It also yields known formulas for various special D.

Key words, root edge, power series, multiset

AMS subject classification. 05C30

1. Introduction. Let D be a set of positive integers containing some element ex-
ceeding 2, let M(x, y) ,i Mi(x)Y be the generating function by edges and root face
degree for rooted maps on the sphere such that each nonroot face degree lies in D, and
let re(n) be the number of n edged rooted maps all ofwhose face degrees lie in D. Define
the coefficient operator with respect to y by

[Yk]( fi(x)yi) fk(x)
i_O

and define [xk] similarly. We will prove the following theorem.

THEOREM 1. There exist unique power series Rl(X) and Rz(X) such that

(1.1)
X

[yi-ll(R-1/2R1 --and

X
E [Yi](R-l nt- X-- 3R,(1.2) Rz - i6D

where R 4Rly 4R2y2. We have

re(n) [x"l(M’(x))
n+l

(1.3)

[xnl((ez(x) wel(x)Z)(e2(x)+9el(x)2))
Although the sums in 1.1 and 1.2) appear quite formidable, they can be simplified

in some interesting cases. Two particularly simple situations are those in which gcd (D)
is even and those related to arithmetic progressions and finite sets. We have the following
corollaries.
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COROLLARY 1.1. If, when viewed as a multiset, D differsfrom the union ofafinite
number ofarithmetic progressions by a finite multiset, then M(x, y) is algebraic.

COROLLARY 1.2 (see Tutte 6 ]). The number of 2 d regular, nd edge, rooted maps
on the sphere is

n!(nd- n + 2)!

COROLLARY 1.3 (see Liu [4]). The number ofn edge, rooted, bipartite (or, dually,
Eulerian maps on the sphere is

2(n + l(n + 2) n

THEOREM 2. Ifgcd (D) 2d, then

2d(a3,) 5/2

m( n) n-5/zq/n
(71")k) 1/2

where n is a multiple ofd, a is the positive real root of

2= (i-1)(2i)
2ieD

a’,
2iD

(2i)oi 0
"i-1"Y

2"

We will use a Tutte-type decomposition to obtain a quadratic equation for
M(x, y) when D is finite. Such equations are usually solved by the quadratic method
[3 ]. That approach does not seem to work here. We must look more closely at what
Brown’s result 2 says about the discriminant ofthe quadratic. Having established Theo-
rem for finite D, we then pass to the limit. When gcd (D) is even, R 0. This results
in considerable simplication of the equations in Theorem 1, which easily leads to Cor-
ollaries 1.2 and 1.3. It also leads to equations that suggest that there may be an interesting
bijection between various bipartite maps and pairs of some other objects. We have not
been able to find the bijection. In 4 we use a result of Meir and Moon 5 to obtain
Theorem 2 from Theorem 1.

At this time, we have no general asymptotic result when gcd (D) is odd. We suspect
that a result of the form (1.6) will hold. This can be verified on a case-by-case basis with
lengthy calculations. For example, with D the set of odd positive integers, we have used
Maple to prove that

m(n) Cn-5/Zxn,

where

X0 0.105191" ", C 3"rl/2/4"x 1/2 0.71772.",

and both x0 and r are algebraic of degree 6.

2. Proof of Theorem 1. For all ofthis section, except the last paragraph, we assume
that D is a finite set with largest element t.

Note that 1.1 tells us that R has no constant term. Ifwe specify R and R2 through
terms of degree k in x and substitute them in the right sides of 1.1 and 1.2), the left
sides give us R and R2 through degree k + 1. Thus the power series R and R2 are
uniquely determined by 1.1 and (1.2) and have no constant terms.
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Let C denote the complex numbers, let [[x]] denote formal power series over
the commutative ring , and let [y] denote polynomials. Let

(2.1) Ok(y) E yt-i.
iD
i>=k

Note that Ok(y) Oo(y) (mod yt-k + 1).
We use a standard construction [7] to obtain a functional equation for M(x, y).

Either a map consists ofjust one vertex, with generating function 1, or it has a root edge.
The generating function for maps for which the removal of the root edge leaves two
components is given by xy2M(x, y)2. There is one more case, namely, removing the
root edge does not disconnect the map. Reversing these removals gives a recursive con-
struction for the maps. If the root face has degree j and if we wish to add a new root that
reverses the last case, we can create a nonroot face of degree k and a root face of degree
j + 2 k. This construction leads to

M(x, y) + xy2m(x, y)2 + x mj( x) yj+2-k.
j_o

After some algebra,

(2.2)

k6D
k<-_j+

t-2

(2.4) B(x, y) (xOo(y) yt-2)2 4xy2t-2 + 4xZyt , O+2(y)Mj.(x)yJ.
j=0

We show that (2.3) is true algebraically modulo y2t- for any M(x) C[[x]],
provided that M0(x) and the proper sign is chosen for the square root. (By "alge-
braically," we mean that no map information is needed.) To see this, first rearrange (2.3)
as

+_B(x, y) l/2 XOo(Y) yt-2 _1_. 2xytM(x, y) (mod yZt-1)

and note that the right side contains a nonzero term in y0. Thus this congruence holds
if and only if

B(x, y) (xOo(y) y-2 + 2xytM(x, y))2 (mod y2t-)

(xOo(Y) yt-2)2 q_ 4x2ytOo(y)M(x, y) 4xy2t-2Mo(x) (mod y2t-),

which is easily verified using (2.4).
From the previous paragraph, it follows that any choice for M(x)

Mt-2(x) C[[x]] that leads to a power series for B(x, y)/2 will be a solution to (2.3)
and hence the unique solution.

(2.3)

where

t-2

x Z +

j=O

It is important to note that the recursive nature of this construction guarantees that there
is a unique power series solution to (2.2).

Regarding (2.2) as a quadratic in M(x, y), we obtain

2xytM(x, y) yt-2 xOo(y) -.t- B(x, y)l/2,

M(x, y) + xy-M(x, y)2 + xy2-tOo(y)M(x, y)



12 E. A. BENDER AND E. R. CANFIELD

Since B(x, y) C[[x]][y] has degree 2t- 2 in y, Brown’s theorem [2] guarantees
that B(x, y) Q(x, y)ZR(x, y), for some Q, R C[[x]][y] with R(x, 0) 1. We will
show that one solution can be found with

t-2

(2.5) Q(x, y) x + , Qi(x)y and R(x, y) 4R(x)y- 4Rz(x)y2.
i=I

To begin, QZR has the same degree as B with respect to y, namely, 2t 2. Since (2.3)
is true algebraically modulo yZt-1, it suffices to determine the unknown functions R1,
R2, Q, Qt- 2 by looking at the coefficients of y, y2 up to yt in

(2.6) 2xytM(x, y) yt-2 xOo(y) + Q(x, y)R(x, y)l/2

and then showing that M (x) Mt- 2(x) are, in fact, power series.
It follows from (2.6) that

(2.7) Q(x, y) R(x, y)-/2(xOo(y) yt-2 + 2xyt) (mod yt+ ).
Since we defined Q to have degree 2 in y, reduction modulo yl- determines Q in
terms ofR and R2, while the coefficients of yt- and yt in (2.7) give two polynomial
equations in the two unknowns R1 and R2. These equations are (1.1) and (1.2). We
have shown that Qi(x) C[[x]] and Rj C[[x]] can be found. Since R(x) and R2(x)
have no constant terms and Q(x, y) has degree 2 in y, it follows from (2.6) that
xM(x) has no constant term, and so M(x) is a power series. This completes the proof
that (2.5) and (2.7) determine the unique power series solution M(x, y) to (2.3).

We now prove (1.3). Using G’ to denote OG/Ox, we have

(2.8) (QR’/)’= 1/2 R-’/(2Q’R + QR’),

and from (2.7)

(2.9) (QR/:z) ’=- Oo(y) + 2y (mod yt+ ).

Thus

(2.10) 2Q’R + QR’=- 2R1/2(Oo(y) + 2yt) (mod yt+ ).

Define the truncation operator with respect to y by

(- Z fCx)y Z ,x)y.
i_0 i=0

Since the left-hand side of (2.10) equation has degree in y,

2Q’R + QR’= -t(2R/Z(Oo(y) + 2yt)).

Thus

x(QR l/2)’R 1/2 X’t(R 1/2(O0(y q_ 2yt))

-t(R/2(xOo(y yt-2 + 2xyt)) + ,t(R/2yt-2)

’t(RR-l/Z(xOo(y yt-2 + 2xyt)) + yt-Z’-2(R/2

RQ + yt-2"2(R1/2),
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by (2.7). Combining this with (2.3), we have

2x(xM(x))’ [yt+J](x( QR /2)’)

[y+J](QR/:z) + [yt+](R-/2yt-:z’-2(R/:))

2xM(x) + [y+ 2](R-/z’2(R /:z)).
Rearranging the two ends of this equation gives us

2"2
112(2.11) Mj.(x) x2 [y+Z](R-/ (R )).

Set m(0) and let M(x) be the generating function for m(n). By removing the root
edge from a map counted by mz(x), it is easily seen that

(2.12) m(x) M2(x)/x.

This, combined with a bit of algebra on (2.11 ), gives us 1.3). The proof of Theorem
for finite D is complete.

Let D be arbitrary and define D(t) to be those elements of D that do not exceed t.
We may apply Theorem to D(t). If we replace by t’ > t, then it is simple to check
that the terms of degree less than t2 do not change in the formulas for R and R2. Thus
we may simply let -- m.

3. Simple alllieations of Theorem 1. The reader may carry out the calculations in
Theorem when D is the positive integers, thereby rederiving the generating function
for all maps: In this case, 1.1 and (1.2) become

X
R - (1 4R 4R2) -1/2,

X

Rz=((1-4R-4R2)-/2- 1)+x-3R.

Eliminating R2 leads to the quartic equation

0 (12R 2R, + x)(4R 2R x).

Since R has no constant term and since the generating function for maps must have a
positive real singularity, the correct solution is

/1- 12x
12

The equation for M(x) follows easily from (1.3) and (2.12).
To prove Corollary 1.1, we observe that 1.1 and 1.2) can be summed for in an

arithmetic progression by using multisection of the series R-/2 with respect to y and
then setting y 1. Thus the equations ofR and R2 are algebraic. Now use (2.6) and
the value of Q from (2.7).

When gcd (D) is even, R 0. We can see this either by noting that M(x, y) cannot
have any odd degree terms in y or by noting that the assumption R 0 leads to a
solution, and so must be the unique solution. Since R 0, we have

(3.1) [yi](R-/)= [yi]((1-4R2y:Z)-/:z)= (.i)R.
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Thus 1.1 becomes 0 0, (1.2) becomes

(3.2) R2
2

and (1.3) becomes

(3.3) m(n) [x"](M’2(x)) [xn](X-2R2(x)2).
n+l n+l

Since (2/) is even, it follows from (3.1) that R2(x) has nonnegative integer coefficients.
This, combined with M’z(x) (Rz(x)/x) 2 from (3.3), suggests that there is probably
an interesting bijection between rooted maps with a distinguished edge and pairs of
combinatorial objects when gcd (D) is even.

When D { 2d}, the sum in (3.2) has only one term, and Corollary 1.2 follows
easily by Lagrange inversion.

To prove Corollary 1.3, note that (3.2) becomes

x
R2 =-((1 4R2) -1/2- 1) +x.

After some algebra, we obtain

(3.4) R2(x)
4x+ 1- /1-8x

where the minus sign was chosen on the square root because R2(O) 0. Thus

R2(x) 2 8x2+1 ((1 8x)3/2)x 32x
+

32x

By (2.12) and (3.3),

M(x) M2(x)/x
8X) 3/2

4 32x2 32x2

3
8x

Corollary 1.3 follows easily.

4. Proof of Theorem 2. Suppose that 2d gcd (D). It follows from (3.2) that
R2(x) x + xw(xa), where the power series w(z) is determin6d by

d ( 2id] )id(4.1) w F(z, w)
2i D id ]z (w +

Let (o, ) be a positive real solution, if any, of the simultaneous equations (4.1) and
Fw(z, w). With some algebra, 0(" + )a is the positive real root of

2id) )a)i(4.2) 2 (id- 1) (,o(’r +
2ideD id

and > 0 is then determined by (4.1).
We wish to apply Meir and Moon’s theorem 5, Thm. and thereby obtain asymp-

totics by using their correction to [1, Thm. 5 ]. IfD is finite, F(z, w) is analytic for all z
and w and the conditions for 5, Thm. are satisfied. Suppose that D is infinite. Then
F( z, w) is analytic for 41 z( w + d < 1, since 2nn 4 "/( rn 1/2 and 4.2 has a solution
with 40(z + < 1, since (id- )(]ff) is unbounded. Again [5, Thm. 1] applies.
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Combining this with [1, (7.1)], we find that

[zn](w + 1) (( + 1)/2rFww(O, ’)d)l/2n-a/20-n,
and w behaves like - + + C( z/o) /2 near z o. Thus

(4.3) [z"]((w + 1) 2) 2( + 1)((- + 1)/2rFww(O, ’)d)/2n-3/2p -n.
In terms of the notation in Theorem 2, we find with some algebra that 0 3’-d,
+ tr3,, and Fww(O, ) X/2(t’y) 2. Theorem 2 now follows easily from (3.3),

Rz/x w -+- 1, and (4.3).
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Abstract. The graph partitioning polytope P(G) is the convex hull ofthe incidence vectors of all partitions
of a graph G. The authors show that P(G) is completely defined by cycle inequalities if G is series-parallel and
by cycle, 3-wheel, and repeated 2-sums of 3-wheel and cycle inequalities if G is a 4-wheel free graph.
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1. Introduction. Given a connected graph G (V, E), define r (V, 1,
r) to be a partition if

IV;I >-, ie {1 r},

IV/.v.l-0 fori4:je{1 r}, and

[,.Ji Vi V.

Define the edge set E(Tr), where

E(Tr)={(u,v)6E[{u,v}=Vi for i {1 r}}.
E(Tr) is the set of edges with endpoints in two different subsets in the partition r. We
also refer to E(Tr) as the set of edges cut by the partition r. Given a partition r, define
the incidence vector x(Tr), where

for e e E(r),
x(r)

0 otherwise.

Let II be the family of all partitions of the graph G. Consider edge weights c e R for all
edges e in E. Define the weight of a partition c(r), where c(r) e( Ce. The unre-
Mrictd graph partitioning problem (UGPP) is to find the minimum weight member of
II. Gr6tschel and Wakabayashi 8 studied this problem for the case when G is a complete
graph. They refer to this case as the clique partitioning problem. They show that the
problem is NP-hard.

Define the graph partitioning polytope P(G), where

P(G) =conv {x(r)lTr e II}.
Gr6tschel and Wakabayashi [8 gave several families of facet-defining inequalities for
P(G) for the case when G is a complete graph. However, a complete inequality description
of P(G) is unlikely to be found in general.

G is said to be a simple graph if it does not contain any parallel edges. The following
result can be proved using standard techniques (see, for instance, [4 ]). It is stated here
without proof.

PROPOSITION 1.1. IfG is a simple graph, the graph partitioning polytope P( G) is

full-dimensional.

Received by the editors May 20, 1991" accepted for publication (in revised form) February 9, 1993.
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A graph with parallel edges is referred to as a multigraph. Let G (V, E) be a
multigraph with parallel edges el and e2. Define G (V, E), where E E- { e2 }. There
is a very close relationship between the polyhedra P(G) and P(G). Assume that a complete
inequality description of P(G) is known and is given by

P( G) aix <_ ai x R+, a RE, a( R, I}.
Here I indexes the set of inequalities defining P(G). For each in I, define the vector
6i 6 R where

ai(e) for e E,
Hi(e)

0 for e e2.

PROr’OSITION 1.2. If G and G are as described above, a complete inequality de-
scription ofP( G) is given by

{dix <_a6, x(ez)= x(el),x6R+,di6Rp a)6R i6I}

Proof. Let be any extreme point of the polyhedron

Pl() {dix <- a), x(e2) x(el), x R+, d Rp, a6 R, I}.
The proof follows from the observation that the projection of P1 (() on RE is P(G), and
this projection is indeed a bijection between the two polytopes.

Thus, when studying the polyhedron P(G), we can restrict attention to simple graphs
G. From Proposition 1.1, the associated polyhedron P(G) is full-dimensional. For the
remainder ofthe paper, all graphs considered are simple graphs.

We should also point out that, when studying P(G), we restrict attention to 2-
connected graphs. To the contrary, assume that G (V, E) is not 2-connected as shown
in Fig. 1.1. Assume that G; (Vi, Ei), 1, 2 and V1 f’) V2 }. Assume that a
complete inequality description of the polytopes P(Gi ), 1, 2 is as given below:

P(G) { alex <_ aio [a le e R’, x R+, e 11 ),
P(G2) { a2ix2 <- a) la 2i RF’, x2 R+, 12 ).

For each inequality in 11, define 61 i, where

ae
li- 0

For each inequality in I2, define 2i, where

-2i
ae

ae
0

for e El,

for e E2.

for e E2,

for e

FIG. 1.1.
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G is said to be the 1-sum of G1 and G2 (G G1 + G2). It is easy to verify the following
result.

PROPOSITION 1.3. IfGl + G2 and P(G) and P(G2) are as described above, then

P(G)= {x eR+ [6lix <_ aiofor e I; dZix <_ aiofor e I2).
For the remainder of the paper, we thus assume that all graphs G are 2-connected.
We assume familiarity with basic definitions in graph theory (see, for example,

Bondy and Murty [3]). Consider two graphs Gi (Vi, Ei), 1, 2 with edges e;
(Ui, V E for l, 2. The 2-sum G G 2 G2 is obtained by identifying the edges
el and e2. The new node obtained on identifying ul(v) and Uz(V2) is called u(v), and
the new edge Y (u, v). All edges previously incident to u or u2 (v or v2) are now
incident to u(v).Yhus, G (V, E), where V V1 to V2 to u, v ul, vl, u2, v2 },
E E1 tO E2 tO Y} { el, e2 }. Define G G1 +2 G2 to be a 2-sum if G is formed as
above, except that the edge is deleted, i.e., E E tO E2 e, e2 }. The two operations
are shown in Fig. 1.2.

A 2-tree can be defined recursively as follows. A triangle is a 2-tree. The .-sum of
a triangle and a 2-tree is a 2-tree. A graph is called series-parallel if it can be obtained
from a forest by repeatedly adding an edge in parallel to an existing one or by replacing
an edge by a path. From the above definitions, we obtain the following result (see Wald
and Colburn 10 ).

PROPOSITION 1.4. Each simple, connected series-parallel graph is the subgraph of
a 2-tree.

A graph is called a 4-wheel free graph if it does not contain as a minor the graph
W4 shown in Fig. 1.3.

In this paper, we give a complete inequality description of P(G) for the case when
G is a series-parallel or 4-wheel free graph. The first result is given in 2, and the second
result in 3.

Let G (V, E) be a connected graph. Consider a cycle C (V., E,) in G. No
partition r can cut exactly one edge from a cycle. For any edge e* 6 E., define the cycle
inequality

(1.1) Z Xe--Xe*’0"
eeEc-{e*

-sum

2-sum

FIG. 1.2.
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FIG. 1.3.

The cycle inequality is valid for P(G). Gr6tschel and Wakabayashi [8] used these in-
equalities for triangles when formulating the clique partitioning problem. Chopra and
Rao [4] showed the following result.

THEOREM 1.1. The cycle inequality 1.1 is facet-defining for P( G) if and only if
Ecl >- 3 and C is a chordless cycle.

Note that, for each cycle C, there are [Ec[ cycle inequalities. However, we write
only one to represent all of them. Define the polyhedron LP(G), where

(1.2)
LP(G) x RZlN satisfies 1.1 for all cycles C;

0 __< xe -< for all e E }.
Chopra and Rao [4] showed the following result.

TrEOREM 1.2. It holds that P(G) conv {x LP(G)I x integer}.

2. P(G) on series-parallel graphs. In general, P(G)
_
LP(G); P(G) 4: LP(G).

The main result in this section is the following.
THEOREM 2.1. lfG is a connected series-parallel graph, P( G) LP( G).
First, we give a general result on polytopes of graphs obtained by taking 2-sums of

graphs whose polytopes are known. Given graphs Gi (Vi, Ei) with ei 6 Ei, 1, 2,
identify the edges el and e2 into the edge E to get G G T-2 G2, where G (V, E) and
E El tO E2 tO E} el, e2 }. Assume that complete inequality descriptions of P(G
and P(G2) are known. For each inequality

(2.1) ax <_ a
defining P(G ), construct the inequality

(2.2)

where a0 a and

ae a el

0

In a similar fashion, for each inequality

ax < ao,

(2.3)

for eE,- {el},

fore=E,

otherwise.

a2x < a0
2

defining P(Gz), construct the inequality

(2.4) ax <_ a0,
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where ao a, and

ae2 for e e E2 {e2},
2 fore=g,ae ae2

0 otherwise.

Both inequalities (2.2) and (2.4) are valid for P(G). Let P(G) be the polytope defined
by all inequalities of the form (2.2) or (2.4).

PROPOSITION 2.1. If G G1-T-2Ga and P(G) is as defined above, then
P(G) P(G).

Proof. Inequalities (2.2) and (2.4) include all the chordless cycle inequalities arising
from G. From Theorem 1.2, it follows that the integer points of P(G) are precisely the
vertices of P(G). Assume that P(G) has a fractional vertex . Define ;, 1, 2, where

e for e - Ei ei },
;(e)=

fore=el.

We show that ; is a vertex of P(G;), 1, 2. Assume that 1 and 2 are not vertices.
Then we have

(2.5) 1 Z Oli yi; 2 Z iZi,

where ai, ; >- 0, ,
ai E /3; l, and yi and z are vertices of P(G1) and P(G2),

respectively. Define

S { i[ 2i(el)

1 {ilyi(el) 0};

S { i[z;(ea) 1},

& i] z;(e2) 0 }.

Vectors in S; are incidence vectors of partitions that cut e;, while vectors in S; are
incidence vectors of partitions that do not cut e;, 1, 2. Since 1 (el) a(e2) (Y),
we have

(2.6) Z a; Z fl; =(Y)-
iSl ieS2

Order the indices in S1 as {i(1), i(2),..., i(k)} fork ]Sl], and those in S1 as

i(k + ), i(k) ) for ]ql k k. Order the indices in $2 as l( ), l(m) ),
and those in 2 as {l(m + 1), l(rh)} for $2] m and ]$2] rh m.

Given yi(r) for r _< k and z t(s) for s _< m, define xr’, where

yie(r) for eEEl {el},
r,s= /e(s) for e E E2 {e2},Xe z

for e .
For k + _< r _< and rn + _< s _< rh, define xr’s, where

y(r) for e e E1 { 6’1 },
r,s l( s)xe ze foreE2- {e2},

0 for e Y.
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For the next definition, assume that oli(o) l(O) O. Let 6(r, S) rt 00li(t)

2= forr{0, } s{0, rfi} Define T( r, s forr(1 fc}0 l(t)
s 6 rh }, where

/i (s)

6(r,s- 1)

3’(r, s) /.()

-6(r- 1, s)

0

if6(r- 1, s- 1)<_0,6(r,s- 1) >_ 0, 6(r,s) > 0,

if6(r- 1, s- 1)<0,6(r,s- 1) > 0, 6( r, s) <_ O,

if6(r- 1, s- 1)>_ 0, 6(r- 1, s)<O, 6(r,s)<O,

if 6(r- 1, s- 1)>_0,6(r- 1, s) < 0, 6( r, s) > 0,

otherwise.

Note that 6(k, m) 0 usi_ng (2.6) and the definition of 6(r, s). Thus, ;sm=_ kr=l 3’(r,
s) 2(4) and ] m= m+ r= k + 3’(r, S) 2(4). Note that each vector xr’" defined
above is an element of P(G), 3"(r, s) >_ 0, and Zs Zr 3"(r, s) 1. From (2.6) and the
orderings we have chosen, it follows that 3"(r, s) 0 for r _< k, s > m + or r >_ k + 1,
s _< m. Define 2, where

k

" E 3"( F, S)Xr’s -1L Z Z 3"( F, S)Xr’s.
s=m+ r=k+

From (2.5) and the construction of 2, xr’, and 3", we have 2(e) 2i(e) for e e Ei,
1, 2. Thus, 2 2. This contradicts our assumption that 97 is a vertex of P(G). Thus,
either 2 is a fractional vertex ofP(G or 22 is a fractional vertex ofP(G2), a contradiction
to the definition of P(Gi ), 1, 2. The result thus follows.

PROPOSITION 2.2. IfG is a 2-tree, P( G) LP( G).
Proof. For a triangle, we can verify that P(G) LP(G). The result follows from

the definition of a 2-tree and the repeated application of Proposition 2.1.
From Proposition 1.4, each simple, connected series-parallel graph G (V, E) is

the subgraph of a 2-tree G (V, E). Thus, LP(G) is the projection of LP(G) onto the
set xl Xe 0 Ve 6 E E }. We analyze this projection using techniques discussed in
Balas and Pulleyblank [1]. Define

Z { (y, X) - RP+q[ Ay + Hx <_ b, y > O, x Q

and its projection

X {x e Rql3y 6 Rp s.t. (y, x) 6 Z }.
Here Q c_ R q. Let Wbe the cone W { Rm[tA >_ 0, >- 0 and extr (W) the set of
extreme rays of W. Then the projection X can be obtained as follows:

(2.7) X {x Rq[(tH)x <_ tb Vt W; x Q}.
In (2.7) we can restrict attention to the extreme rays extr (W).

We can rewrite the cycle inequalities in the following form:

(2.8) - x + x, _< 0.
eEc-{e*}

Besides nonnegativity, the other defining inequalities for LP(G) are

(2.9) xe-< VeeE.

In our case, Z LP(G), with A, the submatrix of inequalities (2.8) and (2.9)
corresponding to the edges E E, and H, the submatrix corresponding to the edges
in E.
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PROPOSITION 2.3. Consider any connected graph G V, E) that is a subgraph of
r if’, ff), where if, E { 4}. Let proj (LP()) be the projection ofLP() (LP( r)
is as defined in (1.2)) onto RE. Then

LP(G) proj (LP(G)).

Proof. In this case, the matrix A is the column vector corresponding to the edge 4.
The entry in this vector is 0, 1, or -1 for the rows corresponding to inequalities (2.8),
and 0 or for the rows corresponding to inequalities (2.9). The only row of type (2.9)
with an entry of in this column corresponds to x(4) < 1.

Let m be the total number of inequalities. Define the cone W, where

W= {t RmltA > O, >_ O}.
Let Si, {- 1, 0, be the set of rows ofA with entry in the column corresponding
to Y. The extreme rays of W are of the following form"

for j So LJ S,
(2.10) tl

0 otherwise;

for j S_,

(2.11) tl= forl=j26S,

0 otherwise.

Extreme rays of type (2.10) are unit vectors and do not alter the inequality on
projection. Thus, the cycle inequality 2.8 is defining for proj (LP(G)) ifg Ec. Similarly,
the upperbound inequalities (2.9) are defining for proj (LP(G)) for e 6 E.

Extreme rays of type (2.11 add two inequalities, one of which has a coefficient of
/ in 4, and the other has a coefficient of in 4. If one of the inequalities is x(4) <
and the other a cycle inequality (2.8), the resulting inequality is a sum of Xe* and
-Xe < 0 for e Ec {e*, 4} and is thus not facet-defining for proj (LP(G)). If both
inequalities are cycle inequalities given by cycles C(1) (Vc), Ec()) and C(2)
(Vc2), Ec(2)), where ? Ecl) fq Ec2), they have the following form:

(2.12) - Xe + xo -< 0,
eEcl)- {}

(2.13) -, Xe + xe* <- 0 for e* 4: 4.
eEc(2)- {e*}

If e* 6 Ec ), the resulting inequality is the sum of the inequalities x 0 for e
Ec() 0 Ec(2) { 4, e*) and can thus be dropped from the defining set. Thus, e*
Ecl). First, consider the case where {Ec) f-) Ec(2) { 4} E1 and Ell > 1. The
inequality defining proj (LP(G)) is obtained by adding (2.12) and (2.13) and eliminating
the column corresponding to 4. The resulting inequality can be written as a sum of the
inequality

--Z Xe + Xe* 0
Ec(1) tO Ec(2) ,e*

and the inequalities -xe -< 0 for e El, each of which is valid for LP(G). Thus, this
inequality can be dropped from the defining set as Ecl) U Ec2) { 7) contains a cycle
going through e*.
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FIG. 2.1.

Now consider the case where EII 0. Define E Ec()t.J Ec(2)- 4}. The
resulting inequality on projection is given by

(2.14) -, Xe -Jr- Xe* O.
e E {e*}

In this case, inequality (2.14) is a cycle inequality in G.
We have shown that proj (LP(G)) is defined by inequalities of the form (2.8) if

t Ec, (2.9), and (2.14), which are either defining inequalities for LP(G) or can be
written as a sum of such defining inequalities. Thus

proj (LP(G))
_
LP(G).

Since each inequality defining LP(G) is either defining for LP(G) or is obtained
on projection, it follows that LP(G)

_
proj (LP(G)). The result thus follows.

ProofofTheorem 2.1. Since the case where parallel edges are present can be handled
by Proposition 1.2, we consider G (V, E) to be a simple connected series-parallel graph.
By Proposition 1.3, G is the subgraph of a 2-tree G (V, E). Repeated applications of
Proposition 2.3 on the edges in E implies that LP(G) proj (LP()). Proposition
2.2 implies that P(G) LP(G). Also note that P(G) proj (P(G)). Thus, we have
P( G) LP( G).

Remark 2.1. Theorem 2.1 is in some sense the best possible. Let G 19e the complete
graph on four nodes. We give a fractional vertex ofLP(G). Every graph that is not series-
parallel contains the complete graph on four nodes as a minor (see [10]). Furthermore,
if G contains G as a minor, a vertex x of LP(G) can be lifted to a vertex of LP(G)
such that the restriction of to G is x. It thus follows that, if G is not series-parallel,
LP(G) contains a fractional vertex. G is as shown in Fig. 2.1. A fractional vertex of
LP(G) is given by

X12 X32 X42 1/2; X13 XI4 X34 1.

Note that the example in Fig. 2.1 is a 4-wheel free graph. This case is treated in 3.
Remark 2.2. UGPP can be solved in polynomial time on series-parallel graphs

using the results of Bern, Lawler, and Wong [2]. Using the results of Grrtschel, Lovasz,
and Schrijver 7 ], Theorem 2.1 provides a polyhedral proof of this statement since cycle
inequalities can be identified in polynomial time (see Deza, Grrtschel, and Laurent 5 ).

3. P(G) on 4-wheel free graphs. In this section, we give a complete inequality
description of P(G) for the case when G is a simple 4-wheel free graph. The instance
with parallel edges can be resolved using Proposition 1.2 and the instance that is not 2-
connected using Proposition 1.3. For the remainder ofthe section, we restrict our attention
to 2-connected simple graphs G. The polytope P(G) is thus full-dimensional by Prop-
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osition 1.1. From results of Seymour [9], it follows that a 2-connected simple, 4-wheel
free graph G (V, E) can be obtained by a sequence of 2-sums or 2-sums of 2-connected
simple, series-parallel graphs and copies of K4, the complete graph on four nodes. Re-
placing each 2-sum in the above sequence by a 2-sum gives a graph G (V, E). Clearly,
G is also a 4-wheel free graph, and G is a subgraph of G.

We first give a complete inequality description of P(G). Let K4 (V, E) be a
complete graph on four nodes, where V
For each node e V, define the 3-wheel inequality

(3.1) , Xjl- Z Xij 1.
jglV-{i} jV-{i}

Chopra and Rao [4] showed these inequalities to be facet-defining for P(K4). The fol-
lowing result is given by Deza, Grrtschel, and Laurent 6 ].

PROPOSITION 3.1. The polyhedron P(K4 is completely defined by a 0 <_ x <_

for e E, b cycle inequalities 1.1 ), and c 3-wheel inequalities 3.1 ).
This allows us to show the following result.
PROPOSITION 3.2. Let G (V, E) be any graph obtained by repeated 2-sums of

series-parallel graphs and copies ofK4. P() is completely defined by a 0 <_ x < for
e E, (b) cycle inequalities 1.1 ), and (c) 3-wheel inequalities 3.1 ).

Proof. The result follows by applying Proposition 2.1, Theorem 2.1, and Proposi-
tion 3.1.

Next, we consider the operation of composing facets using 2-sums. Given Gi
(V, E) with ei E;, 1, 2, let G G +2 G2 be the 2-sum obtained by identifying
the edges e (u, v and e (u2, v) and deleting the resulting edge. Note that all
graphs considered are simple and 2-connected. Consider inequalities

(3.2) ax <_ a,
(3.3) a2x <_ a2o,

which are facet-defining for P(G and P(G2), respectively. Assume that neither (3.2)
nor (3.3) is a bound inequality -xe < 0 or xe _< 1. Furthermore, assume that a(e
-a2(e2) 4 0. Without loss of generality, assume that a(e > 0. Define the inequality

(3.4)

where ao a + ao2 and

ax <__ ao

a for eGE1- {e,},
ae

a2 foreeE2- {e2}.

PROPOSITION 3.3. Inequality (3.4) is facet-definingfor P(G).
Proof. Let r be any partition of V and let rl and r2 be restrictions of r to V1 and

V2, respectively. Either both edges e and e2 are cut by 7r and 7r2, respectively, or neither
of the two edges are cut. Since x(r and x(7r2) satisfy 3.2 and 3.3 ), respectively, and
a(el) -a2(e2), it follows that x(Tr) satisfies 3.4. Thus, inequality (3.4) is valid
for P(G).

Let x and x2 be equality solutions for (3.2) and (3.3), respectively, with x(e
x2(e2). Define the vector x, where

Xe
Xe

X2
for e e E1 {el},
for e e E2 {e2}.
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x e P(G) is an equality solution to (3.4). Given the set of equality solutions to (3.2) and
3.3 ), construct all possible equality solutions to (3.4), as described above. If inequalities

(3.2) and (3.3) are facet-defining, this gives a sufficient number of affinely independent
equality solutions to (3.4) to show that it is facet-defining for P(G).

On forming a 2-sum of two K4’s, the 3-wheel inequalities can be composed with
other 3-wheel inequalities. As an example, consider G, the 2-sum of two Ka’s, shown in
Fig. 3.1. Define S 1, 2, 4, 8, 10 } and T 3, 5, 6, 7, 9 }. The inequality

(3.5) x(ei)- x(ei) < 2
iS iT

is facet-defining for P(G) using Proposition 3.3 since it is a 2-sum composition of two
3-wheel inequalities. Similarly, the inequality

(3.6) x(e4) + x(e8) + x(el0) x(es) x(e6) x(e7) x(e9) --<

is obtained as a composition of a 3-wheel and a cycle inequality.
We can use these compositions to define a class WI of inequalities. The class WI is

defined recursively as follows. 3-wheel inequalities are in WI; the 2-sum oftwo inequalities
in WI or an inequality in WI, and a cycle inequality is also in WI.

The main result of this section is stated as Theorem 3.1.
THEOREM 3.1. If G (V, E) is a simple, connected 4-wheel free graph, P(G) is

completely defined by a) 0 <_ Xe < for e E, (b) cycle inequalities (1.1), and c
inequalities in the class WI.

Before proving Theorem 3.1, we need a few other results. Note once again that all
graphs considered are simple. The polytope P(G) is thus full-dimensional in each case.
Consider the following condition:

(C1) Given the inequality ax <_ ao and an edge Y with a o < 0, there exists a
partition 7r (V, V2) such that E(Tr), ae >- 0 for e E(Tr) { Y} and ae > 0 for at
least one edge in E(

Consider the 2-sum operation described earlier with inequalities 3.2)-(3.4).
PROPOSITION 3.4. If both inequalities (3.2) and (3.3) satisfy (C1), so does in-

equality (3.4).
Proof. Consider any edge e e E { e ) with ae < 0. By assumption, there exists

a partition (V I, V 12) of V1 that satisfies (C for inequality (3.2) and e. If u , v
___

VI, then (VI tO V2 tO {u, v} {Ul, v, u2, v2}, V 2) is a partition that satisfies (C1) for
(3.4) and e. If {u’, v

___
V21, then (V I, V21 tO V2 tO {u, v} {u,, v,, u2, v2))is a

partition that satisfies (C1) for (3.4) and e. If Ul e V and u2 e V 2, consider the parti-
tion (V , V 22) that satisfies (C1) for (3.3) and edge e2 (earlier, we assumed, without
loss of generality, that aZ(e2) < 0). Assume that u2 6 V and v2 V . The partition

FIG. 3.1.
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(VI tO V2 tO {u} {u,, u2}, V tO V22 tO {v} {v,, v2}) satisfies (C1) for (3.4)
and e. Since e is an arbitrarily chosen edge, the result follows. [3

Note that both cycle inequalities and 3-wheel inequalities satisfy condition (C1).
From Proposition 3.4 and the definition of the class of inequalities WI, we have the
following result.

PROPOSITION 3.5. All inequalities in the class WI satisfy condition C1).
Let ax <_ ao be any inequality from the class WI for P(G), where G (V, E).

Assume that a, -1. Consider the inequality

(3.7) /x < 60,

where /e ae for e E 4} and 60 a0 + 1. Inequality 3.7 is valid for P(G), where
(v, - {}).
PROPOSITION 3.6. Inequality (3.7) cannot befacet-definingfor P( G).
Proof. From Proposition 3.5, there exists a partition r (V, V2) of Vthat satisfies

condition (C1) for ax < ao and edge 4. Let E(Tr) be the edges cut by 7r in the graph G.
Define the edge set E+ {e ff,lae> 0}. Note that [E+[ > 1, E+ _/(Tr), and ae >
0 for all e e E(Tr). Consider any partition whose incidence vector x( satisfies 3.7
with equality. Let E(5 be the edges of G cut by . We show that E+

___
E(- ). To the

contrary, assume that e E+ ( ). Consider the partition # obtained as the common
refinement of 7r and . Let E(r) be the edges in G cut by -. Clearly, E(-) E(Tr) tO
E( ). Let be the incidence vector of E(-). Since e E(), () 1. Also, c/() > 0
since E+ Thus,

e fi

contradicting the validity of(3.7). Thus, each equality solution to (3.7) must be a partition
that cuts all edges in E+; i.e., every equality solution to (3.7) also satisfies the equation

Xe=lE+l.
eeE

Thus, inequality (3..7) cannot be facet-defining for P(G). E3
Let G (V, E) be a 2-sum ofG (V1, El) and G2 (V2, E2), where el (u, Vl)

and e2 (u2, v2) are identified with resulting nodes u and v. Consider a valid inequality
for P(G)

3.8 ax <_ ao

such that each partition satisfying 3.8 with equality has both nodes u and v in the same
subset. Furthermore, assume that there are edges 4 e E1 el } and 42 e E2 e2 such
that a(41) 4 0 and a(42) 4 0.

PROPOSITION 3.7. Inequality (3.8) cannot befacet-definingfor P( G).
Proof. Let a; be the restriction of a onto Ei { ei }, 1, 2. Define

a max { a ix(r)l 7r is a partition of Vi }, i= 1,2.

Since inequality (3.8) is valid for P(G) and each partition satisfying (3.8) with equality
has both nodes u and v in the same subset, at least one of a{ and a is defined by a
partition that has u and vl or u2 and v2 in the same subset. Without loss of generality,
assume this to be a. Define the inequality

(3.9) bx < a{,
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where

ae for e e E {e},
b=

0 otherwise.

Inequality (3.9) is valid for P(G), and each equality solution to (3.8) also satisfies 3.9
with equality. Thus, inequality (3.8) is not facet-defining, since P(G) is full-dimensional.
The result thus follows.

Consider a simple graph G (V, E), where G is either K4 or series-parallel. Con-
sider two inequalities aix _< a6, 1, 2 that are facet-defining for P(G). Furthermore,
assume that there are two edges el, e2 e E such that ai(ej) 4 0, i, j 1, 2, al(el)
--a2(el) 1.

PROPOSITION 3.8. There exists an edge e E, such that no partition 7r satisfying
aix(Tr) aio, 1, 2 cuts e.

Proof. The only instances that can arise on a K4 are if one is a 3-wheel inequality
and the other a 3-wheel or cycle inequality. For a series-parallel graph, both inequalities
are cycle inequalities. Each case is resolved in Fig. 3.2. The coefficient on an edge is
written next to the edge, and the edge e is marked. Note that a/e 4 0 for at least one of
i= 1,2.

Consider an inequality ax <_ ao that is facet-defining for P(G), where G (V, E).
Define/ e 6 EI a,. 4 0 }. Let ( I?,/) be the graph induced by edges in/. is
called the support graph of the inequality ax <_ ao.

Consider the inequalities

(3.10) alx < a,
(3.11) aZx
which are facet-defining for P(G), where G is a 4-wheel free graph. Assume that inequality
(3.10) belongs to the class WI and that 3.11 either belongs to WI or is a cycle inequality.
Note that the support graphs of both (3.10) and (3.11 are 2-connected.

Assume that e and e2 are two edges such that ai(ej) 4 O, i,j 1, 2, and al(el)
--aZ(el 1. Since G is a 4-wheel free graph, we can write G as a 2-sum (or 2-sum) of
graphs Gi (Vi, Ei ), r, i.e., G Gl +2 +2 Gr. Each of the graphs Gi is
either a K4 or series-parallel. Each of the facets (3.10) and 3.11 is a 2-sum of 3-wheel
and cycle inequalities defined on some of the Gi, 1, r; i.e., there exists Sj.

_
1, ...r}, j 1, 2 and inequalities

(3.12) aiJx < a, 1, 2, j S

such that (3.10) is a 2-sum of the inequalities for and (3.11 is a 2-sum of the
inequalities for 2. Each of the inequalities in (3.12) is either a 3-wheel or cycle
inequality that is facet-defining for P(G; ).

Assume that el (described earlier) is an edge of Gk, i.e., el e Ek. Clearly, k $1 fq

$2. Since el E, it is not deleted as the result ofa 2-sum. Thus, e E forj 4 k. Inequality
(3.12 gives the corresponding inequalities

aikx < aiok, 1, 2.

Note that a l(el --a2k(el 1.
PROPOSITION 3.9. There exists an edge e3 E, { el such that aik(e3) 4: 0,

1,2.
Proof. The support graphs (3.10) and 3.11 are obtained as 2-sums of the support

graphs Gi (Vo, Eo), j Si, 1, 2 of inequalities in (3.12). Each of these support
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-1

FIG. 3.2.

graphs is etlaer a K4 or a cycle. Assume that Elk fq E2k el }. Since 2-sums are the
only operations allowed and el Ej for j 4: k, this implies that e is the only edge shared
by the support graphs of (3.10) and (3.11). This contradicts our assumption that they
share e2 as well. Thus, there exists an edge e3 E {E 71 E2/ { e }. Vq

Given inequalities (3.10) and (3.1 described earlier, define the inequality

(3.13) ax <_ ao,

where ao a + ag and a,, a + ae for e E E el }. If ae 0 for all e e , inequality
(3.13) is not facet-defining for P(G). Thus, we can assume that there exists some edge
E- el } with a(g) 4 0. Define the graph G (V, E), where E- E- el }. Inequality
(3.13 is clearly valid for P(G).
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PROPOSITION 3.10. Inequality (3.13) is not facet-definingfor P( G).
Proof. The proof is by induction on the graph G. If G is a K4 or series-parallel, then

Proposition 3.10 follows from Proposition 3.8. Thus G is obtained as a sequence of 2-
sums (or 2-sums) of graphs Gi, r, discussed earlier. Each graph Gi in this
sequence is either a K4 or series-parallel. Thus, inequalities (3.10) and (3.11 are obtained
as 2-sums of inequalities in (3.12). From Proposition 3.9, we know that there exists an
index k such that e, e3 Ek, aik(e), aik(e3) 0, aik(e) --aZk(e) 1, 1, 2.
The graph Gk (V,, Ek) is either a K4 or series-parallel. From Proposition 3.8, there
exists an edge e4 6 E such that no partition 7rk of Vk satisfying aix(Trk) ak, 1, 2
cuts e4. Assume that e4 u, v). Each partition 7r of V satisfying both (3.10) and 3.11
with equality is an extension of a partition r of V that satisfies aikx("Xk) ak, 1,
2. Thus, each partition 7r of V satisfying both (3.10) and 3.11 with equality has u and
v in the same subset. Note that, if a partition r satisfies (3.13 with equality, it satisfies
both (3.10) and 3.11 with equality. Ifthe edge e4 is an edge in E, then inequality 3.13
cannot be facet-defining, since there is no equality solution that cuts e4; i.e., every equality
solution satisfies x(e4) 0.

Now consider the case where e4 is deleted during one of the 2-sum operations when
forming G. Thus, G can be written as a 2-sum of ( (I7", ) and (_ (I7, ),
where e4 is the identified edge. As mentioned earlier, there exists an edge 6 E with
a() 4: 0. Without loss of generality, assume that Y/ { e4 }. (2 itself is a sequence
of 2-sums (or .-sums) of Ka’s and series-parallel graphs. Let

_
.{ 1, r } be the

index set of the graphs used to form (2. One of the components in S must contain the
edge e4. Without loss of generality, assume that 2

_
and e4 6 E2 (G2 (V2, E2) is as

defined earlier). The edge e belongs to E or E2, since e and e4 belong to the same K4
or series-parallel component. Define ( (,/) 1 t-2 G2 and ( (l,/ {el }),
where e4 is the edge identified in the 2-sum. Let

(3.14) dix < , 1, 2

be the inequalities obtained as 2-sums of the inequalities in (3.12) indexed by
{ 1,..., r 2. Each of inequalities (3.14) is facet-defining for P((l). The inequalities

(3.15) aiZx < a2, 1, 2

are the inequalities in (3.12) that are facet-defining for P(G2). Note that at least one of
a lZ(e4) 4:0 or aZZ(e4) 4: 0. Consider the inequalities

(3.16) dix <- d6, 1, 2

obtained as 2-sums of(3.14) and 3.15 on identifying edge e4. By Proposition 3.3, each
inequality in (3.16) is facet-defining for P(G). Define

(3.17) dx <_ do,

where d(e) d(e) + dZ(e) for all e / { e and d0 d + d. Note that d(e)
a(e) for all e 6/ fq/. Furthermore, each partition satisfying (3.13 with equality is the
extension of a partition satisfying (3.17 with equality. Thus, if inequality (3.17 is not
facet-defining for P((), then (3.13) cannot be facet-defining for P((). If d(e) 4:0 for
some edge e E2 e4 }, then inequality (3.17 is not facet-defining for P(0) by Prop-
osition 3.7 (since d(Y) 4:0 and Y 6 E1 e4 } ). Thus, inequality (3.13) is not facet-
defining for P(G) in this case.

Now consider the case where d(e) 0 for all edges e E2 { e4 }, i.e., d (e) +
dz(e) 0 for all e E2 e4 }. Define

E {e EzlaiZ(e) 4: 0), 1, 2.
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Since G2 is either a K4 or a series-parallel graph, E is the subgraph of a cycle or a 3-
wheel. The only cycle inequalities for which a + de2 0 for all e E2 { e4 is a triangle
containing e4, es, and e6, where a12(e4) a22(e4) -1, a2(es) 1, a22(e) -1,
a2(e6) -1, a22(e6) 1. If the two inequalities are 3-wheel inequalities, once again
there must be a triangle as described above. Thus, there exist edges e and e6 such that
e4, e, e6 } define a triangle in G2 with

for e es,
"1 2 --1 for e e6ae --e

0 for eEz {e4, es, e6}.
Since each solution that satisfies 3.17 with equality has both u and v in the same subset,
it satisfies x(es) x(e6). Thus, inequality (3.17) is not facet-defining for P((), since
P(() is full-dimensional. This implies that inequality (3.13) is not facet-defining for
P(G). The result thus follows.

Proof of Theorem 3.1. Let G (V, E) be a 4-wheel free graph of minimum size
that violates Theorem 3.1. G cannot be series-parallel or a K4 by Theorem 2.1 and Prop-
osition 3.1, respectively. Thus G must be the 2-sum (or 2-sum) oftwo 4-wheel free graphs
Gi (Vi, Ei ), 1, 2. First, consider the case where G G -T-2 G2. Theorem 3.1 holds
for G and G2 by the induction hypothesis. Thus, by Proposition 3.2, Theorem 3.1 also
holds for G.

Now consider the case where G G +2 G2. Assume that the edges identified and
deleted in the 2-sum are ei - Ei, 1, 2. Let G (V, E) be the 2-sum of G and G2
obtained on identifying el and e2 into the edge 4. Thus, E E tO ). By assumption,
the polytopes P(G and P(G2) are completely defined, as in Theorem 3.1. From Prop-
osition 2.1, it follows that P(G) is completely defined by inequalities of type (a), (b),
and (c) in the statement of Theorem 3.1.

The polytope P(G) is the projection of P((7) onto the set Re. Thus we must only
show that the projection of inequalities of type (a), (b), or (c) (that completely define
P(G)) gives inequalities in one of the three classes. We use the same techniques as in
the proof of Proposition 2.3.

The matrix A is the column corresponding to the edge 4. The column has an entry
of 0 or for all inequalities of the form xe < and 0, or -1 for all inequalities of the
form (b) or (c). Let m be the total number of inequalities defining P(G). Define the
cone W, where

W= {t RmltA >_ O, >_ O}.
As in the proof of Proposition 2.3, the extreme rays of W are of the form (2.10)
or (2.11).

Extreme rays of the type (2.10) are unit vectors and do not alter the inequality on
projection. Extreme rays oftype (2.11 add two inequalities, one ofwhich has a coefficient
of + in 4, and the other has a coefficient of- in 4. If one of the inequalities is
x(4) _< and the other an inequality from WI, then the composed inequality cannot be
facet-defining by Proposition 3.6. Ifboth inequalities are cycle inequalities whose support
graphs share another edge besides 4, the composed inequality is not facet-defining as in
the proof of Proposition 2.3. If one is an inequality from WI and the other is either a
cycle inequality or an inequality from WI and the two support graphs share another edge
besides 4, the composed inequality is not facet-defining by Proposition 3.10. If the two
support graphs only share the edge 4, the composed inequality is once again from the
class WI.
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This shows that the projection of P(G) onto the set { x[ x(?) 0 } is completely
defined by inequalities of type (a), (b), or (c). This contradicts our assumption that G
is a 4-wheel free graph that violates Theorem 3.1. The result thus follows. Vq

Remark 3.1. Theorem 3.1 shows that, if G is a 4-wheel free graph, all inequalities
defining P(G) have coefficients of 0, 1, or -1 if the inequality has been scaled by the
smallest integer to ensure that all coefficients and the right side are integer.

Acknowledgments. I thank the referees for a careful reading ofthe paper and several
valuable suggestions that have resulted in a significantly improved version. In particular,
the proof of Proposition 3.10 was incorrectly stated in the original version, as pointed
out by an anonymous referee.
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ON THE INTERPLAY BETWEEN INTERVAL DIMENSION
AND DIMENSION*

S. FELSNER’f, M. HABIB:I:, AND R. H. M(HRINGf

Abstract. This paper investigates a transformation P Q between partial orders P, Q that transforms the
interval dimension ofP to the dimension of Q, i.e., idim (P) dim (Q). Such a construction has been shown
before in the context of Ferrer’s dimension by Cogis [Discrete Math., 38 (1982), pp. 47-52 ]. The construction
in this paper can be shown to be equivalent to his, but it has the advantage of being purely order-theoretic,
(2) providing a geometric interpretation ofinterval dimension similar to that ofOre [Amer. Math. Soc. Colloq.
Publ., Vol. 38, 1962 for dimension, and (3) revealing several somewhat surprising connections to other order-
theoretic results. For instance, the transformation P Q can"be seen as almost an inverse of the well-known
split operation; it provides a theoretical background for the influence of edge subdivision on dimension (e.g.,
the results of Spinrad Order, 5 (1989), pp. 143-147]) and interval dimension, and it turns out to be invariant
with respect to changes of P that do not alter its comparability graph, thus also providing a simple new proof
for the comparability invariance of interval dimension.

Key words, partial order, dimension, interval dimension, interval order, geometric representation of
ordered sets

AMS subject classifications. 06AI0, 68E10, 68C25

1. Introduction. An extension Q ofa partial order P is an order on the same elements
that contains all the ordered pairs of P; i.e., x < y in P implies x < y in Q. A family
Ql, Qk } of extensions of P is said to realize P or to be a realizer of P if and only

if P Q1 fq fq Qk; i.e., x < y in P if and only if x < y in Qi for each i, _< _< k. If
we restrict the Qi to belong to a special class of orders and seek for a minimum size
realizer, we obtain a concept of dimension with respect to the special class.

A linear extension of P is an extension that is a chain. Dushnik and Miller [5
defined the dimension of a partial order P, denoted dim (P), as the smallest integer k
for which there exist k linear extensions realizing P. Let the realizer {L Lk } ofan
order P with P[ n be made by the linear extensions Li (xil < xiz < < xi,).
With every x e P, we then associate the vector (x x) e Rk, where x gives the
position (coordinate) ofx in L;. This mapping ofthe points ofP to points ofR embeds
P into the componentwise ordering ofR. Ore [15] defined dim (P) as the minimum k
such that P embeds into R in this way. The projections of such an embedding on each
coordinate yield a realizer ofP. The extensions ofthis realizer need not be linear extensions
of P, but it is straightforward to transform them into linear extensions. Therefore, Ore
dimension and Dushnik-Miller dimension are equivalent concepts.

A partial order P is an interval order if it can be represented by assigning to each
element x P an open interval Ix (ax, bx) of the real line, such that x < y in P if and
only if bx <- ay. Such a collection of intervals is called an interval representation of P.
Fishburn [7 characterized interval orders as those orders that do not contain a four-
point subset forming two disjoint 2-chains, i.e., that contain no 2 + 2. Interval dimension,

Received by the editors September 3, 1991; accepted for publication (in revised form) January 6, 1992.
This work was supported in part by the Deutsche Forschungsgemeinschaft and by the Deutscher Akademischer
Austausch Dienst (DAAD) Project PROCOPE.

f Technische Universitat Berlin, Berlin, Germany.
J; Laboratoire d’Informatique de Robotique de Micro61ectronique de Montpellier (LRIMM), Montpellier,

France.

32



INTERVAL DIMENSION AND DIMENSION 33

denoted idim(P), is defined by using interval extensions instead of linear extensions.
Since linear orders are interval orders, we obtain the trivial inequality

idim(P) < dim(P).

It is well known that interval orders of large dimension exist (see 16 ], ], 9 ). Hence,
the gap between idim(P) and dim(P) may be arbitrarily large.

Let J { 11, Ik ) be an interval realizer of P and fix an open interval repre-
sentation of each interval order/. Let (a x, b J be the interval corresponding to x 6 P
in the representation of Ij. We now define a box embedding of P to Rk. With x P,
we associate the box IIj (a x, b x - R. Each of these boxes is uniquely determined
by its upper extreme corner Ux (bx, bx) and its lower extreme corner lx

ax ). Obviously, x < y in P ifand only if Ux < ly componentwise. The projections(ax,
of a box embedding onto each coordinate yield an interval realizer, so the concepts of
box embeddings and interval realizers are equivalent. For interval dimension, the box
embeddings thus play the role of the above-mentioned point embeddings into R intro-
duced by Ore for dimension.

A box embedding depends not only on the realizer J of P, but also on the repre-
sentations of the I. Now we define the partial order go(J) ofextreme corners associated
with a box embedding or, equivalently, with an interval realizer J of P. The vertices of
gO(J) are the, at most 2n different, lower respectively, upper) extreme corners ofelements
of P. The order relation of 3(J) is given by the componentwise order in R.

By definition, we have an embedding of go(J) in R, so dim go(J) < k idim(P).
The starting point ofour investigations is the following question concerning the interplay
between dimension and interval dimension:

Is dim go J idim (P) ?

In 2 we define a transformation P B(P) such that idim(P) dimB(P). We
provide two interpretations of this transformation, a combinatorial one and a geometrical
one. In the combinatorial interpretation, the elements of B(P) are subsets of P. In the
geometrical interpretation, B(P) is the poset go(J* of extreme corners ofJ*. Here J*

is a box embedding obtained from an arbitrary box embedding J by a normalizing
procedure. From the proofs, we obtain an affirmative answer to the above question.

Section 3 investigates several consequences to and relations with other order-theoretic
results. First, we study the transformation P B(P) on special partial orders of height
1. In particular, we show that the standard example Sn of a n-dimensional order is an
(almost) fixed point of the transformation P -- B(P). Therefore, dim (Sn) idim (Sn).

Second, we investigate the relationship with the split operation. This has a surprising
consequence for the iterated transformation P -- B(P) -- BZ(P) -- Bk(P) -- ....
For every n, there are partial orders P such that 0 _< dim(P) dimB(P) _< 2 for all
k < n, but dim (P) -dimB" +l(p) > m, where rn is arbitrary.

Third, we relate the interval dimension of subdivisions of P to the dimension of P,
thus providing a theoretical framework for the examples of Spinrad [17 ].

Finally, we show the comparability invariance of the transformation P B(P),
which, as a consequence, gives another proofthat the interval dimension is a comparability
invariant. Some remarks concerning the recognition-complexity ofspecial classes oforders
and graphs close the paper.

2. The main result. In the last section, we define the partial order go(J) ofextreme
corners associated with a box embedding of P in R. With the next lemmas, we show
that go (J) inherits some structure that is independent of the realizer J leading to the
box embedding.
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LEMMA 1. Let gO be thepartial order ofextreme corners ofa box representation

ofP.
(a) Ifthe lower extreme corners ofx and y are comparable in gO ), e.g., l _< ly,

then the predecessor sets of x and y in P are ordered by inclusion, i.e., Prede(x)
__

Prede(y).
(b) If the upper extreme corners of x and y are comparable in (), e.g.,

u _< uy, then the successor sets ofx and y in P are ordered by (reversed) inclusion, i.e.,
Succ(x) =_ Succ(y).

(c) If the lower extreme corner of x and the upper extreme corner of y are
related by lx <- uy, then Prede(z)

_
Prede(x)for all z Succe(y) or, equivalently,

Prede(x)
_
zScc(y) Prede(z).

(d) Ifux < l, then sc(x)Prede(z)
_

Prede(y).
Proof. (a) From l < ly, we obtain a < a y for all j. Therefore, in each/, x has

less predecessors than y; i.e., Pred,(x)
_

Pred.(y). The claim now follows from
Prede(x) f-I Pred,(x) since the/ realize P.

(b) The proof of this part is symmetric to part (a).
(c) From lx < uy, we have a { _< b. If z Succ(y), then necessarily a z >

b > ax. Hence, Pred,(z) Pred.(x) for allj. The claim follows.
(d) From Ux < ly, we immediately obtain x < y, i.e., y e Succ(x); therefore,

Pred(y)
_

f’) Scc(x

All statements except the conclusion part of (b) use only the sets Prede(x) and
fqSucce) Prede(z). This irregularity is resolved with the next lemma.

LEMMA 2. fqSucc(x) Pred(z)
__

GzSucc(y)Pred(z) if and only if Succ(x)
Succ(y).

Proof. The "if" direction is trivial. We now prove the "only if" direction. Let z
Succ(x) and note that y Scc(y Pred(z). From the assumed inclusion, we obtain
y Pred(z); hence z

DEFINITION 1. With each vertex x of a partial order P, we associate the lower set
L(x) Predp(x) and the upper set U(x) NzSuccp(x)Predp(z). The case where x
Max(P) is settled by the convention U(x) P.

Define B(P) { L(x), U(x) x P} ordered by setinclusion.
Note that this construction is, in fact, equivalent with Cogis’s construction in the

context of Ferrers dimension 2 ]. Cogis also uses L(x) but replaces U(x) by the equivalent
set { z 6 P: Succ(x)

_
Succ(z) }. He also proves Theorem 2, but in a different way and

without the geometrical interpretation upon which our approach is based.
The preceding lemmas prove that lx -- L(x) and Ux - U(x) together form an

order-preserving mapping from B(ff) to B(P); hence

2 idim (P) > dim J > dimB(P).
To get more structure into interval realizers, we now introduce a procedure that

transforms an interval extension I { (ax, bx): x P of P into its P-normalization
I* {(ax*,bx*):x6P}.

In the first step of the P-normalization, we update left endpoints as follows:

a* max bz" z Pred(x) } if x is not minimal,

ax* min { az z Min(P) } if x is minimal.

In the second step, we update right endpoints as follows:

bx* min { a z* z Succ (x)) if x is not maximal,

b* max b z Max(P) } if x is maximal.
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Note that the interval order I* need not be isomorphic to I. In general, I* is a
suborder of I and a minimal interval extension of P if all the ax, bx were different.

IfP is realized by J {I1,..., Ik}, then J* {I,..., I } realize P as well.
We call the box embedding corresponding to J* the normalized box embedding of
For an example, see Fig. 1.

After normalizing, we have a realizer J* { I,..., I } of P, interval represen-
tations (ax* b{*) and an associated partial order of extreme corners M(J*)
{ Ix*, U x* x e P }. The next theorem shows that the geometrically defined (J*) and
the combinatorially defined B(P) are isomorphic.

THEOREM 1. If* is a normalized realizer ofP, then 3(*) B(P).
Proof. First, observe that both partial orders have a least element generated by x

Min(P) as Ix* and L(x), respectively, and a greatest element generated by x Max(P)
as Ux* and U(x), respectively.

Moreover, l*x -- L(x) and u* --,. U(x) defines an order-preserving mapping by the
remarks preceeding (2). To show the converse, we distinguish the following four cases:

U(x)
_

L(y). We know that x U(x), so x e Pred(y). Since I is an interval
extension of P, we obtain b x* < a * for all j. Hence Ux* < l;

L(x) c L(y) Remember that ax* max{bJ’z Pred(x)} and a j*
y

max{bJ’z e Pred(y)}. By assumption, Pred(x)
_

Pred(y), so ax* < a* and
lx* -< l?;

U(x)
_

U(y). By Lemma 2, this is equivalent to Succ(x)
___

Succ(y). Now
Ux* < u follows symmetrically with the second case;

L(x) U(y). Since Ij.* is normalized, there are z0 e Pred(x) and Zl e Succ(y) with
a x* b Jzo and b * a J’z, The hypothesis provides Zo -< z; hence a x* b Jo < b *zo <
J* b J*. The validity of this inequality for all j again gives Ix* -< ua zl

We are now ready to prove our main theorem about interval dimension and di-
mension.

THZOrZM 2. It holds that dimB(P) idim (P).
Proof. As inequality (2), we already have obtained dimB(P) < idim(P). For the

converse, we need two arguments. We first show that a linear extension L ofB(P) induces
an interval extension IL of P. Second, we prove that, if L1,..., Lk is a realizer of B(P),
then the induced interval extensions ILl,---, ILk form an interval realizer of P.

Let L M, M2, Mr be a linear extension of B(P). For each x P, there are
i, j 6 {1, r} such that Mi L(x) and M U(x). From L(x) c_ U(x) and
x L(x), x U(x) we obtain that < j. We can now associate with x a unique interval
(ax, bx), which is defined to be (i, j). We now show that the interval order IL induced

c d

12

FIG. 1. P, an interval realizer ofP, and its normalization.
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by the interval representation { (ax, bx) x P is an extension of P. If x < y in P,
then U(x) L(y), and thus, with Mi U(x) and M L(y), bx _< j ay, which
implies x < y in Ia.

Let { L,..., L } be a realizer for B(P) and let Ij. I, for _< j _< k. The family
I Ik } of interval extensions of P is an interval realizer if and only if all incom-

parabilities xl[y of P are realized. If xl[y in P, then U(x) L(y), since x U(x) but
x L(y). Therefore, L(y) precedes U(x) in some Lj., which gives a < b x. The symmetric
argument yields an with ax < by. Both inequalities together give x

This theorem together with inequality (2) shows that dim3(J) is independent of
the interval realizer

3. Consequences. In the previous section, we introduced the operation P -- B(P)
mapping partial orders to partial orders. We now investigate several connections to other
order-theoretical topics and results. Note that B(P) always has a greatest and a least
element. We adopt the convention of calling orders with this property bounded and
denote by Q -- the bounding of a partial order Q; i.e., is the order resulting from
Q by adjoining a new greatest and a new least element.

We first look at the effect of the operator B applied to special classes of orders.

3.1. Transformation rules for special posets. Let Sn denote the standard poset of
dimension n, i.e., the set of all one-element and (n )-subsets of an n-element set
ordered by setinclusion. Then

(3) B(S) S.
Let Cr denote the r-cycle. The r-cycle is the three-dimensional poset on 2r elements

{ xl, y, x2, y2,..., Xr, Yr} with comparabilities

(4)

Xl < Yl, Yl > X2, X2 < Y2, Xr < Yr, Yr > Xl,

B( Cr) Cr.
Let the Hasse diagram of Tbe a tree. The truncation of T, denoted by tr(T), is the

induced tree on the nonleaf vertices of T. Then

(5) B(T) tr(T).

In particular, (3) shows that the standard example Sn of an n-dimensional order is
(up to closures) a fixed point of the operation P - B(P), thus showing again that, for
every n >_ 3, there are orders P with dim(P) idim (P) n.

3.2. B as an inverse of the split operation. We now turn to the natural question of
whether, for every bounded partial order Q, there is some P with Q B(P). The next
theorem answers this question affirmatively. Moreover, it turns out that the operation
P - B(P) is an almost left inverse of the split operation S, which has applications in
different branches of poset theory (see, e.g., 21 ], 8 ], 6 ). The split S[P] of a partial
order P is the order of height with minimal elements { x" x P } maximal elements
{ x"" x P } and ordered pairs x’ < y" if and only if x _< y in P.

THEOREM 3. It holds that B(S[P]) P.
Proof. For x 6 P, let Pred[x] Pred(x) tA {x}. Obviously, P is isomorphic to the

setsystem Pred x] x P } ordered by inclusion. We show that the elements ofB(S[P]
are just the "primed" sets Pred[x], i.e., (Pred[x])’ {x" x Pred[x] }, together with

Xt!the greatest element { x, x 6 P and the least element j25. We have L(x’) and

U(x’) ("1 Pred(z") I"] Pred z )’.
z"e Succ(x’) Succ[x]
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Since x Succ[x], U(x’)
_

(Pred[x])’. On the other hand, Pred[x] c Pred[z] for
z 6 Succ(x). Together, this gives U(x’) (Pred[x])’. Similarly, we obtain L(x")
Pred(x") (Pred[x])’. Finally, U(x") {x’, x": x P} by definition since
Succ(x") . [3

It is easy to verify that

A

(6) B(P) B(P).

So we may generalize the theorem to

boundings

(7) B"(S"[P]) P

Investigations on the effect of iterated splitting to the dimension 19 lead to the inequality

(8) dimP < dimS" P] < 2 + dimP for all n.

As a consequence of (7) and (8), we obtain that, for every n, there are partial orders P
such that

dimP- dimBk(P) _< 2 for all k _< n.

(Just take P S"[ Q] for some order Q.) Ifwe choose Q, however, to be an m-dimensional
interval order, we obtain a large difference in dimension with the next iteration, i.e.,

(9) dimP dimB" + (P) > rn 1.

3.3. The interval dimension of subdivisions. With the next theorem, we relate the
interval dimension of subdivisions ofP to the dimension ofP. Spinrad 17 showed that
the dimension of a subdivision of a partial order can be an arbitrary multiple of its
dimension, thus answering Trotter’s problem 4 in [22 ]. With our result, we establish a
theoretical framework for his examples.

In this context, partial orders and their diagrams are regarded as directed graphs
whose edges (x, y) correspond to ordered pairs and cover pairs x -< y of P, respectively.
An edge (x, y) is subdivided by placing a new vertex z in the "middle" of the edge; i.e.,
(x, y) is replaced by (x, z) and (z, y). In the case of partial orders, we must then ensure
transitivity; i.e., all edges (a, z) with a 6 Pred[x] and (z, b) with b Succ[y] are
also added.

The complete diagram subdivision DS(P) is the subdivision ofall edges ofthe diagram
of P. The complete subdivision CS(P) is the transitive closure of the subdivision of all
the edges ofP. Let E be any set ofedges ofP; we denote the order obtained by subdividing
the edges of E with Sub(P, E). Since P is an induced suborder of each subdivision
Sub(P, E) and since Sub(P, E) is an induced suborder of CS(P), we obtain

(10) dim(P) < dim Sub(P, E) < dim CS(P).

With the next theorem, we give an upper bound for idim Sub(P, E).
THEOREM 4. We have that idim Sub(P, E) <_ idimDS(P) idimCS(P)

dim(P).
Proof. Take any embedding of P into Rk with k dim(P) and grow the points to

obtain an embedding by "miniboxes." An interval embedding of a subdivision
Sub(P, E) is then obtained by adding the box with lower extreme corner Ux and upper
extreme corner ly for the point z subdividing the edge (x, y) E. See Fig. 2. This gives
idim Sub(P, E) _< dim (P), independent of the choice of E.
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FIG. 2. P, a minibox embedding ofP, and the box embedding ofDS(P).

To prove that idimDS(P) idim CS(P) dim(P), we show that P can be embedded
in B(DS(P)). This gives dim(P) < dimB(DS(P)). From Theorem 2, we know that
idimDS(P) dimB(DS(P)). Together, we obtain dim(P) < idimDS(P).

To show that P can be embedded in B(DS(P) ), we apply the normalizing procedure
to the box embedding ofDS(P)constructed in the first paragraph ofthe proof. Because
of the construction of the box embedding of DS(P), the only changes that occur in
normalization are shifts of the left endpoints of intervals corresponding to elements in
Min(P) and the right endpoints of elements in Max(P). We then embed P into the
lower extreme corners of the miniboxes of the normalized representation *. This gives
dim(P) k idim(*) idim(DS(P)). [-3

Note that we obtained, in fact, a slightly stronger result: If a set E of edges of P
contains the edges of the diagram, then B(Sub(P, E)) VS(P), where VS(P) denotes
the vertical split of P, i.e., the order obtained from P by substituting each vertex by a 2-
chain. In [20], a distinct proof for dim (P) idim VS(P) is given.

3.4. Comparability invariance. For the definition and basic facts on comparability
invariance, see [10]. Let Comp(P) be the comparability graph of P. We show that
Comp(B(P)) is a comparability invariant of P in the sense that, if Comp(P)
Comp(Q), then Comp(B(P)) Comp(B(Q)). Together with Theorem 2 and the known
fact that dimension is a comparability invariant, this gives an alternative proof of the
comparability invariance of interval dimension in the finite case. The comparability
invariance of interval dimension was first shown in [11 ].

A subset of elements A ofP is called autonomous if the relation of elements in A to
an element outside A is independent of the element of A. More formally, if, for any
x A, whenever x < a, x > a, or x a holds for some a A, then it holds for all a A.
IfA is an autonomous subset of P, then Pred(A) denotes the predecessors outside A of
any and hence every element ofA.

THEOREM 5. Comp(B(P)) is a comparability invariant ofP.
Proof. Let A be an autonomous subset of P. It is enough to show (see, e.g., 11 ])

that Comp(B(P)) Comp(B(pAAa)), where pAAa denotes the order resulting from sub-
stituting A by its dual A d into P.

Note first that B(A) {L(a), U(a)’a A ) is a closed suborder of B(P). Let
B(A) beB(A) without its greatest element 1B CA and its least element 0B CA ). Our claim
is that B(A) is autonomous in B(P). To see this, observe first that, for each a A, we
can decompose Pred(a) into Pred(a) Pred(A) td PredA (a); hence, the same is valid
for all elements of B(A ). On the other hand, the elements ofB(P)\B(A) either contain
all of A, or their intersection with A is empty. Now, ifM 6 B(P)\B(A)contains all of
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A, then it also contains Pred(A), and M is above all sets in B(A ). IfM
_
Pred(A), then

M is below all sets in B(A). In all the other cases, M is unrelated to all of B(A). This
gives the claim.

To settle the theorem, we need the fact that B(A d) and B(A )d are isomorphic orders.
To see this, consider a normalized box embedding of A in Rk. Its extreme corners are
an embedding ofB(A) into Rk. Flip the embedding, i.e., reverse the relations; this gives
an embedding ofA d, and the extreme corners form an embedding ofB(A)d. 3

As we have seen, autonomous sets in P induce autonomous sets in B(P). The
converse, however, is far from being true. Take as P a prime interval order; then B(P)
is a chain. Hence P has none, but B(P) has (12e)l) nontrivial autonomous sets.

3.5. Remarks on related results and computational complexity. The transformation
P -- B(P) obviously can be carried out in polynomial time. The degree ofthe polynomial
of this reduction is not important if we want to decide if P has interval dimension > 3,
since the poset dimension and interval dimension problems have been shown to be NP-
complete for k > 3 by Yannakakis [23 ]. It is, however, a crucial point if we want to
decide if idim (P) < 2.

Dagan, Golumbic, and Pinter [4 addressed questions about the comparability in-
variance of interval dimension and (fast) recognition of interval dimension at most 2.
As remarked before, the first problem has been settled affirmatively first in [11 ]. The
recognition problem has been solved independently by several authors. Habib and Mrhr-
ing 12 used the subposet of B(P) defined by B’(P) { L(x) x P}, together with an
algorithm for transitive orientation with side constraints, to derive an O(n. r/a) algorithm
where O(r/a) is the best-known time for matrix multiplication. Currently a is approxi-
mately 2.37.

Cheah [3 proposed an algorithm in complexity O(r/3). The same complexity is
claimed by Langley [13 ]. Langley calls the poset B(P) of the present paper the "prede-
cessor-successor order" of P and shows without the aid of the geometric construction
that finding an interval realizer of P is equivalent to finding a linear realizer of B(P).

Spinrad 18 showed that recognition oftwo-dimensional orders only requires O(n2)
operations. Therefore, the bottleneck with the P B(P) approach for the recognition
of interval dimension 2 is the computation of the order B(P). With a careful imple-
mentation, B(P) can be computed in O(na), where again O(rta) is the best-known time
for matrix multiplication.

Ma and Spinrad 14 found an approach that allows us to avoid matrix multiplication
and leads to a complexity bound of O(n2). Since this is the best-known result, we outline
the ideas behind their algorithm.

First, they construct the open split S(P) of the partial order P, for which they want
to decide if idim (P) < 2. The elements of the open split S(P) are the same as of the split
S[P] defined above; the ordered pairs of S(P) are, however, given by the irreflexive
relation defining P, i.e., x’ < y" in S(P) if and only if x < y in P. They prove that the
co-chain coveting number of S(P) equals the interval dimension of P. A theorem of
Yannakakis [23 shows that the cochain coveting number of S(P) and the interval
dimension of S(P) coincide. Hence, idim(P) idim(S(P)), and we can reduce attention
to the recognition of interval dimension 2 for bipartite orders, i.e., to orders of height 1.

The transformation of the interval dimension 2 problem for bipartite orders to the
dimension 2 problem is done in two steps. In the first step, it is checked as to whether
the bipartite order Q has a chordal bipartite comparability graph. A chordal bipartite
graph is a bipartite graph without any induced cycle Cn, n > 6. IfComp(Q) is not chordal
bipartite, then Q must contain a crown, and therefore idim(Q) > 3. Otherwise, the
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second step is started. In this step, Q is transformed into an order PQ, which can be
obtained by contracting autonomous chains in Stack(Q) and hence has the same di-
mension as Stack(Q). The stack operation was introduced by Trotter 21 ]. He proved
that for bipartite posets dim Stack(Q) idim (Q). As the construction of B(Q), the
construction of PQ and Stack(Q) requires information about the containment relation
of neighborhoods in Q. For chordal bipartite graphs, this information can be computed
in O(n2) using a technique called doubly lexical ordering. Since after passing the first
step we know that Q is chordal bipartite, we can construct PQ and apply Spinrad’s di-
mension 2 algorithm, all in O(n2).

Acknowledgment. We are grateful to an anonymous referee for his fruitful sugges-
tions, which improved the presentation of the paper.
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THE PRIVATE NEIGHBOR CUBE*

MICHAEL FELLOWSf, GERD FRICKE:I:, STEPHEN HEDETNIEMI, AND DAVID JACOBS

Abstract. Let S be a set of vertices in a graph G (F, E). The authors state that a vertex u in S has a
private neighbor (relative to S) if either u is not adjacent to any vertex in S or u is adjacent to a vertex w that
is not adjacent to any other vertex in S. Based on the notion of private neighbors, a set of eight graph theoretic
parameters can be defined whose inequality relationships can be described by a three-dimensional cube. Most
of these parameters have already been studied independently. This paper unifies this study and helps to form
a cohesive theory of private neighbors in graphs. Theoretical and algorithmic properties of this private neighbor
cube are investigated, and many open questions are raised.

Key words. NP-complete, irredundance, domination, independence, graph

AMS subject classifications. 05C, 68Q

1. Introduction. Let G (V, E) be a graph and let v be a vertex in V. The open
neighborhood ofv is the set of vertices N(v) { u u is adjacent to v }. The closed neigh-
borhood ofv is the set of vertices N[ v] N(v) t_J v }. Let S be a subset of the vertices
in V. The open neighborhood ofS is the union N(S) -t_J N(v) over all v S, and the
closed neighborhood ofS, N[S] U N[ v] over all v S.

Let S be a set of vertices. We call a function p: S -- V a private neighborfunction
on S if, for all s S, p(s) N[ s] N(S s } ). We say that p(s) is the private neighbor
of s. It follows from this definition that p must be 1. By placing various restrictions
on p, we obtain several properties for vertex sets. Note that, for any s S, exactly
one of the following three conditions holds for any private neighbor function p:
(i) p(s) s, (ii) p(s) V- S, or (iii) p(s) :/: s and p(s) S. Let us define the following
three predicates by forming the negation of these conditions:

O(s) p(s) 4 s,

R(s) p(s) e S,

P(s)--- p(s) s or p(s) e V- S.

Given a private neighbor function p on S, let us say that p has the following:

type 000 if for every s S, Q(s) and R(s) and P(s),
001 Q(s) and R(s),
010 Q(s) and P(s),
011 Q(s),
100 R(s) and P(s),
101 R(s),
110 P(s), and
111 no restriction holds.

Finally, we say that a set S is a type set if there exists a private neighbor function
on S of type t. Note that, if S is a type blb2b3 set, then S is also a type t’ set, where
t’ blb2b3 k/001, blb2b3 k/010, or blb2b3 k/ 100. For example, any type 010 set also
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has types 110, 011, and 111. We can restate this new terminology in more familiar graph
theoretic terms, as follows.

Type 000. Each vertex in S must have a private neighbor; however, it cannot be
itself, it cannot be outside of S, and it cannot be inside of S. Clearly, the empty set, ,
is the only such set a graph G can have.

Type 001. Each vertex in S must have a private neighbor inside S other than itself.
We see that the subgraph (S induced by such a set consists of disjoint copies of the
complete graph K2 on two vertices. The set of edges in such an induced subgraph has
been called an induced matching by Cameron [1 and a strong matching by Golumbic
and Laskar [8 ]. (The latter appear to have discovered this notion independently.) We
call such a set of vertices a strong matching set.

Type 010. Each vertex in S must have a private neighbor outside of the set S.
We call such a set an open irredundant set; it satisfies the condition that, for every
vertex u S, N( u) N[S- u] 4: . These sets have been studied by Farley and
Schacham 5 ].

Type 011. Each vertex in S must have a private neighbor other than itself, either
inside S or outside S. We call such a set an open-open irredundant set; it satisfies the
condition that, for every vertex u S, N(u) N(S- u) 4: . These sets have been
studied by Farley and Schacham [5] and Farley and Proskurowski [4].

Type 100. Each vertex in S must have itself as a private neighbor. It is easy to see
that such a set is an independent set (that is, no two vertices in S are adjacent). Conversely,
an independent set is a type 100 set.

Type 101. Each vertex in S must have either itself or a vertex inside S as a private
neighbor. Such a set has been called a 1-dependent set by Fink and Jacobson 6 ]. In such
a set S, the maximum degree of any vertex in (S) is less than or equal to 1, i.e., the
subgraph induced by S consists of disjoint copies of K’s and K2’s.

Type 110. Each vertex in S must have either itself or a vertex outside of S as a
private neighbor. Such a set is called an irredundant set; it satisfies the condition that,
for every vertex u 6 S, N[ u] N[S u] 4: . Irredundant sets were first defined by
Cockayne, Hedetniemi, and Miller in 1978 3]. For a survey of results on irredundant
sets in graphs, see Hedetniemi, Laskar, and Pfaff[12].

Type 111. A set S has a private neighbor function, but no further restriction is
imposed. We call these closed-open irredundant sets; they satisfy the condition that, for
every vertex u S, N[ u] N(S u) 4: J. These sets were mentioned by Farley and
Schacham 5 ].

In this paper, we are interested in studying, for each t, the maximum cardinality of
a set of vertices having type t. These parameters are shown in Fig. 1.

Type Maximum cardinality Parameter

000 0 0
001 /3*(G) Strong matching number
010 OIR(G) Open irredundance number
011 OOIR(G) Open-open irredundance number
100 0(G) (Vertex) independence number
101 /3(G) 1-dependence number
110 IR(G) Irredundance number
111 COIR(G) Closed-open irredundance number

FIG. 1. The parameters ofthe private neighbor cube.
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The definitions of the eight parameters in Fig. immediately give rise to 12 in-
equalities, as illustrated by the eight corners of the cube shown in Fig. 2, where the
magnitudes of the parameters decrease in moving from right-to-left, back-to-front, and
top-to-bottom. To place these parameters in a better perspective, we add the following
well-known inequality chain:

ir < 7 -< </30 < F _< IR.

(This was first observed by Cockayne, Hedetniemi, and Miller [3].) For completeness,
we define these parameters. A set S of vertices in a graph G (V, E) is dominating if
N[S] V. The minimum and maximum cardinalities of a minimal dominating set in
a graph G are denoted 3’(G) and I’(G), respectively; the minimum and maximum car-
dinalities of a maximal independent set in a graph G are denoted i(G) and /3o(G),
respectively; and the minimum and maximum cardinalities of a maximal irredundant
set in a graph G are denoted ir(G) and IR(G), respectively.

It is well known that, for arbitrary graphs G,/30(G) < I’(G) < IR(G). However,
for bipartite graphs, Cockayne et al. have shown that/30(G) I’(G) IR(G) 2 ]. Similar
results have been obtained for a variety of other interesting classes of graphs (cf. [3],
13 ], 14 ). Golumbic and Laskar 8 showed that, for any bipartite graph G,/3* (G)
OOIR(G) and/3(G) COIR(G). Using results in [11], we can show that, for any tree
T (V, E), IR(T) + OIR(T) VI,

The goal of this paper is to establish the NP-completeness for the decision problems
corresponding to the seven nontrivial parameters in Fig. 1. The problems for strong
matching number and vertex independence, however, are already known to be NP-
complete 1], [7]. Theorems 1-5 cover the remaining five parameters.

2. NP-completeness results. The oldest of these parameters, whose complexity is
unknown, is perhaps the irredundance number, whose NP-completeness has remained
open since its definition in 1978. Theorem answers this question.

Let G (V, E) be an arbitrary graph. The trestled graph of index k, Tk(G), is the
graph obtained from G by adding k copies of K2 to each edge uv of G and joining u and
v to the endvertices of each K2, respectively (cf. Fig. 3).

IR

OIR

ir 0

FIG. 2. The private neighbor cube.

COIR

O01R
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G
T (G)

FIG. 3. A trestled graph ofindex k 1.

LEMMA 1. Let G V, E) be any graph and let Tz(G) V’, E’) be the corresponding
trestled graph ofindex 2. For any irredundant set S’ in T2(G), there exists an independent
setS* in Tz(G)with IS’I IS*I.

Proof. Let S’ be an irredundant set in Tz(G). Initially, let S* S’. Assume first
that S* f) V is not an independent set of vertices (cf. Fig. 4); i.e., there exist two adjacent
vertices u and v in S* fq V. Let P(u, v) { u’, u", v’, v"} in Fig. 4.

If u, v are in S*, then P(u, v) f-) S* because S* is irredundant. Therefore,
S* S* { u, v to { u’, u" is an irredundant set having at least one less adjacent pair
of vertices in V. Clearly, we can repeat this process for every pair of adjacent vertices u
and v in S* f) V until S* N V is an independent set.

Now consider S* fq (V’ V). If this is not an independent set of vertices, then we
can assume without loss of generality that there exists an adjacent pair u’, v’ in S* (cf.
Fig. 5). In this case, u, v, u", and v" are not in S* because S* is an irredundant set.
Therefore, the set S* S* v’} tO u" is irredundant and has exactly one less adjacent
pair of vertices. Again, we can repeat this substitution process until S* f’) (V’ V) is an
independent set.

Finally, consider the set S*. If S* is not an independent set, then, by the previous
substitutions, there must exist a vertex u in V and a corresponding adjacent vertex u’ in
V’- V that are both in S* (cf. Fig. 6).

Consider the set of all vertices ofthe form u’ or u" in S* fq (V’- V) that are adjacent
to u. For each such u’ or u", the corresponding v’ or v" is not in S* because by the
previous substitutions, S* f3 (V’- V) is independent. Therefore, we can interchange all
such u’ and u" vertices in S* f) (V’- V) with corresponding vertices v’ and v" (leaving
the vertex u in S*). We can see that the resulting set S* is irredundant and has fewer

G

U

V

T (G)

FIG. 4. S* fq V is not an independent set.
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G

V

U

V

T
2
(G)

FIG. 5. S* fq (V’ V) is not an independent set.

adjacent pairs than before. Note that the set V(u) for all such v’ and v" vertices that we
added to S* is an independent set. Note further that no corresponding vertex v is in S*
(by the previous substitutions, S* fq V is now an independent set). Therefore, vertex u
is now independent in S*. By repeating this substitution process of interchanging u’ and
u" vertices for corresponding v’ and v" vertices, we can ultimately produce a set S* that
is independent and satisfies S*I S’l.

LEMMA 2. A graph G (V, E) with EI m edges has an independent set of
size > k if and only if the trestled graph of index 2, T2( G), has an irredundant set of
size >_ k + 2m.

Proof. Let S be an independent set of size >_ k in G. Consider an arbitrary edge u v
in E. If u and v are not in S, then S U u’, u"} is an independent set. If u is in S and v
is not in S then S { v’, v" is an independent set. Thus, for each edge uv in E, we can
add two additional vertices to S to produce another independent set. As a result, Tz(G)
has an independent set of size > k + 2m and hence an irredundant set of size > k + 2m
(since every independent set is irredundant).

Conversely, let S be an irredundant set of size>_k+2m in Tz(G).
By Lemma 1, Tz(G) has an independent set, say S*, of size >_ k + 2m. Obviously, no in-
dependent set in T2(G) can contain more than two vertices in P(u, v) for any edge uv

0

U"

V"

FIG. 6. S* is not an independent set.

T
2 (G)
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in E. Thus [S* f) (V’- V)I < 2m, and IS* f) V > k, since k + 2m _< S*l
IS* (v’- V)l + IS* vl.

We now formulate the following decision problem concerning IR(G):
IRREDUNDANT SET
INSTANCE: A graph G (V, E) and a positive integer k.
QUESTION: Does G have an irredundant set of size > k?
THEOREM 1. The decision problem IRREDUNDANT SET is NP-complete.
Proof. Clearly IRREDUNDANT SET is in NP. Its NP-completeness follows from

Lemma 2 and the fact that INDEPENDENT SET is NP-complete 7 ].
Without proof, we mention that the decision problems corresponding to/30(G),

I’(G), and IR(G) are all NP-complete for graphs having maximum vertex degree 5,
trestled graphs of index k for any k > 1, planar graphs, and triangle-free graphs.

Given a graph G (V, E), we define the graph G+ (Vt_) V’, E k) E’), called the
corona GoK (cf. Harary [1 1, p. 167 ]), to be the graph obtained from G by adding an
adjacent endvertex to each vertex in G; i.e., for each vertex u in V, we add a new vertex
u’ and the edge uu’. It is easy to show the following lemma.

LEMMA 3. For any graph G =(V, E) with vI n, 0(G) + n =/3(G+).
From Lemma 3 and the NP-completeness of INDEPENDENT SET, we obtain the

following theorem.
THEOREM 2. The decision problem for [3 is NP-complete.
We can also show that the decision problem for/3 is NP-complete for both planar

graphs and triangle-free graphs. In [1 Cameron showed that the decision problem cor-
responding to the parameter/3*(G) is NP-complete, even for bipartite graphs. Without
proof, we mention that this problem is NP-complete for triangle-free graphs and planar
graphs, as well.

To solve the NP-completeness ofthe decision problem corresponding to the param-
eter COIR(G), all we need is the following lemma, which again uses the corona con-
struction, and whose proof we omit.

LEMMA 4. For any graph G,/3 (G+) COIR(G+).
From Lemma 4 and Theorem 2, we now have the following theorem.

THEOREM 3. The decision problem for COIR is NP-complete.
Like previous parameters, COIR remains NP-complete for planar graphs and for

triangle-free graphs. The NP-completeness questions are now answered for the decision
problems associated with five of the parameters at the corners of the private neighbor
cube:/3o(G), / (G),/3* (G), IR(G), and COIR(G). The remaining NP-completeness
questions for the parameters OIR(G) and OOIR(G) can be answered using matrix tech-
niques.

THEOREM 4. The decision problem for OOIR is NP-complete.
Proof(sketch). Let G be a graph having closed neighborhood matrix N(G). Now

construct the graph H whose adjacency matrix is the following 2n 2n matrix:

We can verify that 2 IR(G) OOIR(H).
Our construction shows that the decision problem for OOIR is NP-complete for

bipartite graphs. It is also NP-complete for graphs having vertex degree at most 6.
THEOREM 5. The decision problem for OIR is NP-complete.
Proof (sketch). Given a graph G having n vertices, form a matrix M of size 2n

similar to the one in the previous proof. However, this time, place l’s in the northwest
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and southeast quadrants. Let H be the graph having closed neighborhood matrix M. We
can show that, if IR(G) > 2, then IR(G) OIR(H).

3. Open problems. There are many open problems concerning the existence of
polynomial time algorithms for computing the values of the parameters on the private
neighbor cube for restricted classes of input graphs. The computation ofthe independence
number/30(G) for various classes ofgraphs has been fairly well studied (cf. 5]). However,
this is the only parameter for which this is the case. The value of/30(G) can be computed
in linear time for trees (cf. 8 ), in polynomial time for bipartite graphs (cf. 7 ), and
in polynomial time for families of graphs with bounded treewidth (cf. 5 ]), to name
just a few results of this type for vertex independence.

The value of IR(G) can be computed in linear time for trees and polynomial time
for bipartite graphs, because/3o(G) IR(G) for bipartite graphs. However, we know of
no other class of graphs for which IR(G) may be computed efficiently.

A linear time algorithm for computing OIR(T) for any tree T has been constructed
by Farley and Proskurowski [4]. However, due to a result of Hedetniemi, OIR(T)
/31(T) for any tree T, and OIR(T) can also be computed by any linear time matching
algorithm for trees (cf. 9 ). We know of no other OIR(G) algorithm for any other class
of graphs.

Golumbic and Laskar 8 have shown that/3* (G) OOIR(G) for bipartite graphs
and circular arc graphs. In that paper, they also showed that this (combined) value can
be computed in polynomial time for circular arc graphs. We know ofno other algorithms
for computing the values of/3*(G) or OOIR(G) for any other classes of graphs.

Finally, Golumbic and Laskar 8 have shown that/31 (G) COIR(G) for bipartite
graphs. The only algorithmic result that we know for either of these two parameters is a
linear time algorithm for computing this value for arbitrary trees by Hedetniemi.
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BELL INEQUALITIES, GROTHENDIECK’S CONSTANT,
AND ROOT TWO*

P. C. FISHBURN AND J. A. REEDS"

Abstract. B. S. Tsirelson showed that comparisons between probabilities in "classical" physics and prob-
abilities in quantum mechanics yield discrepancy measures Kn for finite n n real matrices that approach
Grothendieck’s constant KG as n gets large. It is known that K2 K3 f and that KG >_- r/2 1.57" ", but
examples of n n matrices for specified n that demonstrate Kn > f have eluded researchers. A series of
elementary examples are provided, which yield lower bounds on Kktk-) that approach 3/2 as k gets large. A
uniform change along the main diagonal of our basic example shows that K2o >= 10/7 1.42. ..

Key words. Bell inequalities, Grothendieck’s constant, finite matrices with large discrepancies, correlation
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1. Introduction. Grothendieck’s constant KG, which figures prominently in the the-
ory of linear operators on Banach spaces 11 ], can be defined as the smallest number
such that, for all integers n >= 2, all n n real matrices [aij], and all Sl, sn, tl,

tn in for which

it is true that

aijsilj =< max sil max tjl,
j

=< KG max xi max Y

whenever x, x,, y, y are vectors in a real Hilbert space. As usual, (x, y)
is the inner product of x and y, and ]lx]] (x, x)/2. The exact value of Ka is un-
known. A lower bound of r/2 1.5707... was established by Grothendieck [6]. We
note later that Ka > 7r/2. The best upper bound known, due to Krivine [10], is
7r[2 log (1 + f)1-1 1.7822"..

Our purpose here is to consider Grothendieck-like constants for finite analogues of
Grothendieck inequalities that arise from Tsirelson’s ], 13 penetrating comparison
between the Bell inequalities [2 ], [4 ], [9] for probabilities in "classical" locally deter-
ministic theory with hidden parameters and probabilities that arise in quantum theory
9 ], 14 ]. We summarize Tsirelson’s connection of this comparison to Grothendieck’s
constant [13] and then describe our approach and results.

Fix integers m, n >_- 2. For real random variables X1 Xm, Y1, Y,, on a
probability space, we define an m n matrix [Cij by cij E (X Yj). Let C(m, n) be the
set of all such [@] for which

Pr(lXl <- 1)= Pr(IYI 1)= foralliandj

and let Q(m, n) be the set of all [cig] for which

E(X 2 2i)--< and E(Yj.)-<- for all and j.

Received by the editors September 16, 199 l; accepted for publication (in revised form) January 15, 1993.
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Each of C(m, n) and Q(m, n) is a centrally symmetric convex set in the space of all
m n real matrices. The extreme points of C(m, n) are rank matrices [cij] [aibj]
with all ai, bj E { 1, }. Examples for C(2, 2) are

[1 1] [ 1] [1-1] and [-1 1]-1 -1 -1

An important nonextreme point in C(2, 2), obtained by the equally-weighted convex
combination of these four extreme points, is

-1 =B0, whereB0=
-1

The extreme points of Q(m, n) are more complex, and we refer to 3 of[ 13 for discussion.
An important member of Q(2, 2) is Bo/f. The corresponding Bell’s inequality and its
quantum analogue ], 13 for Bo are, respectively,

Cl+Cl+C-c=<2 for [c0]EC(2,2),

qll -t- q12 -t- q21 q22 2 for [qo] e Q(2, 2).

These identify supporting hyperplanes of C(2, 2) and Q(2, 2), and the ratio of their
fight sides, i.e., }/-, measures the discrepancy between C(2, 2) and Q(2, 2) in the direction
Bo. By finding K > for larger n, we are implicitly finding inequalities similar to Bell’s
that show a more striking contrast between quantum and classical correlation matrices.

Tsirelson refers to members of Q( m, n) as quantum realizable correlation matrices;
members of C( m, n) are "classical" correlation matrices. In all cases, C( m, n) is properly
included in Q(m, n), and K(m, n), defined as the smallest number for which

Q(m, n)
_
K(m, n)C(m, n)

reflects the deficiency of the "classical" approach in the quantum setting. It is known
that K(2, 2) K(m, 2) K(2, n) V, as illustrated by Bo/V and B0/2; that
K(m, 3 K( 3, n) V for all m, n >_- 2, which Kemperman 8 observes as a consequence
of a result of Garg [5]; that K(m, n) is nondecreasing in rn and n; and that

lim K(m,n)=K,
//,?/"-

which completes the connection to Grothendieck’s constant. Henceforth, let K,
K(n, n).

Tsirelson [13] is careful to note that K. differs from K(n), as defined by Krivine
[10], even though K(2) f. Krivine’s K(n) is the smallest constant in place ofK
in the opening paragraph when all xi and yj are restricted to an n-dimensional real Hilbert
space. Connections between K(n) and the K(m, n) are explained in [13], and we do
not pursue them here.

We focus instead on K(m, n) and K,. Largely as a matter of computational con-
venience, we adopt a dual approach to that outlined above, which characterizes
K(m, n) as the smallest number such that, for all rn n real matrices B [bo] and all
unit vectors r in a real Hilbert space,

j=l

< K(m, n) max , , 6iebi.
6i’eJ e{l’-l} j=
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Since no generality is lost by taking the r/j in m+ n, assume this henceforth. As noted
above,

K2=K3=f and K,,.--Ka;

1.5707"." __-< K =< 1.7822....

Tsirelson and Kemperman have raised the problem ofidentifying specific B matrices
of small dimensions, which imply that

K(rn, n) > f 1.41421....

Since Kn increases beyond 1.57, this might seem easy, but it has been surprisingly difficult.
Generic examples that force Kn > lf can be described, but it has not been known how
large n must be for this to occur. Extensive calculation and Monte Carlo search for small
rn n matrices by several people failed to uncover a single example for which

max
nl nn

max > f.6iejbo
6,e

i,j

The first successful example of modest size was discovered by Reeds and N. J. A. Sloane
in April 1990. They used a 120 120 B matrix formed from inner products of half the
240 eight-dimensional minimal vectors in the lattice E8 3 to obtain K12o >= 45/31
1.4516. .. We subsequently discovered that similar results are obtained when B is formed
from inner products of vectors in related root systems 7, pp. 42, 64, 65 ].

In particular, we consider B generated by inner products of vectors in Dr, namely,
(0 0, 1,0,...,0, 1,0,...,0) and(0,...,0, 1,0,...,0,-1,0,...,0).Let
Fk { f,J jk for k >= 2 be the set of all k-dimensional vectors with two non-
zero components, either and 1, or and -1 in that order, and define the k(k
k(k 1) B matrix [f,] by f00 (f ). We can view F as the union of (2) copies of
Bo embedded in

With rn n k(k ), we also let

N)= max
rl ’rn

D(k) max
bi,ej 1,-1} i= j=

The following result is proved in the next section.
THEOREM 1. N(k)/D) (3k- 3)/(2k- 1)for k >= 2.
It follows immediately from our dual characterization ofK that

Kk(k_) >= (3k- 3)/(2k 1) fork>=2.

The smallest k for which this lower bound ratio exceeds f is k 10, where 27/19
1.421..-, so K90 > V. Moreover, we now have an explicit finite example of a lower
bound on K, that becomes arbitrarily close to 1.5.

In addition, we have discovered that modification of the main diagonal of [f]
gives a smaller B matrix whose N/D ratio exceeds . As defined above, f. 2. By
replacing f,0./, with fi for all at k 5, the correspondingly modified N(5)/D
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increases from 12/9 to 10/7 1.428--- and shows that K20 > V. The analysis for this
case is included in 3. Reeds [12 subsequently used the diagonal modification idea to
prove that K > 1.67.

As things stand, n 20 is the smallest n for which it is known that Kn > V2. The
specific B matrix of the preceding paragraph that accomplishes this is shown in Fig.
based on J] 11000,J 10100,j 01100 fo 00011, J] 1000,..., and

Jo=0001- 1.

2. Proof of Theorem 1. We begin with two general lemmas for B matrices deter-
mined by inner products and then use these to evaluate D(k). This is followed by our
analysis for N(k).

LEMMA 1. Suppose that Vg M are nonzero vectorsfor l,..., m. Let [bgj] be
the m m matrix with bij (vi, vj) and define D by

max , 6iejbi.
6i,ej 1,--1} i= j=

Let
2

D* max e?a
eJ =1 j=

Then D* D.
Proof. Clearly, D* _-< D. The reverse inequality follows from the Cauchy-Schwarz

inequality after bi9 in D is replaced by (vi, vj), and the terms in k and in j are grouped
separately. 3

LEMMA 2. A maximizing (el em) for D under the hypotheses ofLemma
satisfies

ei =sgn(vi, a) for some a e gM, 1, m.

2/3 0 0 0
2/3 0 0 0

2/3 0 0 0
2/3 0 0 0

0 0 2/3 0
0 0 2/3 0
0 0 2/3 0

0 0 0 2/3

0 0 0 2/3

0 0 0 2/3

0
0

0
-1 0 0
0 -1 0
0 0 -1

-1 0
0 -1

0 -1

-1 -1 -1 0 0 0
-1 0 0 -1 -1 0
0 -1 0 -1 0 -1
0 0 -1 0 -1 -1
0 -1 -1 0

0 -1 0 -1
0 0 -1 -1

-1 0 0 -1
0 -1 0 -1

0 -1 -1 0

0 0 0 0
0 -1 0 0 0

0 0 -1 0 -1 0
0 0 0 -1 0 -1 -1

-1 -1 0 0 0 0
-1 0 -1 0 0 -1 0
-1 0 0 -1 0 0 -1 -1
0 -1 -1 0 -1 -1 0 0
0 -1 0 -1 -1 0 -1 0 -1
0 0 -1 -1 0 -1 -1 -1 -1 0

2/3 -1
2/3

2/3

-1 0
-1 0
-1 0 0
0 -1
0 -1 0
0 0 -1

0
0

2/3 0 0
0 2/3

0 2/3

0 -1
-1 0
0 -1

-1 -1 0 0 0
0 -1 -1 0
0 0 -1

0
-1 -1 0

0 -1
2/3 0
0 2/3 -1

2/3

-1 2/3

FIG.
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Proof. Suppose that max for D occurs at el, e*m. Let Ot j e; lJja and a

(a,..., aj4). Multiplying each ei* separately by-1 gives D >= (a, a) 4e’i (vi, a) +
4(vi, vi for m. Hence

ei* (l)i, O) - (1)i, I) ) > 0 for 1, m. 1

The hyperplanes a e N4. (vi, a) 0 } for rn jointly partition N4 into
subspaces, which we refer to as cells, in which no (vi, a) 0. Each cell is the intersection
of rn open half-spaces. To find a maximizing e pattern for D, it suffices by Lemma 2 to
check one a per cell. Since there may be as many as 2 cells, this could be burdensome.
It can simplify greatly, however, under symmetry.

A case in point is provided by Fk and D(k). To induce full symmetry in the generating
basis, let

-F= {-j "fj. e F}
so F LJ (-F) is the set of all k-tuples with two nonzero components in { 1, -1}. Let
n k(k 1) and let If]+ be the (2n) X (2n) inner product matrix for Fk LJ (-F),
shown below:

Also, let D+ be the maximum value of ,a (,j ejbja) 2 for [f]+ Suppose that el,

e,* are maximizers for D() Then maximizers for D+ are clearly el, e*, -el
-e*, and

D+ 4D().

By symmetry, F U (-Fk) is invariant under permutations of coordinates in the per-
mutation group .k and invariant to inversions of coordinates. It follows that the cells
for a described after the proof of Lemma 2 are isomorphic with respect to the group
,.c/, 1, . It therefore suffices to take a, > O2 > > Ok > 0 to determine a maxi-
mizing set of e’s for D /, in which case, since (J, a) > 0 for all f e F, ej for Fk
and e -1 for -F. Hence, by D/ 4D(), one set of e maximizes for D() is el

With el en and F arranged in the manner used for Fig. 1, we find by
Lemma that

o(k)-- Z a Z [2(- 1)- 2(a- 1)l
a=l j=l

2k(k 1)(2k 1)/3.

We now consider

Nk)= max
r/l ,tin j=l

with each r5 a unit vector in 2n. It will be shown that one set of maximizing r5 is given
by
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which use only the first k coordinates. For later use, we note that the value of

/j/j
j

is 2k(k- )2. Observe that

j=l j

Since k- (0... 0 1-.. O) have in position a, and k- (0... 0 -1..-0)
have or -1 in position a, j fja 2 (k ). Moreover, if b a, then 2;j ba

O; so

fEf ijl’]; E Ja(0 O, 2(k- 1)a O,..., 0).
j

Because f ia for two a, but f/2a 0 otherwise,

E fo * )2 )2 1/2
/..it5 [4(k + 4(k /f 2(k- 1),

J

SO i Yj of ijrtj 2k(k
With respect to the maximization of E Ej f0jjII over unit vectors nj in N r let

i f ,)
j i=1

Suppose that max ET M. Then Ti is maximum when T T (M/n) /.
So we consider maximization ofZ 2i. Expansions of the squared terms give

T k

2
t=l j,p=l a,b=l i=1

Since E f,f 2(k if a b, and is 0 otheise,

J,P

Because the desired result is obvious when k 2, assume that k 3. Separating out the
j p diagonal in the preceding sum, we have

E (fj, fp)(r/j, r/p} 2n + 2 E (fj, fp)(j,
J,P j<P

Choose any three columns from the n k matrix for Fk. These columns correspond to
six f that contribute nonzero values of (J, fp} for j < p, e.g.,

f: 0,

A: o 1,

f3:0 1,

f4: -1 0,

j: 0
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with the f’s subscripted for convenience. It is easily seen that each nonzero (aS, f) for
j < p arises exactly once in the (3) choices of three columns. The contribution to
Zj<p fp(7/j, 7/p) for the three illustrated columns is, with 7/ao.p (rs, 7/p,

(7/012 q- 7/106 7/’1206) q- (7/013 -+- 7/105 7/5) -1- (7/3 -}- 7/4 7/4) -- (7/405 -11- 7/6 7/6).
Each of the four terms in parentheses has similar structure, and it is routine but tedious
to check that the maximum of each is 3/2. For example, max (7/2 + 7/16 7/206) 3/2
at

7/1" 1/]/- 1/V 0,

" / 0 /,
7/6"0 1/V

It follows that

max Z’Y2 < 2(k-li)[2n+ 2()4(3/2)]=4n(k-1 )2

As remarked earlier, Y,3’i <-- n(M/n) /2", so

max ,3’i <-- n[4n(k )2/n]1/2 2k(k )2.

Since the 7/’ attain 2k(k )2 for ’Yi, as shown earlier,

N(k) 2k(k )2.

Therefore N(’)/D’) 2k(k )2/[2k(k )(2k )/3] (3k 3)/(2k ).

3. Diagonal modification. Given X e [0, 2 ], we consider the effects on the results
of the preceding section when X is subtracted from each element on the main diagonal
of If ij]. With F, {j] f }, n k(k ), let [f] be the n n matrix for which

f. (f, J}, i j,

f,.= (f,f)- 2- .
Also, define

N(x*)= max
71 Tn j=l

D() max E Z 6ief,
5i’eJ {1’-1 j=

where the 7/ are unit vectors. Hence K,, >- N(xk)/D(x) for all k > 2.
The effect of X on N) is straightforward. With nj* fj./V as in the preceding

section, calculation gives

fijT/j
j=l

=n[2(k- 1)-
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The approach described in the final paragraph of the preceding section yields

,.y2i [2(k- 1)- 2,] (,fp(j, p "- 2n
J,p

-< [2(k- 1)- 2),][2n + 2

=n[2(k- 1)-X] 2,

()4(3/2)] +xzn

and therefore Z,"t’i <= n{n[2(k- 1)- )k]2/n} 1/2__ n[2(k- 1)- ]. Hence

N(xk) n[2(k- 1)- )] N(k) )n.

The situation with D(x) is more delicate. Let 6(a) ,i 6ifa and e(a) ,i eifa,
so that

D(x=max (a)e(a)- X ,
6,e

We proved earlier that 6i ei for all give D(0) D(k) 2n(2k )/3, and it is
easily seen that

D(x’) D’) X.n for small > 0.

However, as ), increases, D(k) changes form because the maximizing 6i and ei do not
remain uniformly 1.

To consider other sign patterns for 6 and e, let

As={(6, e): I{i:6iei---1}[ =s}.
Then Z,biei n 2s for each (6, e) As. Also, let

k

D(s) max , (a)e(a),
(6’e)As a

where superscript (k) on D is omitted for convenience. Then D(s) X(n 2s) is the
maximum value of

Z 6(a)e(a)- Z iS"i
a=l i=1

when (6, e) is in As, and

Dk) max {D(0) ,n, D(1) ,(n 2), D(2) X(n 4) }.
Here D(0) D).

It is easily seen that D(s)-maximizing sign changes for the first few s are as follows:

s= 1: 1-10...0

s=2: 1-100...0
10-10...0

s= 3: 1-100...0
10-10...0
01-10-..0

-1 D(1) D(0)- 4,
-1

-1 9(2)= D(0)- 8,

-1 9(3)= D(0)- 8.
-1
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The most salient feature of these changes is that D(3) D(2), i.e., that the decrease of
D(0) by 8 at s 2 does not change when we go to s 3. As a result, D(3) X(n 6)
> D(2) X(n 4), so that Dk) never obtains at s 2.

By comparing D(0) n at s 0 and D(3) (n 6) D(0) 8 X(n 6)
at s 3, we see that

max{D(0)-n,D(3)-X(n-6)} D(0)-Xn if X<4/3,

D(3)-X(n-6) if X>4/3.
The break-even point of X 4/3 corresponds to 2/3 on the main diagonal of [f], as
in Fig. 1. In addition, for e [0, 2 ], we have checked for k e 3, 4, 5 } that the preceding
max is in fact D(xk) and that the ratio N(xk)/D(xk) IN(k) Xn]/max {D(0) Xn,
D(3) X(n 6) is maximized at X 4 / 3 where the denominator changes slope. That
is,

max N(xk)/D(xk) nr(k) , r(k 3k 5
4/3/4/3 for k e { 3, 4, 5 }.

o_-<x_-< 2k- 3

We suspect that the same result holds for k > 5, but have not proved this.
The ratio (3k 5)/(2k 3) is less than / for k < 5 but equals 10/7 1.428...

at k 5. Hence K5(4 Keo >-- 10/7, and n 20 is presently the smallest known n for
which K > V.
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EXTREMAL PROBLEMS IN THE CONSTRUCTION
OF DISTRIBUTED LOOP NETWORKS*

D. FRANK HSU? AND XING-DE JIA:I:

Abstract. Let G(N, A) be the Cayley digraph associated with Z/(N) and A, where N is a positive integer
and A is a subset of 1, 2 N }. Let N(d, k) be the maximum N such that the diameter of G(N, A is
less than or equal to d for some A a, a2 ak} with al < a2 < < ak. An exact formula for
N(d, 2) is given, and N(d, k) is estimated for k >_ 3. These results provide new bounds for minimal diameter
in the construction ofloop networks. A relation between this problem and the postage stamp problem in additive
number theory is established to enhance the study of these problems.

Key words. Cayley digraphs, distributed loop networks, extremal problems, diameter, postage stamp problem,
combinatorial optimization

1. Introduction. Let a and b be integers. Let [a, b] denote the set of all integers x
such that a _< x _< b. Similarly, (a, b] and [a, b) are the sets of integers x 6 [a, b],
excluding a and b, respectively. We denote as/xJ the greatest integer _< x, and as
the least integer >_ x. Let N be a positive integer. Let A be a subset of[l, N- ]. Let
Z/(N) be the additive group of residue classes modulo N. A Cayley digraph G(N, A)
associated with Z/(N) and A has its vertices labeled with elements in Z/(N), and vertex
is adjacent to vertex j if and only ifj + a for some a 6 A.

For a given digraph G(N, A ), let d(G(N, A )) be its diameter. Let

d(N, k) min d(G(N, A))l for all A with IAI k}.
On the other hand, for any given d > 2, we define N(d, k) as the maximum N such that
there is an

A {1 a < a2 < < ak}
ofk elements such that d( G(N,A )) <_ d. In other words, N(d, k) is the maximal number
of vertices so that the outdegree of the digraph is k and the diameter is not greater than
d. In this paper, we are most concerned with the following problems:

(a) For any given k > 2, find d(N, k) in terms of N;
(b) Given k > 2, find N(d, k) in terms of d.
Cayley digraphs as defined above have recently attracted much attention for their

theoretical merits and in applications to distributed loop communications networks and
in the construction of massively parallel processors. For further information, refer to
Bermond, Comellas, and Hsu [1] and D. V. Chudnovsky, G. V. Chudnovsky, and Den-
neau [2]. In 2 we study the number N(d, k) in terms of d for given k. In particular,
we obtain an exact formula for N(d, 2) and an upper bound and a lower bound for
N(d, 3) and we discuss bounds for N(d, k), when k >_ 4. In 3 we establish a relation
between N(d, k) and the postage stamp problem in additive number theory. In 4, using
the results from 2 and 3, we obtain new bounds for the optimal diameter ofdistributed
loop communication networks, which improve those obtained by Erd6s and Hsu [3],
Fiol et al. [4], Hwang and Xu [7], and Wong and Coppersmith [13].

2. Bounds for N(d, k). For a given k >_ 2, we are interested in computing N(d, k)
in terms of d. First, we study the case when k 2. Since the Cayley digraph G(N, A) is

Received by the editors July 23, 1990; accepted for publication (in revised form) October 20, 1992.
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Department of Mathematics, Southwest Texas State University, San Marcos, Texas 78666.
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vertex symmetric, it is sufficient to study the distance from zero to all other vertices in
computing the diameter of the digraph. Wong and Coppersmith [13 provided the con-
struction of a pattern for those distances.

In the computation of d(G(N, A)), where A 1, s}, we proceed to fill the
lattice point (x, y) (x >_ 0, y > 0 are integers) of the Euclidean plane with an integer
n(0 _< n < N) if

x. + y.s n (mod N).

We start from the origin (0, 0), then the points on the line 1, 0), (0, ), and then the
points on the line (2, 0), 1, ), (0, 2), and so on. At each point (x, y), if the value n
has not appeared so far, we write it down; otherwise, we just leave a blank. The process
ends when all values of n in [0, N- 1] have been used. Wong and Coppersmith [13
proved the following lemma.

LEMMA (see Wong and Coppersmith [13]). The filled pattern is always of the
form shown in Fig. 1, where rn > O, n > O, p > O, and q > O. Clearly, the diameter
d( G(N, A ofG(N, A where A { 1, s }, is equal to rn + q + max { n, p } 2.

We now state and prove Theorem 1.
TrEOREM 1. For any d >_ 2,

N(d, 2) [ d(d + 4)l +3

Proof. First, we show that

N(d, 2) >_ + N1 Nl(d).
3

It is clear that we need only construct a set A 1, b so that

(1) dA={u.1 +v.b[u>O,v>O,u+v<d}=Z/(N).

Suppose that d 3t + for some and < < 3. Then

N [(3t + i)(3t + + 4)] 2+ =3t +(4+2i)t+3i- 1.

FIG. 1. The general pattern.
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Leta andb d+ i= 3t+ 2i. We show that (1) holds. Letx[0, N1).Ifx
(t + b, NI ), then

x-(t+ 1)b<N- l-(t+ 1)b

=(3t2+(4+2i)t+3i- 1)- 1-(t+ 1)(3t+2i)

=t+i-2.

Noting that

(x-(t+ 1)b)+(t+ 1) _< (t + i- 2) + (t + 1)=2t+i- <d,

we see thatx= (x-(t+ 1) b). + + 1).b s dA. Next, we assume that x s ub,
(u + )b) for some u [1, ]. It is easy to check that the vertex (u + + 2)b N lies
between ub and (u + )b.

If x ub, u + + 2)b N), then

x-ub<(u+t+2)b-N- 1-ub=(t+2)b-N-

-(t+2)(3t+2i)-(3t2+(4+2i)t+3i- 1)-

=2t+i.

Therefore,

(x- ub) + u < 2t + + 3t + d,

which implies that x x ub ). + u. b dA.
Ifxe[(u+t+2)b-N,(u+ 1)b),then

x-((u+t+2)b-N)_<(u+ 1)b- 1-((u+t+2)b-N)

=N-1-(t+ 1)b

3t2+(4+2i)t+3i- 1- 1-(t+ 1)(3t+2i)

=t+i-2.

Noting that

(x- (u + + 2)b N) + (u + + 2) _< (t + i- 2) + (t + + 2) 3t + d,

we have

x=x+N--(x-(u+t+2)b-N).l +(u+t+2).bedA.

Therefore, N(d, 2) > N.
We now show that N is indeed also an upper bound for N(d, 2). Suppose that

A { 1, b } is such that d(G(N(d, 2), A) _< d, i.e.,

dA u.1 + v.b[u >_ O, v >_ O, u + v <_ d} Z/(N),

where N N(d, 2). We need to show that N <_ N. We divide the proof into three cases.
Case 1. d 0 (mod 3). Let d 3t for some t. In this case, by Lemma 1, the best

possible values for m, q, and max (n, p) are m q + and n p t. Hence

N=(t+ 1)2+2(t+ 1)t=3t2+4t+ =N.

Case 2. d (mod 3). Let d 3t + 1. Under the condition that

m+q+max(n,p)-2_<d= 3t+
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in Lemma 1, the best possible patterns for Fig. with maximum area are (i) rn q
p=n=t+ 1, and(ii)rn=t+ 1, q=t+2, p=n=t. In(ii),wehave

N= (t + 1)(t + 2) + t(t + 1) + t(t + 2) 3t2 + 6t + 2 N.
The pattern (i) gives a larger N, but we now show that (i) is not possible. If this

pattern is possible, then the number of lattice points in the pattern is No 3(t + )2.
The lattice point (t + 1, + at the corner must represent 0 (mod No) (see Fig. 2).
Hence

which implies that

(t+ 1).1 +(t+ 1).b=0 (mod No),

+ b--0 (mod 3(t + 1)).

We may assume that + b 3 (t + )u, where < u < (t + ). We claim that gcd (u,
+ 1) 1. Otherwise, let u ru’, + rt’ for some r, < r < + 1. Then

t’. + t’.b t’(1 + b) t’.3(t + 1)u 3(t + 1)2u’ 0 (mod No);

i.e., the point (t’, t’) represents 0. This is a contradiction because this point is contained
inside the pattern. Therefore, the equation

uy-- (mod(t+ 1))

has a solution Xo" + 2 < Xo -< 2t + 2. Consider the lattice point (0, Xo) inside the pattern.
Noting that

xob xo (1 + b xo xo 3 + 1)U-Xo

3(t + Xo (mod No)

and

t+ <3(t+ 1)-Xo_< 2t+ 1,

we see that (0, Xo) and (3 (t + Xo, 0) in the pattern represent the same value xob
3 (t + Xo. This is a contradiction.

Case 3. d 2 (mod 3). Suppose that d 3t + 2. It follows from Lemma that
the best possible pattern is the one with

rn=n=p=t+ and q=t+2.

t+l

t+

FIG. 2. The pattern with rn q p n + 1.
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Then

N (t + 1)(t + 2) + (t + 1) 2 + (t + 1)(t + 2) 3t2 + 8t + 5 N1.

Combining Cases 1-3, we have that N(d, 2) > NI. This completes the proof of
Theorem 1. V1

We now return to the case when k 3. First, we give a lower bound for N(d, 3).
THEOREM 2. N(d, 3) > l d3 + -d2 + O( d) as d -- oo.

Proof. We construct a set A of three elements so that

d(G(N1,A)) <_ d, where N1 >-- d3 + d2 + O(d).

Equivalently, we must construct A { 1, b, c } such that

dA {u.1 + v.b + w.clu, v, w >_ O and u + v + w_< d} Z/(N).

Let

r--l 1,
b=3d-8r+5,

c=rb+d-3r+2,

N rc + 2d- 6r + 3.

LetA= {1, b,c}.WeshowthatdA=Z/(N).Ifv, w[1, r],thenr+v+w_<3r<
d. Hence, for any v, w e [1, r], we have

vb + wc e dA, (v + r)b + wc e dA, and vb + (w + r)c e dA.

It is clear that

vb + wc, vb + wc + d- v w] c_ dA,

(2) [(r + v)b + wc, (r + v)b + wc + d- r- v w]
_

dA,

[vb + (r + w)c, vb + (r + w)c + d- v r- w]
_

dA.

The basic idea in the proof is to arrange all these intervals to cover an interval of length
N1 modulo N1. Since

N +d-v-w+ >NI +d- 2r+ =rc+b- 1,

we see that

N1 + (V )b + wc + d- (v 1) w >_ vb + (w + r)c 1.

It therefore follows from (2) that

(3) [N + (v 1)b + wc, vb + (r + w)c]
_

dA.

Noting that

rc + d- v w + r) >_ rc + d- 3r

(rc + 2d- 6r + 3) 2d + 6r- 3 + d- 3r

=N-d+3r-3

N + rb rb d + 3r- 3

N + rb- c- 1,
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we see that

vb+(w+r)c+d-v-(w+r)>_N+(r+v)b+(w- 1)c- 1.

This implies that

(4) [vb + (r + w)c, N + (v + r)b + (w- 1)c]
_

dA.

It follows from (3) and (4) that

(5) [N + (v 1)b + wc, N1 + (v + r)b + (w 1)c]_dA.

Since

rb-c+d-v-w+ 1-r>_rb-c+d-3r+ =-1,

we see that

(6)

Noting that, for d > 4,

NI + wc, N + rb + wc]
_

dA.

rb+d-w-r+ >rb+d-r-r

c+ r- >_c,

N+rb+wc+d-r-w>_N+(w+ 1)c,

which implies that

(7) [N + rb + wc, NI + (w + 1)c]
_

dA.

From (6) and (7), we have

N + wc, N + (w + 1)c) dA.

Again by the arbitrariness of w" < w _< r, we see that

N + c, N + (r + 1)c)
_
dA.

When d > 27,

(r+ 1)c+d-(r+ 1)=rc+c+d-(r+ 1)

=N1-2d+6r-3+c+d-(r+ 1)

=N+c-1 +5r-d-3

>Nl+C-- 1-t-5 - -d-3

>N+c-1.

we see that

N +(r+ v)b+(w- 1)c+ d-(r+ v)-(w- 1)>_N + vb+ wc- 1,

which implies that

N + (r + v b + (w 1)c, N + vb + wc)
_
dA.

It therefore follows from (5) that

[N + (v 1)b + wc, N + vb + wc]
_

dA.

Hence the arbitrariness of v: _<v _< r implies that
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Therefore m + c, 2N + c]
_

dA. This means that dA Z(N).
Finally, we show that

N >_ d + d2 + O(d).

In fact,

N1 rc + 2d- 6r + 3

r2b + rd- 3r2 + 2r + 2d- 6r + 3

r2(3d 8r + 2)+ r(d-4)+ 2d + 3.

Since r Ld/43, we now divide into four cases according to d 4r, 4r + 1, 4r + 2, or
4r + 3. By substituting r in terms of d in all four cases, we have

(a) Nl d + d2 + d + 3, if d 4r,
(b) Ul 6 d3+ d2+ ld+l,ifd=4r+ 1,
(c) N1 6 d3+ d2- d+,ifd=4r+2,
(d) Nl 6d3+ d2-25-d + Z if d= 4r + 3.

In any case, we have N1 6 d3 + -38d2 + O(d). Hence

N(d, 3)>_ d3+ d2+O(d).
This completes the proof of Theorem 2. []

Actual calculation gives the value N(d, 3 for each d: 2 _< d _< 5 and the set A for
which N(d, A) achieves the maximum N(d, 3). These are listed in Table 1.

Suppose that A 1, b, c } is such that d( G(N(d, 3 ), A) _< d. We consider the first
"quadrant" in the three-dimensional Euclidean space x >_ 0, y >_ 0, and z >_ 0. Let r >_

0 be an integer. Define

S3) {(X, y, Z)IX, y, Z > 0 integers, andx + y + z r}.
In [1 3 Wong and Coppersmith showed how to visit the lattice points in

S(03) U SI3) U S(23) U
For a given N, Sr3) is visited in the order of r 0, 1, 2,.... Within each Sr3), the
visitation order O3) is defined recursively as follows:

(i) Let Ui be the set of points in Sr3) with the third component equal to i. They
will be visited in the order 0, 1, 2,...

(ii) In Ui, regard the first two components ofeach point as a point in S2_);. Hence
(2)..U; can be identified with S2_);. Visit Ui in the order tr-i,

(iii) O2) is defined as: first, visit (r, 0), then (r 1, ), (r 2, 2), (0, r).

TABLE
Exact values ofN(d, k) with a corresponding A.

d N(d, 3) A d N(d, 3) A

2 9 {1,3,4} 9 138 {1,11,78}
3 16 {1,4,5} 10 176 {1,17,56}
4 27 {1,4,17} 11 217 {1,13,119}
5 40 {1,6,15} 12 273 {1,14,153}
6 57 {1,13,33} 13 340 {1,90,191}
7 78 {1,6,49} 14 395 {1,35,271}
8 111 {1,31,69} 15 462 {1,29,97}
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Now we use the visitation order Or3) to fill the lattice point (x, y, z) in S3) of the
Euclidean plane with an integer n 6 [0, N) if x. + y. b + z.c n (mod N). We start
from So(3), then the lattice points on the plane Sl 3) using O3), and then the plane S(23)
using O23), and so on. At each lattice point (x, y, z), if the resulting value n has not
appeared before, we write it down. Otherwise, we leave it blank. This process ends when
all values of n in [0, N- 1] have been used. We have the following lemma.

LEMMA 2. Thefilled pattern is always oftheform shown in Fig. 2.
Proof. We note that, in the above construction, if the lattice point (x, y, Zl) is

blank, then all lattice points (x, y, z) with x > x, y > y, z > Zl will also be blank. For
example, suppose that the lattice point (x, Yl, z) represents the value t: 0 < t < N-
1, which has appeared before at lattice point (x0, Yo, z0) with Xo + Yo + z0 < Xl + y +
Zl. That is, we have

=- x" + y’b + z.c Xo" + yo’b + Zo’C (mod N).

Then the value + (x + ). + y. b + z.c at (x + 1, y, z) must have appeared
at (Xo + 1, Yo, Zo), which is visited before because

t+ =(x+ 1).1 + y.b + z.c

=(x0+ 1).l+yo.b+zo.c

and

(mod N)

(Xo+ 1)+yo+zo=(x0+Yo+Z0)+

_<(x +y +z)+ =(x + 1)+y +z.
Hence (x + 1, Yl, Zl) is blank. Let (x, y, z) be a point that is blank after the

visitation. (x, y, z) is called an x-point if it is not on the x-axis, and both (x, y 1, z)
and (x, y, z are in the pattern. (x, y, z) is called an xy-point if it is not on the xy-
plane, and (x, y, z is in the pattern. Similarly, we may define y-, z-, yz-, and xz-
points.

Let (x, y, z) be an xy-point. Suppose that (x, y, z) represents the same value n as
a previously visited point (x, y, zl inside the pattern, i.e.,

(8) n x. + y.b + z.c Xl" + yl’b + Zl’C (mod N),

where x, y, z > 0 and xl + y + z _< x + y + z. We now show that (x, y, z) is on
the xy-plane, i.e., z 0. Otherwise, we consider the point (Xl, y, z ), which is a
point in the pattern. It follows from (8) that

x. + y.b+(z- 1).c=x.l + y.b+(z- 1).c

n- c (mod N).

Therefore, (x, y, z represents the same value n c as the point (x, y, z
). However, (x, Yl, z was visited before (x, y, z ); we see that (x, y, z

is not in the pattern. This contradicts the fact that (x, y, z) is an xy-point. Therefore,
(x, y, z) represents the same value as a previously visited point on the xy-plane. Similarly,
we can prove that each yz-point (respectively, xz-point) represents the same value as a
previously visited point in the pattern on the yz-plane (respectively, xz-plane). It is clear
that each x-point is both an xy-point and xz-points. Therefore, each x-point represents
the same value as a previously visited point in the pattern on the x-axis. Similarly, each
y-point (respectively, z-point) represents the same value as a previously visited point in
the pattern on the y-axis (z-axis). Let (x, y, z) be a lattice point not in the pattern but
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at the corner bounded by three pairwise perpendicular planes, none of which is a coor-
dinate plane. It is clear that this lattice point is an x-point, a y-point, and a z-point
simultaneously. Therefore, it represents the same value as a previously visited point in
the pattern that is on all three axes. Hence it represents 0. This implies that the resulting
pattern has at most one such corner. Figure 3 presents such a "general" pattern.

The proof of the lemma is complete.
Now we are ready to prove the following theorem, which gives an upper bound for

N(d, 3).
THEOREM 3. Let d >_ be any integer. Then we have

N(d, 3) _< (d + 3)
14 3f

Proof. Let D D(a) be the solid in the three-dimensional Euclidean space (see
Fig. 4) bounded by

O<_x+ y<_a,

O<_y+ z<_a,

O<_z+x<_a.

The solid D* consisting of all lattice points in

S(o3) U Sl3) U U S(a3)

is contained in D. In fact, D* is bounded by the planes

x=0, y=0, z=0, and x+y+z<a.

Let D + (u, u, u) be the solid consisting of all points (x, y, z) (x’ + u, y’ + u,
z’ + u), where (x’, y’, z’) is a point in D. More specifically, D + (u, u, u) is the solid

FIG. 3. The "general" filled pattern in the three-dimensional case.
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FIG. 4. The solid D D\(D + (u, u, u)).

that is isomorphic to D, but the origin is (u, u, u) instead of (0, 0, 0). Let D1 D\
(D + u, u, u)). It follows from Lemma 2 that, if a lattice point (Xo, Yo, Zo) is blank after
the visitation, then all lattice points (x, y, z) with x > x0, y >- Yo, and z > Zo are also
blank. In other words, if (x0, Yo, Zo) is blank, then all the lattice points in the solid D +
(xo, Yo, z0) are also blank. Hence the best possible filled pattern resulting from the con-
struction is contained in the solid D1 for some u. It is clear that (, , ) is the only vertex
ofD D(c) not on any of the coordinate planes. It is also the corresponding vertex of
D fq (D + u, u, u)) since these two solids are similar. We may setup a coordinate system
according to D + (u, u, u), which has the origin (u, u, u). Suppose that the vertex

(, , ) has a new coordinate (, , ) in D + (u, u, u) with respect to its new coordinate
system. Then u a2, i.e.,/3 c 2u. It is easy to see that the volume V(D) ofD is

V(D) --.
4

Let L(D) denote the number of lattice points contained in D. Then

o (o + 2)
< L(D) <

4 4

Therefore, the number of lattice points in D1 is at most

(o + 2) /3 (o + 2) (o- 2U)
4 4 4 4

The number of steps to reach other lattice points in D1 from (0, 0, 0) is at most 3u +
c 2u u + c. If d is the diameter of G(N(d, 3), A), then u + c < d, i.e., u <

d- . Hence

(9) L(D1) <
(o + 2) (3o- 2d)

4 4
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Denote byf( a the function of a on the fight-hand side of (9). It is easy to see thatf(a)
reaches its minimum when

2+2fd

It therefore follows from (9) that

N(d, 3) <_ L(D1) <_f(2 + 2Vd)3v_
_1 2+3fd+2 3. -2- 3f-I 3f-I
6f(d + 3) 2(d + 3)
(3f )3 (3f )3

14 3f (d + 3)

This completes the proof of the theorem.

3. N(d, k) and the postage stamp problem. In the previous section, we gave an
exact formula for N(d, 2). In addition, bounds were given to estimate N(d, 3). In this
section, we study N(d, k) for k >_ 4. We also establish a striking relation between
N(d, k) and a problem in additive number theory.

LetAk= O < al < a2 < < ak be a set of k + integers. Akiscalledan
h-basis for n if every integer in [0, n] can be written as a sum of h elements of Ak,
repetitions being allowed, i.e., hAk

_
[0, n]. Let n(h, Ak) denote the largest n for which

Ak is an h-basis. Let

n(h, k) max n(h, Ak).
Ak

The problem ofcalculating n h, k) is sometime referred to as thepostage stampproblem,
due to a rather obvious combinatorial interpretation. It has received extensive study in
additive number theory. Those interested in this problem may consult Selmer’s research
monograph 11 ].

By the definitions of N(d, k) and n(h, k), we have N(d, k) >_ n(d, k). Therefore,
any lower bound for n(d, k) would be also a lower bound for N(d, k). The best lower
bound for n(h, k) as h tends to infinity is due to Mrose [9 ], who showed that, for k > 4,

n(h, k) >_ "rk2 I_k/4_l - "]" O(hk- ),

where k 1, 1.024, 1.205, or 1.388, accordingly as k 0, 1, 2, or 3 (mod 4). Therefore,
we have the following lower bound for N(d, k).

THEOREM 4. For k >_ 4,

N(d, k) >_ "yk2k/4 -t- O(dk-l)

where ’k is defined as above.
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In particular, we have

d4 d3N(d, 4) > ]- +O(),

2.048
N(d, 5) > d + O(d4)55

However, the lower bounds in Theorems and 2 cannot be obtained in this way.
In fact, Stfhr and several later writers showed that

n(h 2)=[ h2+6h+4

and Hofmeister 5 ], 6 showed that

n(h, 3) h + O(h2).
On the other hand, we can consider both N(d, k) and n(h, k) as k tends to infinity for
any fixed d and h. Mrose [10] proved that

n(2, k) >_ k2 + O(k),

and Windecker [12] proved that

n(3, k) > k for all k.

Therefore, from the fact N(d, k) > n(d, k), we have the following theorems.
THEOREM 5. It holds that N(2, k) >_ {k2 + O(k).
THEOREM 6. It holds that N( 3, k) > k3.

4. Minimal diameter in distributed loop networks. In 2 and 3, we calculated the
number N(d, k). Given the degree k and diameter d, the problem there is to find a
Cayley digraph G(N, A) of Z/(N) with a maximal order N so that [AI k and the
diameter of G(N, A is less than or equal to d. Conversely, this problem can be regarded
as finding a Cayley digraph G(N, A) so that the diameter d(G(N, A)) is equal to
d(N, k) min {d(G(N, A)) IA[ k}. Although d(N, k) and N(d, k) were defined
for any subset A of 1, N- ], we restrict ourselves to the case in which A contains the
element in this paper. However, many techniques and results can be applied to the
general case. It is obvious that d(N, N- 1. For k >_ 2, bounds were given by Wong
and Coppersmith [13] as follows:

(10) V k+
<_ d N, k <_ k-_ k.

2

They also improved the lower bound in the case where k 2,

d(W, 2) >_ 3]-2.

Let lb(N, 2) 3] 2. The case where k 2 has received extensive study in recent
years mainly because Cayley digraphs G(N, A) with AI 2 are natural generalization
of the popular ring network G(N, s). Large infinite families of G(N, A) with IAI 2
have been constructed that have diameters equal to lb(N, 2). Refer to Erd6s and Hsu
[3], Fiol et al. [4], Hwang and Xu [7], and the recent survey by Bermond, Comellas,
and Hsu ].

For k 3, inequalities in (10) lead to

3N/-fN- 2 _< d(N, 3 _< 3’/-- 3.
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Among other results, Erd6s and Hsu 3 improved the upper bound to be of2.7/. In
this section, we utilize the results in 2 and 3 to obtain new bounds for d(N, k).

In the proof of Theorem 2, we actually showed that

N(d, 3) > 6 d3 + d2 + O(d).

Hence d(N, 3) _< /-6N 2.5189 for an infinite family of N. By Theorem 3, we
have

d(U, 3) > /14 3ff-- 3 2.06486’/-- 3.

This is true for every integer N >_ 58. Therefore, we have the following theorem.
THEOREM 7. Let G(N,A) be the Cayley digraph on Z/(N) with cA. Let

d(N, k)= min {d(G(N,A))IA with IAI k},

where d(G) is the diameter ofthe graph G. Then

N/14 3V’/- 3 _< d(N, 3)< /-,
where the lower bound is for all N > 58, while the upper bound is true for an infinity
family ofU.

The lower bound "/14 3V’/-- 3 for d(N, 3) in Theorem 7 is certainly much

better than /-6N- 2. Our lower bound is sharp, as shown in Table 2.
Following Theorem 4, we have the following upper bound for d(N, k) when

k>4.
THEOREM 8. For k > 4 and d(N, k) as defined before,

k
d(N, k) <_ .’/

+.yk. 2 tk/4j

for an infinityfamily ofintegers N, where ’k 1, 1.024, 1.205, or 1.388, accordingly as
k O, 1, 2, or 3 (mod 4).

We note that when k 4, this upper bound becomes /-i-./, which is a sig-
nificant improvement on the result of Wong and Coppersmith in [13].

We conclude this section by providing an example to illustrate our result. In Theo-
rems 2 and 5, let r and d 4r 4t. Then

d 3d2

N1 =-+--+d+3 =4t3+6t2+4t+3,

b 3d- 8r + 5 4t + 5,

c rb + d- 3r + 2 4t2 + 6t + 2.

TABLE 2
lb(N, 3) and d(N, 3).

lb(N, 3) [’/14 3f@J- 3 d(N, 3)

78 6 7
111 7 8
138 8 9
176 9 10
217 10 11
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TABLE 3
d(N, A) and d(N, 3).

d(N,, A) d(N, 3)

d(G(67, {1, 13, 30})) 8
d(G(167, 1, 17, 56})) 12
d(G(371, 1, 21, 90})) 16

d(67, 3) 7
d(167, 3) 10
d(371, 3) 14

Let A 1, b, c }. Then the network G(N1, A) has diameter 4t. In comparison, we list
both the exact value d(N, k) and the result from our construction in Table 3.

5. Concluding remarks. In this paper, we study the Cayley digraph G(N, A) asso-
ciated with Z/(N) and A c [0, N- ]. In particular, we initiate a systematic study of
N(d, k), which is the maximum N, so that there is an A { a, a2, ak }, a <
a2 < < ak and that G(N, A) has the diameter d(G(N, A)) <_ d. We have obtained
exact value for N(d, 2) and upper and lower bounds for N(d, k), k >_ 3. Using these
results, we have derived new bounds for minimal diameter in the construction of dis-
tributed loop networks. An interesting relationship is established between the N(d, k)
problem and the postage stamp problem in additive number theory.

In our study, we restrict the subset A of[0, N- to be the one with al 1. The
digraph G(N, A) constructed having a contains a Hamiltonian circuit. This type
of Cayley digraphs (networks) merits further study because G(N, A is a generalization
of the popular ring network that has A }. Mathematically, A can be any subset of
[0, N- ]. Moreover, the underlining group of the Cayley digraph can be generalized
to an arbitrary finite group. Jia 8 studied some related problems in the general case
and proved a relation between Cayley digraphs and bases for finite groups.

It is interesting to further explore the relationship between N(d, k) and d(N, k).
Although these two variables are inverse to each other in some sense, they do be-
have differently in some other manner. For example, N(d, k) is a monotonically in-
creasing function of d when k is fixed. However, d(N, k) is a zig-zag function ofN and
d(N, k) d(N- 1, k) -< 1. Regarding the case where k 3, discussed in this paper,

detailed calculation shows that d(N, 3) 2, 3, 4, 5, 6, and 7 when N is in [5, 9], [10,
16 ], 17, 27 ], 28, 40 ], [41, 57 ], and 58, 78 ], respectively. When N is in 79, 111 ],
d(N, 3 8, except for N 105, 110 when d(N, 3) 9. The same thing happens for
N in [112, 138 and [139, 176], where d(N, 3) 9 and 10, respectively, except for N
133, 137, 172, and 174, where the diameter is one larger than the diameter of network
of other orders nearby.

In the case where k 2, the lower bound 3] 2 for d(N, 2) obtained by Wong
and Coppersmith [13 has been shown to be very closed to d(N, 2) by various authors.
The lower bound lb(N, 3 we obtained in this paper for d(N, 3 is a major improvement
over /-6N- 2, as obtained by Wong and Coppersmith [13 ]. We do not know if there
is an infinite family ofN for which lb(N, 3) d(N, 3).

Finally, we note that Theorem 3 can be generalized to the case where N(d, k), k >_ 4.
This will provide the following lower bound for N(d, k) in the case where k 4:

N(d, 4) >_ i-sd4 + O(d3),

which is slightly stronger than the lower bound obtained by using Mrose’s result concerning
the postage stamp problem.
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ON-LINE COLORING AND RECURSIVE GRAPH THEORY*

H. A. KIERSTEAD’I:, S. G. PENRICE’t’:I:, AND W. T. TROTTERS

Abstract. An on-line vertex coloring algorithm receives the vertices ofa graph in some externally determined
order, and, whenever a new vertex is presented, the algorithm also learns to which of the previously presented
vertices the new vertex is adjacent. As each vertex is received, the algorithm must make an irrevocable choice
of a color to assign the new vertex, and it makes this choice without knowledge of future vertices. A class of
graphs I’ is said to be on-line x-bounded if there exists an on-line algorithm A and a function f such that A
uses at mostf((G)) colors to properly color any graph G in I’. If H is a graph, let Forb(H) denote the class
of graphs that do not induce H. The goal of this paper is to establish that Forb(T) is on-line x-bounded for
every radius-2 tree T. As a corollary, the authors answer a question of Schmerl’s; the authors show that every
recursive cocomparability graph can be recursively colored with a number of colors that depends only on its
clique number.

Key words, on-line algorithm, graph coloring, recursive function

AMS subject classification. 05C 15

1. Introduction. The main result of this article can be formulated in terms of re-
cursive function theory or on-line algorithms. Since the on-line formulation gives a slightly
stronger statement and is more universally accessible, we adopt it. However, since the
roots ofthe subject lie in recursive graph theory, we begin with a briefsummary ofresults
in this area. A recursive graph is a countable graph G (V, E) such that there exist
algorithms (Turing machines) for computing the characteristic functions of Vand E. A
recursive graph is highly recursive if each vertex has finite degree and there exists an
algorithm for calculating the degree of each vertex. A graph is recursively k-colorable if
there exists an algorithm that computes a proper k-coloring of the vertices of the graph.
The recursive chromatic number ofa graph is the least k such that the graph is recursively
k-colorable. During the 1970s, several authors, including Manaster and Rosenstein [MR]
and Bean, Schmerl, and Kierstead studied the recursive chromatic number of various
classes of graphs. For example, Bean [B] proved that every planar highly recursive graph
has recursive chromatic number at most 6. Schmerl S showed that every highly recursive
k-colorable graph can be recursively 2k-1-colored, and, in general, this is best possible.
He also proved $2 that Brooks’s bound on the chromatic number of a graph also holds
for the recursive chromatic number of a highly recursive graph. Kierstead [K2] proved
that the recursive chromatic number of a highly recursive perfect graph was, at most,
more than its chromatic number and that the recursive edge chromatic number of a
highly recursive graph was, at most, more than its edge chromatic number.

While there were many positive results for highly recursive graphs, the results for
recursive graphs were almost always negative, unless the class of graphs under consid-
eration had bounded degree. For example, Bean [B] showed that there are recursive
forests whose recursive chromatic number is infinite. However, Kierstead [K1 did give
a positive result for a similar problem. He answered a question of Schmerl, by show-
ing that every recursive ordered set with width w could be partitioned into at most
(5 w_ )! 4 recursive chains. From a purely graph theoretical point of view, partitioning
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an ordered set of wictth w into 0 chains is equivalent to partitioning a comparability
graph with independence number w into 0 complete subgraphs, which, in turn, is equiv-
alent to properly coloring a cocomparability graph with clique number w using 0 colors.
However, Kierstead’s algorithm made explicit use of the orientation of the recursive
ordered set. These considerations led Schmerl to ask whether there exists a functionf(w)
such that every recursive comparability graph with independence number w can be par-
titioned into f(w) recursive cliques. Kierstead and Trotter KT1 showed that this was
true for comparability graphs of interval orders.

Now we consider Schmerl’s question from the point of view of on-line algorithms.
An on-line graph is a structure G (V, E, <), where G (V, E) is a graph, V is finite
or countably infinite, and < is a linear ordering of V. (If V is infinite, then < has the
order type of the natural numbers.) We call G an on-line presentation of the graph G.
The on-line subgraph of G induced by a subset X V is the on-line graph G<[X]
(X, E’, <’), where E’ is the set of edges in E both ofwhose endpoints are in X and <’ is
< restricted to X. Let Vi { xl, x,. } denote the first vertices of V in the linear
order < and set G G<[ Vi ]. More generally, we refer to on-line structures S, where
S is some structure such as an ordered set or partitioned graph. An algorithm for coloring
the vertices of an on-line graph G (or, more generally, calculating some function on
the universe of an on-line structure) is said to be on-line if the color of a vertex xi is
determined solely by G. Intuitively, the algorithm colors the vertices of G one at a
time in some externally determined order x,..., xn, and, at the time a color is irrevocably
assigned to the vertex xi, the algorithm can only see G. A simple but important example
ofan on-line algorithm is the algorithm First-Fit, denoted by FF, which colors the vertices
of G with an initial sequence of the colors { 1, 2 } by assigning to the vertex x/. the
least possible color not already assigned to any vertex x Vi- such that x is adjacent
to x;.

Usually, an algorithm for recursively coloring recursive graphs results in an on-line
algorithm, while more specialized algorithms for coloring highly recursive graphs do not.
The reason for this is that algorithms for coloring highly recursive graphs can learn about
the neighbors of a vertex, or the neighbors of the neighbors of a vertex, and so forth,
before coloring the vertex. An on-line algorithm for coloring graphs always produces an
algorithm for coloring recursive graphs. In this vein, the proof of Kierstead’s recursive
chain coveting theorem actually yields the following slightly stronger statement.

THEOnEM 1. I. There exists an on-line algorithm A that will partition any on-line
ordered set pc into (5 )/4 chains.

Similarly, Bean’s example of a forest with infinite recursive chromatic number pro-
duces an on-line tree that cannot be finitely colored by any on-line algorithm.

Schmerl’s question proves to be a special case of a more general problem. Before
continuing, we introduce some terminology and graph theoretical results. The clique size
and chromatic number of a graph G are denoted by w(G) and x(G), respectively. Let A
be an on-line graph coloring algorithm. Then XA(G<) denotes the number of colors A
uses to color the on-line graph G <, and XA(G) denotes the maximum of XA(G<) over
all on-line presentations G of G. A class of graphs I’ is said to be x-bounded if there
exists a function f such that, for all G I’, x(G) _<f(0(G) ). Easy examples ofx-bounded
classes include the class of perfect graphs (which include cocomparability graphs), the
class of line graphs, and, more generally, the class of claw-free graphs. Similarly, for an
on-line algorithm A, the class P is xa-bounded if there exists a function f such that, for
all G r, xA(G) < f(w(G)). The class I is on-line x-bounded if F is XA-bounded for
some on-line algorithm A. The class of perfect graphs is not on-line x-bounded. In fact,
the subclass of trees is not even on-line x-bounded as we noted above. However, the
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class of claw-free graphs is on-line x-bounded. We now rephrase Schmerl’s question in
these terms.

Question 1.2. Is the class of cocomparability graphs on-line x-bounded?
A graph H (X, F) is an induced subgraph of a graph G (V, E) if and only if
X V, and (2) for all vertices x, y X, xy F if and only if xy E. For a graph H,

let Forb(H) be the class ofgraphs G such thatH is not isomorphic to an induced subgraph
of G. In the mid-1970s, Gyhrfhs [G1] and Sumner [Su] independently formulated the
following conjecture.

CONJECTURE 1.3. For any tree T, the class ofgraphs Forb(T) is x-bounded.
Several comments about this conjecture are in order. First, it is easy to show (see

G or Su that, if x:(G) k, then G contains every tree T on k vertices as a subgraph,
but not necessarily as an induced subgraph. Second, if Forb(H) is x-bounded, then H is
acyclic. This follows immediately from a result of Erdrs and Hajnal [EH that, for every
positive integer > 2, there exists a graph Gi such that both the girth and chromatic
number of Gi are at least i. Such graphs have clique number 2 and do not contain any
graph that contains a cycle of length i. Finally, if F is a forest, Forb(F) is x-bounded if
and only if, for each of the connected components Ti of F, the class Forb(Ti) is X-
bounded. Thus, ifthe conjecture is true, its proofyields a characterization ofthose graphs
H such that Forb(H) is x-bounded.

Rrdl proved a weaker version of the conjecture. He showed [KR] that, for every
tree T and complete bipartite graph Kt,t, the class Forb(T) f) Forb(Kt,t) is on-line :-
bounded. Gyhrfs [G2 showed that the conjecture is true when T is any path. Gyrfs,
Szemerrdi, and Tuza [GST] verified the conjecture for triangle-free graphs in Forb(T),
when T is any radius-2 tree, and Kierstead and Penrice [KP1] extended this result by
showing that Forb(T) is x-bounded whenever T has radius 2. The latter two results use
Rrdl’s theorem. We need the following strengthening of Rrdl’s result due to Kierstead
and Penrice KP ].

THEOREM 1.4. For every tree T and complete bipartite graph Kt,t, Forb(T) N
Forb(Kt,t) is xvv-bounded.

An old result of Chvtal [C] shows that Forb(P4) is bvv-bounded, where Pn is a
path on n vertices. Gy(rfs and Lehel GL3 made an exciting and unexpected break-
through when they extended this result by proving that Forb(Ps) is on-line x-bounded.
They also showed that Forb(P6) is not on-line x-bounded. Thus, if Forb(T) is on-line
x-bounded for some tree T, then T has radius at most 2. The central result of this article
is that this condition is not only necessary, but is also sufficient.

THEOREM 1.5. For every tree T, the class Forb(T) is on-line x-bounded ifand only

if T is a radius-2 tree.
We are indebted to Gyhrfs for reminding us that, as a consequence of Gallai’s

characterization of comparability graphs [Ga], cocomparability graphs do not induce
the radius-2 tree obtained by subdividing each edge ofK,3 (see Fig. 1.1 ). Of course, this
is part of the easy direction of Gallai’s characterization and can be readily verified from
scratch. Thus, as an immediate corollary, we obtain the following answer to Schmerl’s
question.

COROLLARY 1.6. The class ofcocomparability graphs is on-line x-bounded.
This paper is organized as follows. In the remainder of this section, we state some

preliminary results and review our notation and terminology. In 2 we give an overview
of the off-line proof and the problems we must deal with to create an on-line algorithm.
In 4 and 5 we develop some purely combinatorial lemmas needed to verify the cor-
rectness of the main algorithm. In 5 we also present a key on-line subroutine and in 6
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FIG. 1.1.

we give the proof of Theorem 1.5, after giving a more technical reformulation of it as
Theorem 6.1.

We use the following easy lemma, which follows, for example, from Turan’s theorem.
LEMMA 1.7. Let D be a directed graph, where A out denotes the maximum outdegree

olD and where u and e denote the number ofvertices and edges olD, respectively. Then
D contains an independent set ofsize at least u/(2Aut + ).

Let R[a, b] denote the Ramsey function with the property that every graph on
R[ a, b] vertices contains an independent set of size a or a complete subgraph of size b.

Let Ta, be the radius-2 tree whose root r is adjacent to a level-1 vertices x
Xa, and each level-1 vertex xi is adjacent to b leaves Yi,, Yi,b. We call the set
{ Yi, Yi,6 } a level-2 group. We abbreviate T, by T. The complete s-partite graph
with w vertices in each part is denoted by KSw.

If two vertices x and y are adjacent, we write x y. IfX and Y are sets of vertices
such that every vertex in X is adjacent to every vertex in Y, then we write X Y. We
denote the neighborhood of a vertex x by N(x) { y: x y }.

2. Overview. In this section, we give an overview ofthe proofofthe off-line version
of our main theorem and the additional problems that must be solved to prove the on-
line theorem. This section also serves as a guide to reading the rest of the paper. We
begin by noting that, if T’ is a subtree of the tree T, then Forb(T’) Forb(T), and thus
Forb(T’) is on-line x-bounded if Forb(T) is. Thus it suffices to prove that, for all k,
Forb(Tk) is on-line x-bounded. In 3, two elementary combinatorial lemmas on trees
are presented, which simplify the remaining arguments. In particular, quasi-
induced trees are defined, and it is shown that it suffices to prove that the smaller class
q Forb(Tk) of graphs that do not contain a quasi-induced T is on-line x-bounded.

The central idea in both the on-line and off-line proofs is the notion of s-templates
and their use to partition the graph so that the vertices can be properly colored in terms
of local and global colors. Roughly, an s-template is a complete s-partite graph with a
very large number of vertices in each part. The exact definition of its part size depends
on w(G) and s. However, there will be an absolute upper bound on part size in terms
of t. At a given stage of a double induction on and s, we assume the following for some
bound c depending on s and t:

IfH is a graph on q Forb(T) such that either (a) o(H) < or (b) w(H) and
H does not contain an induced s-template, then X(H) < c.

It is easy to partition the vertices of G as (X, B, O, B, O2 B, O,) so that,
for _< < j < n, the following assumption holds:

(2) a Bi is an s-template,
(b) Each vertex in Oi is adjacent to at least k vertices in some part of Bi,
(c) No vertex in B is adjacent to k or more vertices in any part ofB,
(d) X does not contain an s-template.



76 H. A. KIERSTEAD, S. G. PENRICE, AND W. T. TROTTER

By part (b) of assumption ), we can color X with c colors. Using a different
disjoint set of c lBil colors, we can, by part (a), color each Oi with c lBi] colors so that
all vertices of Oi that receive the same color have a common neighbor in Bi. However,
two adjacent vertices, one in Oi and the other in Oj with 4 j, may receive the same
color. Finally, using a third disjoint set of BI colors, we can color each Bi so that each
vertex of Bi receives a distinct color. Again, two adjacent vertices, one in Bi and the
other in Bj with 4 j, may receive the same color. Call these colors local colors and let
(a) denote the set of vertices with local color a.

It remains to show that we can color each local color class (a) with a bounded
number of colors. Before describing this coloring, we must mention one technical com-
plication. A point x is said to be an extra point for an s-template B if, roughly, x is
adjacent to almost every vertex in every part of Bi. Extra points will create all sorts of
minor problems, which require special attention. Fortunately, if any template has too
many extra points, we will be able to start over using an algorithm based on (s + )-
templates. For the rest of this informal discussion, we ignore the possibility of extra
points. With this sluff, we can give a simple statement of the following crucial properties
of our partition. In 4 these properties are stated in full technical detail and proved.

(3) There exists a constant d such that, for any vertex x, local color a, and integer
i<n,

(a) ]{j:x y, for some y e By} <_ d,
(b) I{J: x is adjacent to at least k vertices in O fq (a) }1 < d,
(c) I{ J: for some x Oi fq (a), x is adjacent to at least k vertices in Oy fq

-< d.
Properties a)-(c) in the above assumption allow us to color each (a) with a bounded

number of colors as follows. If a is a local color that is used on a vertex in some Bi, then
a is used on exactly one vertex ofeach B2. Thus, by part (a), the degree of(a) is bounded
by d, and so (a) can be d + colored. Suppose that a is a local color that is used on a
vertex of O/.. We define a directed auxiliary graph G’ on the vertices { 1,..., n } by ---*
j if and only if there exists a vertex x Oi N (a) such that x is adjacent to at least k
vertices of Oj N (c). By part (c), G’ has outdegree at most d and thus can be colored
with at most 2d + colors. We assign each vertex x 6 (a) a two-coordinate global color.
The first coordinate is the color of in G’, ifx Oi. Now let (a, r) be the subset of (a)
of vertices whose global color has first coordinate ft. By (a) and (b), the degree of
(a, r) is less than d2, and thus (a, r) can be colored with d2 colors. We have thus
properly colored G with a bounded number of colors.

Next, we consider the problems involved in implementing the above proof on-line.
The major problem is that we cannot calculate the partition of G into (X, B, 0, B2,
02, Bn, On) on-line. When a vertex x is presented, it may appear to belong to the
first part X of the partition, but later we may learn that it must be assigned to some B
or Oi. Without being able to properly assign x to a part ofthe partition, we have no basis
for coloring x. Now suppose that we are very fortunate and that whenever a new vertex
x is presented we correctly guess its proper position in the partition. There is still a minor
problem. Suppose that x is correctly assigned to Oi. Then x is given a global color, which
is based in part on the auxiliary graph G’. However, the presentation ofx may cause an
edge from toj to appear in G’, when previously we had assigned andj the same color.
This problem is solved in {}5, where the definition ofthe auxiliary graph is slightly modified
to facilitate dealing with the extra points. In particular, the auxiliary graph will not be
directed.

To handle the more serious problem, our on-line algorithm will maintain a partition
of G into P (X, B, O, B2, 02,...), which approximates the desired partition in the
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following sense. At any stage + 1, when we consider the vertex x + 1, Pwill be a partition
of Gi, which satisfies parts (a)-(d) of assumption (2). At any stage, vertices may be
removed from X to form Bj+, where Bj is the last template in the previous partition.
When this happens, other vertices may be moved from Xto Oi. Once a vertex is assigned
to a part of the partition other than X, it will never move. Thus, when we are presented
with xi + 1, we try to assign x + to some Oj.. If this is not possible, we try to form a new
s-template with x + 1, together with some vertices from X. Ifthis is not possible, we assign
Xi + tO X.

We are left with the problem of coloring the newly presented vertex xi / . There is
no problem if x/. / is assigned to a new s-template Bj., and, if x is assigned to some 0,
it is relatively easy to color x using the techniques of 5, referred to above. The main
problem arises when x; / is first assigned to X. In this case, we do not know where Xi +
will end up, so we must somehow hedge our bets. We would like to color X + using the
on-line version of part (b) of ). The set of points currently in X does not contain an
s-template, but this property is maintained artificially by removing vertices that would
otherwise form an s-template in X. Simply removing vertices from X does not solely
solve the problem of coloring vertices of X’, the set of points originally assigned to X,
because the color ofa vertex originally assigned toXcontinues to influence future vertices
even after the point is removed from X. We cannot afford to change the set of colors
used for vertices entering X every time vertices are removed from X, because we may
have to change color sets an unbounded number oftimes due to the fact that the template
sequence may be unbounded in length. Thus, we want part (b) of to forbid, not s-
templates in X, but much larger s-partite graphs KSw in X’, and we will be able to do so
because of the other properties of the algorithm. By parts (a) and (b) of assumption 3 ),
the vertices of a supposed Kw in X’ could not have been used to form too many different
s-templates, nor could this set of vertices intersect too many of the Og’s. Thus, if X’
contains a copy B’ of KSw, then, by setting w large enough, we can assume that, for each
part Qa of B’, there exists a large subset Q such that either Q c X or Q’a Oj(a) [,-J nj(a)
for some j(a). Here, large means the size of a part in an s-template. This motivates the
intricate induction hypothesis presented in 6, where we will color X’ on-line with a two-
coordinate color. The first coordinate will ensure that, if x, y e X’, x y, and
x X’ X at the time y is presented, then x and y receive different colors. From this
fact, following the remarks above, we will show that no first coordinate color class
ofX’ contains Kw for appropriately chosen w. Thus we will be able to color each ofthese
first coordinate color classes on-line by a revised version of the induction hypothesis (b)
of(l).

3. Lemmas on radius-2 trees. In this section, we develop some preliminary results
about trees. We begin with some fundamental definitions. A graph H is called a pseudo-
induced Ta,b if H has a spanning tree T that is isomorphic to Ta,b and the root of T is
not adjacent in H to any leaf of T. A graph H is called a quasi-induced Tk if H has a
spanning tree T that is isomorphic to Tk, and, if xy is an edge in H that is not present
in Tk, then x and y are either both level-1 vertices, or they are both level-2 vertices. Note
that quasi-induced T is the stronger of the two: Every quasi-induced T is a pseudo-
induced T, but a pseudo-induced T may have "extra" edges between the first and
second levels. In a similar vein, we say that H is an augmented Kw if V(H) can be
partitioned into s sets Q Qs of size w such that x y whenever x e Qi, y e Qj,
and < <j < s. We abuse standard usage by calling the Qi’s "parts" ofH, even though
they need not be independent sets.
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We introduced the definition of a quasi-induced Tk to simplify future arguments.
It is easier to verify that a graph contains a quasi-induced Tk than it is to verify that a
graph contains an induced Tk, because, in the latter case, we must in effect check every
pair of vertices to see if the proper edge or nonedge is present, whereas, with quasi-
induced trees, we need only check pairs of vertices from different levels. The next lemma
shows that the results we desire for graphs that do not contain induced trees can be
obtained from results about graphs that do not contain quasi-induced trees.

LEMMA 3.1. For all positive integers k and t, there exists a positive integer k’( k, t)
such that, ifk’ k’ k, t) andH is a quasi-induced Tk, then H contains either an induced
Tk or a clique on vertices.

Proof. If k’ is.sufficiently large, then, by repeated applications ofthe Bipartite Ramsey
Theorem, we may assume that, between any two level-2 groups, either all edges are
present, or no edges are present. If there are R[R[ k, t], t] level-2 groups, then either
there exist level-2 groups with all edges between any two distinct groups present, in
which case there exists a t-clique in H, or there exist R[ k, level-2 groups with no edges
present between any two groups. By Ramsey’s theorem, among the level-1 vertices as-
sociated with each of these R[ k, t] level-2 groups, there exists either a t-clique or a set
of k independent vertices. In the latter case, however, we have an induced Tk.

We use q Forb(T) to denote the class of graphs that do not contain a quasi-
induced Tk. Lemma 3.1 may then be paraphrased as "If k’ is sufficiently large, then
q Forb(Tk,)

_
Forb( Tk)." Henceforth, our arguments will refer to quasi-induced trees

rather than induced trees. Also, we denote by q Forb(Kw) the class of graphs that do not
contain an augmented Kw, and q Forb( Tk, Kw) denotes the class of graphs that contain
neither a quasi-induced T nor an augmented KSw.

LEMMA 3.2. Let H q Forb(T) be a graph that is spanned by T, a pseudo-induced
Tk(2a + 1),kb. Then some level-1 vertex x of T has b neighbors in a distinct level-2 group,
other than the level-2 group associated with x.

Proof. Let xl,..., xtza+ 1) be the level-1 vertices of Tand let $1,..., Sk(2a+ 1) be
the level-2 groups of T. Suppose that no level-1 vertex has b neighbors in a distinct
level-2 groups. Define a directed graph D on the vertex set { 1, k(2a + )} by di-
recting an arc form to j, :/: j, if and only if xi has b neighbors in S. By our sup-
position, AUt(D) _< a. It follows from Lemma 3.2 that D has an independent set of
size k. This means that we may assume without loss of generality that, for 1,
k, xi has less than a neighbors in each S., < j < k, j :/: i. Thus, by removing at most
(k )(a vertices from each S., leaving at least k vertices in each level-2 group,
we find a quasi-induced T, a contradiction.

4. Definitions and structural lemmas. Let k, p, s, and be fixed positive integers
such that s > 2 and p > k4. If B is a subgraph of G isomorphic to an augmented KSw
with w p + k4, then we call B a template of G. We call a vertex x B an extra point
ofB ifx has less than k4 nonneighbors in each part of B. We call a vertex x B a strong
1-neighbor of B if x has k neighbors in some part of B. Note that an extra point is also
a strong 1-neighbor. A sequence oftemplates B1,..., Br is called an acceptable template
sequence if, whenever < m < n < r and x Bn, x is not a strong 1-neighbor of Bm.

This section has two goals: to define an /-tube and to prove a technical lemma,
Lemma 4.1, which will play a crucial role when we verify that our on-line algorithm uses
a bounded number of colors. In particular, it will help us to verify that the auxiliary
graphs have bounded degree, and it will have other applications as well. The following
definition and the statement of Lemma 4.1 are, in fact, the only elements of this section
used in the rest of the paper. The first-time reader may wish to proceed to 5 after



ON-LINE COLORING AND RECURSIVE GRAPH THEORY 79

studying the remarks following the statement of Lemma 4.1 and return to the proofs of
this section later.

DEFINITION. Let be a nonnegative integer. Then we call a subgraph U (B, N,
N2, Ni an i-tube if

(i) B is a template,
(ii) BNNm= for < m < i,
(iii) Nm f"l Nn for < m < n < i,
(iv) INml k for < m < and INil 1,
(v) Ifx N, then x has at least k neighbors in some part of B,
(vi) Nm Nm+ for < m < i- 1.
We refer to the unique element of Ni as the top of U. We refer to Nm as the mth

level of U for < m < i. Also, B is the 0th level of U. If U is a 0-tube, then B is the
top level.

LEMMA 4.1. There exists a function f i, k, o) such that, for every graph G
q Forb(T) and every vertex x ofG, if

(i) U { U,..., U is a collection ofpairwise disjoint i-tubes in G with O-levels
B, B, forming an acceptable template sequence,

(ii) x is not an extra point ofany template in the sequence B, B,
(iii) x has a neighbor in the top level ofeach of U, Uj.,
(iv) B, has less than o extra pointsfor < n <_ j,

thenj <J(i, k, 0).
Lemma 4.1 has simple interpretations in the cases where 0 and 1. Namely,

if x is a vertex of a graph G 6 q Forb(T) and there exists an acceptable sequence of
templates B B such that x has a neighbor in B but x is not an extra point of B,
for _< n _< j, then j < ]] (0, k, p), because a template is, in fact, a 0-tube. Similarly, if,
instead of assuming that x has neighbors in the Bn’s, we assume that x has neighbors x,

xj. such that x is a strong 1-neighbor of B for _< n _< j, then j < J] 1, k, o),
because B tO {x } is a 1-tube for _< n < j. (In the latter case, we retain the assumption
that x is not an extra point of the templates; for the x,’s, we need not make a distinction
between extra points and nonextra points.) The case where 2 is also used in our proof,
but describing it informally outside the context of the algorithm is awkward.

We surmise that tubes play a role in proving off-line results concerning trees of
radius larger than 2; this is the theoretical reason for proving a general version ofLemma
4.1 (for arbitrary i) when only the cases where 0, 1, and 2 are used. (As a practical
matter, the heart of the proof, Lemma 4.3, is proved by induction, so the general result
is obtained with more economy than proving these three cases separately.) We also remark
that the hypotheses of Lemma 4.1 can be weakened if a corresponding change is made
in the definition of an /-tube. Specifically, the tubes need not be completely disjoint,
provided that the bases form an acceptable template sequence, which, by definition,
consists of disjoint templates. However, to realize this apparent strengthening of the
lemma, we must add to the definition of an/-tube the condition that no vertex in the
tube is an extra point of the base. After making this adjustment, a different version of
Lemma 4.1 enables us to prove Theorem 6.1 using an on-line algorithm, which, while
more complicated, appears to use fewer colors than the algorithm of this paper.

Establishing Lemma 4.1 requires some other purely technical lemmas. We state and
prove each separately.

LEMMA 4.2. Let B be a template and suppose that x B is not an extra point ofB.
If <_ q < k4 and x has q neighbors in some part ofB, then there exist vertices x,
Xq in one part P ofB and y, y, in a different part Q such that x is adjacent to Xm
for < m < q and x is not adjacent to ymfor < m < k4
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Proof. Since p >_ k4, every part of B contains either k4 neighbors of x or k4 non-
neighbors ofx, by the pigeonhole principle. Since x is not an extra point ofB, then some
part, say Q’, ofB contains k4 nonneighbors of x. By the hypothesis, some part of B, say
P’, contains q neighbors of x. If P’ 4: Q’, set P P’ and Q Q’, and we are done. If
P’ Q’, then, since s >_ 2, we may consider another part, say R. As we observed earlier,
either R contains k4 neighbors of x or R contains k4 nonneighbors of x. In the former
case, set P R and Q Q’. In the latter case, set P P’ and Q R. It is then easy to
find the desired vertices.

As we indicated at the beginning of this section, one of our short-term goals is to
prove Lemma 4.1, which states roughly that there is a bound on the number of tubes in
which a point can have neighbors. To prove this bound, it is helpful to prove a bound
for a sequence oftubes with special properties and then extend the results to more general
sequences of tubes. Thus we are motivated to introduce the following definition. A se-
quence of/-tubes U1, U, where Un (Bn, N1,n, Ni,n), is called an acceptable
j-sequence ofi-tubes if

(i) U,, N U, for <_ m < n <_j,
(ii) The sequence B Bj. is an acceptable template sequence,
(iii) If x Urn, then x is not an extra point of B, for _< m 4: n _< j.
Having introduced this definition, we now show that it is reasonably easy to establish

the kinds of bounds we seek when we consider acceptable sequences of/-tubes. The
following argument, with weaker bounds, was useful in [GST and [KP 1].

LEMMA 4.3. Let { bi ) be the sequence offunctions defined by bo(k) k(2k + 1)
and bi + (k) k(2bi(k) + + bi(k) if > O. Let U { U U.) be an acceptable
j-collection ofi-tubes, for somefixed >_ O, in some graph G q Forb(Tk). Suppose that
x is a vertex such that x is adjacent to the top vertex of U, and x is not an extra point of
B, for <_ n <_ j. Then j < bi k)

Proof. Let k be fixed and assume for notational ease that bi bi (k) for >_ 0. We
induct on i. Let 0 and suppose for contradiction that x has a neighbor in B for _<

n _< j bo. Our first goal is to find a vertex y, a strictly increasing function r, and sets
B’(i) and B(i) for k such that

B(i), B](i) c B(i),
(2) n’()l, Ine) >-
(3) y is adjacent to every vertex of B(i),
(4) y is nonadjacent to every vertex of
5 B’(i) B(i.
By applying Lemma 4.2 to x and to each of the templates B,..., B, we may find

T, a pseudo-induced T. with a b0, b k4, whose level-2 groups are contained in
distinct templates. Applying Lemma 3.2, we find a level-1 vertex y of T1, which has a
set B(i) of k neighbors in each of k templates B(),..., B(k), none of which are at
the base of the tube containing y. Observing that (by the definition of an acceptable
sequence of/-tubes) y is not an extra point ofany ofthe templates, we may apply Lemma
4.2 again to find B(), B(g) as desired. Without loss of generality, r(i) i,
for all i.

Having found the structures with properties )-( 5 ), we now seek to find a quasi-
induced T. To do so, we construct a sequence of sets S, Sk and a sequence of
vertices R, R as follows. Let Rg be any vertex of B and let S be any k-element
subset of B. Suppose that Rk, S,, R,_ , Sk_ , Rr, Sr are constructed for r > 1.
Define R_ to be any vertex of B’_ that is not adjacent to any vertex of S t_J tA
S. This is possible, since each vertex w of S tO tO S has fewer than k neighbors in
B_ and [S t_J tA S[ < k2. Define S_ to be any k-element subset of B_ that
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does not contain any neighbors ofRr,..., Rk. Again, this is possible because each vertex
Rr, Rk has fewer than k neighbors in BT_ and { Rr, Rk } < k.

When we have chosen Rl,..., R, S1,..., Sg, these vertices, together with y, form
a quasi-induced Tk.

Suppose that > 0. Without loss of generality, x has a neighbor in each ofNi,,...,
Ni,bi; say these neighbors are x, Xbi. By induction, we may assume that x has no
neighbors in Ni- 1,1, Ni- 1,bi- bi_ 1" Then x is the root of a pseudo-induced Ta,b with
a k(2bi- -- and b k. Then, by Lemma 3.2, we find a level-1 vertex xn that has
a neighbor in bi- level-2 groups contained in tubes that do not contain xn. This is a
contradiction of the induction hypothesis, since, by the definition of an acceptable se-
quence, xn is not an extra point of any template that is at the base of a tube (from the
acceptable sequence) not containing xn.

ProofofLemma 3.1. Let J (i, k,/9 (bi (k)) (2o + ). Suppose that conditions
(i)-(iv) of the hypothesis hold with j J (i, k, o). Define a digraph on { l,..., j } by
directing an arc from m to n if and only if Un contains an extra point of Bm. Since
the U’s are pairwise disjoint, the digraph has outdegree at most o; by Lemma 1.7, we
must find an independent set of size bi(k) in the digraph. However, independent sets
in this digraph are acceptable tube sequences in G. Thus, we may assume that U’
{ UI Ub } is an acceptable b-sequence of/-tubes, where b bi (k). Then, since x
has a neighbor in the top of each of these tubes, Lemma 4.3 implies that bi (k) < bi (k),
a clear contradiction.

5. Lemma for using auxiliary graphs on-line. We now deal with the minor problem
mentioned in our overview. We wish to show that to color a graph G e q Forb(T)
on-line with a bounded number ofcolors, it suffices to partition G on-line into independent
sets 11, ...,/r with the following properties:

(a) For all m, < m < r, { n: Im to In contains an augmented Ke,e ) <- f,
(b) IfH Kd,d is a subgraph of G, then there exist Ip and Iq such that some subset

of (ip tO Iq) f) H contains an augmented Ke,e.
The number of colors used will be bounded in terms of d, e, f, and w(G). Many of the
essential ideas are present in a transparent way when we consider the off-line setting. We
begin with this argument.

PROPOSITION 5.1. There exists a constant c depending only on d, e, f, and w( G),
such that, ifG q Forb(Tk) can be partitioned into independent sets as in a and b ),
then X( G) < c.

Proof. Suppose that G is partitioned into independent sets I, /r in a way
satisfying (a) and (b). Define a graph G’ on the sets I,..., /r by declaring that Im is
adjacent to In if and only if Im tO In contains an augmented Ke,e. Note that, by the
definition of (a), A(G’) <f, and it easily follows that x(G’) < f+ 1. Let g’ be an optimal
coloring of G’. Define a two-coordinate coloring g of G as follows. Compute the first
coordinate of each vertex x by assigning x the color g’(In), where In is the independent
set in the partition that contains x. After all the first coordinates have been computed,
for every a e range (g’), define a graph G, as the subgraph of G induced by vertices that
received color a in their first coordinate. Let g be an optimal coloring of G, and let
g(x) be the second coordinate of g(x). It is clear that g is a proper coloring of G and
that

range (g)l < range (g’)l max { Irange (g.)l" a e range (g)}.

It remains for us to verify that range (g) is bounded in terms of d, e, f, and o4 G). We
have already noted that range (g’)[ < f + 1. Since q Forb( Tk, Kd,d) is x-bounded
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(indeed, it is Xvv-bounded), it suffices to show that G q Forb(Kd,d). Suppose that G
contains an augmented Kd,d; call this subgraph H. By condition (b), there exist inde-
pendent sets Ip and Iq of the partition such that (Ip tO Iq) f3 H contains an augmented
Ke,e. Then, however, Ip and Iq are adjacent in G’, so vertices on opposite sides ofthe Kd,d
received different colors in their first coordinate of g, contradicting the fact that every
vertex ofH received color c in its first coordinate. []

We refer to G’ as the auxiliary graph. To avoid confusion with the vertices of G,
we call the points of G’ nodes. There are several adjustments that must be made in the
on-line case. The greatest difficulty arises from the fact that, when G and the partition
I1,...,/r } are presented on-line in G’, it is possible that an edge may be "discovered"
in G’ well after both of its nodes have appeared. This is because the nodes ofthe auxiliary
graph are sets of vertices of G, and edges are formed in the auxiliary graph only when a
large number of edges (of G) are present between the two sets of the partition. Thus the
auxiliary graph does not strictly fall under the on-line model. However, as colorers, we
are aided by the fact that (again, in contrast to the standard on-line model) we may
change the color of a node as we discover new edges incident on the vertex, provided
that the number of times we change the color of a node is no larger than the degree of
the node.

LEMMA 5.2. There exists an on-line algorithm A and a constant c depending on
d, e, f, and w such that, if G<is an on-line presentation of a partitioned graph G
V, E, 11, 12 ), with w(G) < o and G q Forb(Tk), satisfying (a) and (b), then A
colors G using at most c colors.

Proof. Let G’ be defined as in Proposition 5.1. Without loss of generality, we may
assume the node set of G’ is the set of positive integers. As a new vertex in G is presented,
it may cause a previously unseen edge to appear in G’. Despite this complication, we
seek to maintain a proper coloring of G’, even though we may occasionally change the
color of a node of G’.

Suppose that a vertex x enters G and is assigned to Im. If x does not produce any
new edges incident on Im, do not change the coloring of G’. If x does produce one or
more new edges incident on Im, assign Im a new color (if necessary) so that the color of
Im is different from all of its previous colors, as well as the current colors of all the
neighbors of Im in G’. Since Im has at most fneighbors in G’ and each vertex of G’ has
at most f+ different colors throughout its history (since only the addition ofan incident
edge can cause a color change), a color will always be available for Im, provided that we
use f2 + f+ colors to color G’. Moreover, we have something more than a proper
coloring: After an edge Imln appears, Im is never given a color previously held by In, and
vice versa.

Now x will be assigned a two coordinate color. The first coordinate will be the color
of Im in G’ after any edges in G’ caused by adding x to G have been added to G’. To
compute the second coordinate, apply First-Fit to the subgraph of G induced by the
vertices that received the same first-coordinate color as x.

Clearly, this algorithm gives a proper coloring ofG, and we have already determined
that at mostf2 + f+ colors are needed in the first coordinate. Thus it suffices to show
that the number of colors used in the second coordinate is bounded by a function of d,
e, T, and w(G). In fact, we have already done so when we argued for Proposition 5.1,
because the bound in the second coordinate ofthat coloring could be realized by applying
First-Fit. q

6. The main theorem. In this section, we prove the following technical reformulation
of Theorem 1.5, our central result.
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THEOREM 6.1. For every positive integer k, there exists an on-line coloring algorithm
Ak and afunction ck such that, ifG is an on-line presentation ofG Forb(T), then A
gives G a proper coloring using at most c(w( G)) colors.

Proof. Let k be a fixed positive integer. We have already observed that it suffices to
prove the theorem for q Forb(T,). Another simplifying observation is that it suffices to
prove the following, apparently weaker, statement:

(*) For every positive integer t, there exists an on-line algorithm A, and an absolute
constant Ck, such that, if G q Forb(T) and co(G) < t, then Ak, colors G using at most
ck,t colors.

Statement (*) is, in fact, no weaker than Theorem 6.1; we simply use pairwise
disjoint sets of colors for each algorithm A,t. If G is an on-line presentation of a graph
G e q Forb(Tk), then, whenever o(G 7: o(Gi<_ ) t, we may color X using Ak,t. On
the other hand, if w(GT:) o(GT:_ ) + 1, we may begin using Ak,t + and a new set of
colors. We then have Theorem 6.1 by taking c(c0(G)) 22 = ck,t.

We now prove * by induction on theclique size t. If 1, the statement is obvious,
since First-Fit will assign the same color to every vertex ofa graph with no edges. Assume
that > and that there exists an on-line algorithm A,t_ and a constant c,,t- such
that Ak,_ colors any on-line presentation G of G q Forb(T) satisfying o(G) <
1, with at most ck,t_ colors. To prove the induction step, we must show that there exists
an algorithm Ak,t and a constant c,t such that A,t colors any on-line presentation G of
G e q Forb(T) satisfying w(G) < t, with at most ck,t colors; to this end, we set up a
secondary induction. To state the secondary induction, we must refer to three sequences
of parameters P2 pt, , and w2 wt. We delay the calculation of these
sequences until after a sketch of the secondary induction.

We call a template with s parts and p + k4 vertices in each part an s-template. To
appreciate the following statement, which we will prove by induction on s, it is important
to realize that Ps + k4 will be much smaller than w.

* *) For 2 < s < + 1, there exists an algorithm A,,t,s and a constant c,,,s such
that

(i) For 2 < s < t, if G is an on-line presentation of G q Forb( T, Kw,) with
o(G) < t, then Ak,l,s colors G using at most c,,t,s colors,

(ii) For 3 < s < + 1, ifG is an on-line presentation of a graph G 6

q Forb(Tk), where co(G) < and no (s )-template of G has Os- extra points, then
A,,t,s colors G with at most c,t,s colors.

Some general comments are in order now. The first comment is that the base step,
the case where s 2, follows from Theorem 1.4, regardless of the value of w2. Note that
(ii) makes no assertion in this case. By far, the hardest part of proving (* *) is showing
that, if (i) is true for s 1, then (ii) is true for s. Next, the sequences of parameters will
be defined in such a way that, whenever we have (ii) for a particular value of s, 3 < s <
t, we obtain (i) for the same value of s as an immediate corollary. Finally, we will define
ot 1, so that (ii) in the case where s + implies that we may prove the primary
induction by putting A,t A,t, + and ck,t Ck,t,t + 1. If o(G) _< t, a t-template of G
cannot have any extra points, since no vertex of G can have neighbors in every part of
a t-template.

We now state the properties that our sequences of parameters must have for us to
prove * * ).

(a’) If G q Forb(Kws) and B is an (s )-template of G, then B has less than
os- extra points, for 3 < s _< t.

(b’) If G is a graph and B is an s-template of G that has k extra points, x,..., x,
then N(x fq f3 N(x) f3 B 4: , for 2 _< s _< t.
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Property (a’) is all we need to show that establishing (ii) for a particular value of s
yields a proof of (i) for that same value. Suppose that we have defined our parameters
so that (a’) holds and assume (ii) for some s < t. Let G be an on-line presentation of
G e q Forb( Tk, Kws) with w(G) < t. Assuming (ii), we know that, if Ak,t,s uses more
than ck,t,s colors on G<, then some (s )-template ofG has los extra points. However,
by (a’), G q Forb(Ks), a contradiction. Property (b’) is used to handle a small tech-
nicality that arises when we show that, if (i) is true for s 1, then (ii) is true for s. A
more detailed motivation for (b’) outside the context of the algorithm is impractical.

We now define our parameters, using a "reversed" induction. Let the function w
be defined by w(k, p, ,o) (p + k4)( +j] (0, k, lo) +jq( 1, k, lo)) for all positive integers
k, p, and

Base: Let p k5. Let lot 1. Let wt w(k, p, lot).
Induction: Suppose that Ps, los, and ws have been defined for s > 2. Then Ps-

max { k4ws, k5 }, los- ws, and Ws- w( k, p_ 1, los- 1).
As is the case for property (b’), the definition of the function w is motivated by

technicalities that arise in a detailed discussion of the algorithm.
We now verify (a’). Suppose that G q Forb(Kws) and B is a template of G with

s parts, p_ + k4 vertices in each part, where 3 _< s _< t. Suppose for contradiction
that B has r los- Ws extra points, x x. Consider any fixed part Q of B. By
the definition ofan extra point, Xl has Ps- >- k4ws neighbors in Q. At least k4ws k4 of
these neighbors are neighbors of x2, again by the definition of an extra point. At least
k4ws 2k4 of these points are neighbors of x3. Continuing in this manner, we may find
a subset of Q of size at least k4ws ((los-1 )k4) Ws, which is adjacent to all of
Xl Xr }. Since Q was chosen arbitrarily, we may do the same in every part of B.

This results in an augmented Kw,, a contradiction.
Property (b’) is verified in a similar manner. Suppose that G is a graph, that B is a

template of G with s parts, Ps + k4 vertices in each part, and that B has k extra points,
x, xk. Then Xl has at least Ps >- k kk4 neighbors in every part of B, at least
kk4 k4 ofwhich are also neighbors ofx2, and so on. We then find a common neighbor
for x, x. (In fact, we find at least kk4 (k )k4 k4 neighbors in each part
of B.)

By our earlier remarks, to prove the induction step of * ), it suffices to prove * * ).
We have already noted that, in the base step of (* *), (i) is a consequence of Theorem
1.4 and (ii) is trivial. By our remarks on property (a’), to show the induction step of
(* *), it suffices to show that, whenever (i) holds for s 1, (ii) holds for s, 2 < s _< +
1. By the primary induction hypothesis, there exists an algorithm A,,t- and a constant
c,t- such that, if G is. an on-line presentation of a graph G q Forb(Tk) with
w(G) _< 1, then A,_ colors G with at most c,,t- colors. By the secondary induction
hypothesis, there exists an algorithm A,,t,s- and a constant c,t,s- such that, if G is
an on-line presentation of G q Forb( Tk, s-1Kws_l) with w(G) _< t, then Az:,t,s- colors G
with at most c,,t,s- colors. It remains for us to show that, given these hypotheses, there
exists an on-line algorithm A,t,s and a constant c,t,s satisfying (ii).

For the remainder of the proof, let p Ps and lo as 1. Also, "template" should
be read as "(s )-template." Recall that, if B is a template, then we call a vertex x a
strong 1-neighbor of B if x has k neighbors in some part of B. We call x an extra point
of B if x has less than k4 nonneighbors in every part of B. An acceptable template
sequence is a template sequence Bl Br such that, if _< m < n _< r and x B,, then
x is not a strong 1-neighbor of Bm.

We now present the algorithm A,,t,s. To show (ii), we assume that no template of
the graph being presented has los- extra points. The key feature of the algorithm is that
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it maintains an acceptable template sequence B Br. Whenever a template Bi is
added to the sequence, we arbitrarily assign labels { 1,..., Bil} to the vertices of Bi.
These labels are not part ofthe coloring, since a vertex may not become part ofa template
until long after it has entered the graph. To each template Bi, we will also associate a set
of (not necessarily all) strong 1-neighbors, Oi. A vertex x may be assigned to Oi in one
of two ways, either when x enters the graph (if Bi had already been formed) or when Bi
is formed (if the template doesn’t appear until after x has entered). In the latter case, we
give x a "shadow" color, as we detail below. As with the labels on the template points,
the shadow colors are not part ofthe coloring produced by the algorithm, but are instead
records to be used internally .by the algorithm. In either case, the assignment of x to Oi
is irrevocable, and the Oi’s are pairwise disjoint.

Suppose that when a vertex x enters the graph the acceptable sequence oftemplates
is B, Br. The algorithm colors x and updates the template list as follows.

Case 1. If x is a strong 1-neighbor of some template in the sequence, find the
smallest such that x is a strong 1-neighbor of B. Add x to Oi. Assign x a several
coordinate color. The first coordinate identifies x as a vertex that was classified as a strong
1-neighbor at the time it entered the graph. The second coordinate is the set of labels
used on N(x) f) Bi. Note that there are a fixed number of labels since all the templates
have the same size. To compute the third coordinate, apply the algorithm Ak,t- (which
exists by the primary induction hypothesis) to the subgraph induced by vertices of Oi
that received the same colors as x in their first two coordinates. Since these vertices have
a common neighbor in Bi, the induction hypothesis implies that we use at most ck,t-
colors in this coordinate. Let V’ be the set of vertices that received the same color as x
in their first three coordinates. Note that V’ f) O; is an independent set for j r.

Claim A. The subgraph induced by V’ and the independent sets V’ fq O; satisfy
conditions (a) and (b) of Lemma 5.2 with d (k + p)jq 1, k, p), e k + t, and f=
(s 1)(p + k4)j( 1, k, p)J(2, k, p).

Given this claim, by Lemma 5.2, we may apply an on-line algorithm to the subgraph
induced by vertices that received the same color as x in their first three coordinates. The
number of colors used in each coordinate will be bounded in terms of k, p, s, and w(G),
all of which are bounded in terms of t, and it will be a proper coloring.

Case 2. If x is not a strong 1-neighbor for any template in the sequence at the
time x enters, then we attempt to find a set of vertices that, together with x, form a
template that may be added to the sequence without violating the key properties of the
sequence. That is, we look for a set Br+ such that Br+ is an (s )-template and
Br/ (Bi k.J Oi for < < r. Note that, if Br + satisfies this condition, no vertex
of Br+ is a strong 1-neighbor of any earlier template in the sequence. If such a set Br /
can be found, add B+ to the template sequence and assign labels to the vertices ofBr + 1.

Assign x a two-coordinate color. The first coordinate identifies x as a vertex that was
used to form a new template at the time it entered. The second coordinate is computed
by applying First-Fit to the subgraph induced by vertices that received the same color as
x in their first coordinate. Note that every template in the acceptable sequence contains
precisely one such vertex. Since we use First-Fit in the second coordinate, we know that
x will be properly colored. Moreover, it is easy to see that the algorithm will use a bounded
number ofcolors in the second coordinate for the subgraph induced by vertices that were
used to form templates at the time they entered. This is because, by Lemma 4.1 and the
fact that x is not an extra point of any previous template (it is not even a strong 1-
neighbor), this subgraph has degree at mostJ (0, k, p).

If y is a vertex that entered before x such that, for < < r, y Bi Id Oi (with y a
strong 1-neighbor of Br+l), then assign y to Or+l. The algorithm then assigns to y a
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"shadow" color c(y); this color is strictly for record-keeping purposes, since y’s "real"
color was assigned when y entered. The shadow color is assigned as follows. Imagine that
a "twin" vertex y’ is presented immediately after x and that y’ has precisely the same
neighbors as y (at the time x enters and thereafter). Apply the algorithm to y’ as if it
were an actual point presented and, for any points in the graph that have already received
a shadow color, use the shadow color, rather than the color actually assigned, to compute
the color for y’. In fact, y’ would be colored under Case 1, because y’ looks exactly like
y, which is now a strong 1-neighbor of Br+1. When other vertices require shadow colors
in the future, y’ will be treated as if it had been actually presented. This will guarantee
that the shadow colors form a proper coloring of the set of vertices that received shadow
colors. Ifthere is more than one such y, say y,..., Ym, when B+ is formed, then apply
the same procedure to each vertex. Finally, the algorithm assigns shadow colors to all
the vertices of Br + 1, except x.

Claim B. If x is a vertex with shadow color c(x), then c(x) S(x) { c(y):
yeN(x)}.

Case 3. If x is not a strong 1-neighbor of any template at the time x entered and if
x cannot be used to form a new template for the sequence, then we assign x a three-
coordinate color as follows. The first coordinate identifies x as a vertex that could not
be colored in either Case or Case 2. The second coordinate ofx is the set S(x) c(y):
y N(x) }. Note that the number of colors used in the second coordinate is 2 b, where
b is the maximum number of colors used in step 1; assuming Claim A, b is bounded in
terms of t, so 2 b is, as well. To compute the third coordinate of x, apply the algorithm
Ak,t,s- (whose existence is asserted by the secondary induction hypothesis) to the subgraph
Gs induced by vertices that received the same colors as x in their first two coordinates,
where S S(x) is the second coordinate of x’s color.

S--IClaim C. The subgraph Gs does not contain an augmented Kws_ 1.

Assuming Claim C, by the secondary induction hypothesis, A,,t,s- gives a proper
coloring of Gs, and therefore x is properly colored. Moreover, the secondary induction
hypothesis implies that no more than c,,t,s- colors are used in the third coordinate.

By the remarks included in the statement of the algorithm, to finish the proof of
(* * ), it suffices to prove Claims A-C.

Proof of Claim A. Since it is the simpler of the two, we first verify that condition
(b) ofLemma 5.2 is satisfied. That is, we check that, whenever V’ contains an augmented
Kd,d, say H, there exist integers a and/3 such that H f) O, t_J O) contains an augmented
K,,., where d (k + o)J] 1, k, p) and e k + p. Consider a complete bipartite graph
H in V’ with (k + o)fl 1, k, o) vertices in each part. Let H1 and He be the independent
sets of H. If y e HI, then y e O, for exactly one j, < j < r. Note that, if I { j 3y
Oj- n }, II] <f 1, k, ). To see this, suppose without loss of generality that {
j 1, k, )} is contained in I. Then, since no template has extra points and HI >
oj] 1, k, ), by the Pigeonhole Principle, some vertex y’ of H2 is not an extra point of
templates B,..., B., where g j] (1, k, p). Then, however, we have a contradiction
of Lemma 4.1, since y’ is adjacent to all ofH. Because of this bound on I1, using the
Pigeonhole Principle, we may find an index a such that 10, U HI k + o. By a similar
argument, we find a subset of H2 fq Oe of size k + . This completes the verification of
condition (b).

We now verify (a) of Lemma 5.2; that is, for all a, < a < r, 1{/3: (V’ fq O,) tO
(V’ O) contains an augmented K,e}l < f, where e k + and f= (s 1)
(p + ka)f 1, k, p)f (2, k, p). Consider an arbitrary node B, of the auxiliary graph (or,
more precisely, the node of the auxiliary graph corresponding to the template B,). We
wish to show first that, for every edge in the auxiliary graph that is incident on B, (say
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the other endpoint is Be), there exist a vertex xe B and a strong 1-neighbor Ye ofB
such that

(i) Ye is at the top level of a 2-tube with 0-level Be,
(ii) xe and Ye are not extra points of Be,
(iii) xe

This is illustrated in Fig. 6.1.
First, note that, if there exists a complete bipartite graph with k + 0 vertices in each

part where one part, say X, is contained in V’ f30 and the other, say Y, in V’ f3 On for
some a 4:/3, then there exists a 2-tube such that its 0-level is Be, its first level is contained
in Y (choose any k vertices of Y), and the vertex Ye at the top level of the tube is an
element ofX that is not an extra point ofBe. Note that Ye exists because some vertex of
X must fail to be an extra point of Be, since IX] > 0. Moreover, since every vertex of
X is a strong 1-neighbor ofB, we may find k vertices in one part ofB that are neighbors
of Ye. One of these k vertices must fail to be an extra point of B: if a > /3, then no
element of B is an extra point (or even a strong 1-neighbor) of Be. If/3 > a and k
vertices in one part ofB are extra points of Be, then they have a common neighbor z
in B, by property (b’). Then, however, z is a strong 1-neighbor of B, and this fact
would have prevented us from adding B to the template sequence. Thus we may choose
xe to be any neighbor of Ye that is not an extra point of Be.

Thus, if the degree ofB is (s )(p + k4)f 1, k, o)J] (2, k, o) or higher, we find,
by the Pigeonhole Principle (there are only (s )(p + k4) vertices in B), a vertex x
ofB that has a neighbor in the top level ofj] 1, k, o)fl (2, k, o) 2-tubes with distinct
0-levels. (That is, x xe forJ] 1, k, o)J] (2, k, o) distinct values of/L) See Fig. 6.2. Since
the algorithm forces the Oi’s to be pairwise disjoint, the l-levels ofthese tubes are pairwise
disjoint. It is still possible, however, that the 2-levels may not be disjoint. For each/3,
however, we choose the Ye so that it will not be extra point ofBe. Thus no vertex y Ye
can be at the top ofJ] 1, k, 0) of these tubes, or else there exist f 1, k, o) disjoint 1-
tubes whose bases form an acceptable template sequence and whose top levels are all
adjacent to y, contradicting Lemma 4.1. Thus we may find among the collection of 2-
tubes whose top points are adjacent to x a subcollection ofJ] (2, k, o) pairwise disjoint
2-tubes. When these tubes are ordered so that their bases are a subsequence of the ac-

B

O

FIG. 6.1.
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B

B3 By B8

FIG. 6.2.

ceptable template sequence generated by the algorithm, the hypotheses of Lemma 4.1
are satisfied, so this is a contradiction. This shows that (a) of Lemma 5.2, i.e., the degree
condition for the auxiliary graph, holds as claimed, r--I

ProofofClaim B. Ifc(x) is the shadow color ofx and c(x) S(x), then there exists
some vertex ywith shadow color c(y) c(x) such that y received its shadow color before
x entered the graph and y x. However, since y x and y had a shadow color at the
time the shadow color ofx was assigned, c(y) 4: c(x).

Proofof Claim C. We argue by contradiction. Suppose that, at some point in the
s--1algorithm, some Gs contains an augmented Kws_ 1. Let Q be this subgraph and let Q,

Qs- be the parts of Q. Let x be the last vertex of Q to enter the graph. Without
loss of generality, x Qs . Let B, Br be the templates in the sequence at the time
x entered.

We first claim that, for _< j < s 2, no element of Qj has been added to any
or Oj before x entered; if there were such a vertex, say y, then y would have received a
shadow color c(y). Then, however, c(y) S(x) S S(y), contradicting Claim B.

Now consider Qs_ . Let z be the last vertex of Q’ Q to to Q_ to enter the
graph. Note that, by the above argument, z is not an extra point of any template in the
sequence at the time x entered. (Indeed, this is true of all the vertices in Q’.) Label the
vertices of Q_ as follows. For each y Qs- , assign y, if possible, the smallest m such
that, at the time x entered, either y Bm or y Om. If no such m exists, assign y the
label . Note that the fact that z is not an extra point of any template in the sequence
at the time x entered and the fact that z is adjacent to all of Q_ imply that at most
+ )] (0, k, o) + J] (1, k, o) labels are used. Thus we find a set of vertices of size

p + k4 all of whose elements have the same label. In this case, however, v cannot be
the common label, or else the algorithm would have been able to add some template
from Q to the sequence (and thereby give some vertex in Q a color according to Case
2). Thus the common label is a natural number m. Let x,..., Xa, where a p + k4,
be the vertices of Qs that received the label m. Each of x,..., Xa must have entered
the graph before Bm was formed; any that entered after Bm was formed would have been
a strong 1-neighbor at the time it entered, and thus would have been colored in Case 1.
On the other hand, z must have entered after Bm was formed: by the manner in which
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sets of strong 1-neighbors are formed, x Xa are not strong 1-neighbors of any
template preceding Bm in the sequence; else, they would have been assigned to, say, On
where n < m, as soon as Bn was formed. Hence, if z, and therefore all of Q’, entered
before Bm was formed, the algorithm would have added a template to the sequence and
the last of the points z, x,..., Xa to enter the graph would have been colored by Case
2. It cannot be the case that z entered at the time Bm was formed; else, z would have
been colored in Case 2. If, however, z enters G after Bm is formed, then, x, for example,
had received a shadow color by the time z entered, so c(x) S(z). Then c(x)
S( z) S(x and S( z) 4: S(xt ), a contradiction. El

This completes the induction step of (* * ). The induction step of (*) follows, and
the proof of the theorem is complete. E]
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LITTLEWOOD-OFFORD INEQUALITIES FOR RANDOM VARIABLES*

I. LEADER" AND A. J. RADCLIFFE

Abstract. The concentration of a real-valued random variable X is

c(X) sup P(t < X < + 1).

Given bounds on the concentrations of n independent random variables, how large can the concentration of
their sum be?

The main aim of this paper is to give a best possible upper bound for the concentration of the sum of n
independent random variables, each of concentration at most 1/k, where k is an integer. Other bounds on the
concentration are also discussed, as well as the case of vector-valued random variables.

Key words. Littlewood-Offord problem, concentration, normed spaces
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Introduction. In 1943, Littlewood and Offord [8 ], concerned with estimating the
number of real zeros of random polynomials, proved that, given complex numbers
(ai)]’ of modulus at least 1, not too many of the sums sA ZiA ai, A c { 1, 2,..., n }
lie in any open disc of diameter 1. They showed that the maximum number is
o(2nn -1/2 log n).

In 1945, Erd6s [2] noted that, if the ai are real numbers, then Sperner’s theoremm
on the maximum size of an antichain in the poset (n) { 1, 2 n ) )mimplies
a best possible upper bound. Indeed, suppose first that the ai are all positive. Then, given
an open interval I of length 1, the set system ,5I {A c {1, 2,..., n)" SA I) is an
antichain, since, if B A, then s SA S\A > B\A] >-- 1. Thus, for all I, ,5I

(Ln’zj) by Sperner’s theorem [9 ]. The result for positive reals immediately implies that
the same conclusion follows for all reals. Kleitman [5] and Katona [4] independently
showed that the same bound, of (Ln’zj), holds for (ai)’ in C, thus giving a best possible
improvement of the lemma of Littlewood and Offord. In [6 Kleitman proved a consid-
erable extension of this result, namely, to sums of vectors (ai) of norm at least in an
arbitrary normed space, thus setting a conjecture of Erd6s.

Jones 3 suggested a probabilistic framework for these questions, regarding a vector
a 4:0 in a normed space E as being naturally associated with an E-valued random
variable X with P (Xa 0) 1/2 and P (Xa a) 1/2. So, if 6a is the delta measure on E
concentrated at a, then the distribution of Xa is 1/2 (60 + a). Kleitman’s result can then
be stated as follows.

THEOREM A (see [6]). Let (ai)’ be vectors in a normed space E of norm at
least and let (Xi)’ be independent random variables with X having distribution
1/2 (6o + ). Then, for any open set U X ofdiameter at most 1, we have

P Xie <_2
[_n/21

Note that this bound is clearly best possible, equality being attained if, for instance,
all the a are equal.
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The conclusion of Theorem A gives a bound on the extent to which the values of
the random variable Y. Xi are concentrated in one place. This prompts the following
definition.

Let E be a normed space. The concentration of an E-valued random variable X is
c(X) sup P(X U), where the supremum is taken over all open subjects Uc E having
diameter at most 1.

The hypotheses of Theorem A can also be stated in terms of concentration, and in
this form it reads as follows.

THEOREM A’. Let (Xi)’{ be independent E-valued random variables that are essen-
tially two-valued and have concentration at most 1/2. Then

C X <2
Ln/2j

The main result of this paper is a result that extends Theorem A’ in the case when
E R by removing the restriction that each Xi be essentially two-valued.

THEOREM 1. Let Xi 7 be independent real-valued random variables ofconcentration
at most 1/2. Then

Xi <2
[n/2/

Our technique is closely related to that of Kleitman, being based on symmetric
chain decompositions. In we give a proof of Theorem 1, as well as presenting some
background about symmetric chain decompositions.

In {}2 we consider sums of random variables of concentration at most 1/q, where
q is an integer, and we generalise some results of Jones 3 ]. To state our result, we need
some fairly standard notation. We write [q] for the set { 0, 1, q } and also for
the poset with that ground set and the natural ordering. We write [q] for the product
of n copies of[q] with the usual product ordering, i.e., (xi)7 < (Yi)7 if and only if
x; < y; for each i. Finally, we write W for the size of the largest level set in the ranked
poset [q]n as follows:

W= Wu,= I{(x;)7 [q] X =In(q- 1)/21}1.
THEOREM 2. Let (Xi)7 be independent real-valued random variables with c(Xi <

/ q, where q . Then c( Y, 7 Xi < Wqn.
This bound is clearly best possible. Equality is attained when, for instance, each Xi

has distribution 1/q)(6o + + + q ).
Based on Theorem 2, we are perhaps tempted to guess that the sum ofn independent

random variables, each of concentration at most pq (p and q coprime integers), has
concentration bounded by the proportion of[q] occupied by the largest p layers. Un-
fortunately, very simple examples show that this is not the case. Rather surprisingly,
given this, the result does hold when p 2. Both the examples and the proof are given
in 3.

Finally, in {}4, we turn our attention to the vector-valued case. We consider some
of the problems raised by Jones [3 and answer some of his questions.

1. Sums of random variables of concentration at most 1/2. Before considering the
details of our proof of Theorem 1, some discussion of symmetric chain decompositions
is in order. These will prove to be vital for our results, as they were for Kleitman’s.

A symmetric chain decomposition of the power set (n) { 1, 2,..., n } is a
partition of (n) into chains (totally ordered subsets) in such a way that each chain
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.1 {A, A2, Ar} with AI c A2 c c: Ar satisfies Ak+[ [Ak[ + and
[Al[ + ]At[ n. Thus each a is arrayed symmetrically about the "middle layer" of

(n) and contains one set from each layer between the extremes. In particular, of course,
/must contain one set of size [ n/2 J. de Bruijn, Tengbergen, and Kruyswijk showed
that symmetric chain decompositions do exist, and Kleitman’s beautiful result, Theorem
A, was based on that proof.

Their proofgoes as follows. Suppose that /j) is a symmetric chain decomposition
of 0 n ). We can construct a symmetric chain decomposition of (n) in the following
manner. Take a copy of( Mj) in each layer of (n)" the bottom layer, which is exactly
0 n ), and the top layer of sets containing n). This is very definitely not a symmetric
chain decomposition of (n), but, by transferring the top element of each chain in the
top layer to the corresponding chain downstairs, everything can be fixed. More precisely,
for each chain a {A, A2, Ar } with A A2 c c A set

= {A,,Az,...,Ar, ArU {n}},

’s:= {A U {n},a2u {n}, Ar- U {n}}.
The collection { ., ’} forms a symmetric chain decomposition of (n), after the
removal of those that are empty.

A sequence m) is called a symmetric profile for (n) if, for some (and therefore,
up to rearrangement, eveff) symmetric chain decomposition of (n), say (), we
have mi [i[. Note that s (,2 ,).

As the above proof shows, we get a symmetric profile for (n + by taking
(mg) and replacing each m by the pair m 1, m + and then discarding zeros. At
first, this may seem not to the point, since we can write the symmetric profile for (n)
easily and explicitly: A sequence (m) is a symmetric profile for (n) if s (,7) and
the number ofj with m n + 2i is () () (with the convention that
(Y) 0). However, symmetric chain decompositions will arise in more complicated
situations, in which finding an explicit expression is much harder. Founately, all that
we need for the proofs is the total number of chains in a decomposition and the way in
which the symmetric profile changes as the poset grows. To illustrate this, below is eit-
man’s proof of Theorem A, using symmetric profiles.

Proofof Theorem A. The values ofX Z Xg are exactly those vectors in E of the
form XA gA a, where A is any subset of 1, 2, n }. The distribution of X is
2 EA=, , 6x. To show that c(X) is small, we paition (n) into subsets
(N) with s (2) and

(,) A, B ][XA xs][ 1.

To do this, we in fact do more, namely, prove that the paition can be chosen with
([[) being a symmetric profile for (n). Once this is proved, the theorem follows
easily, since

P(X 6 U) 2-" Z 6xa(U)
Ac 1,2 n}

j= A#S

2-ns

kn/21
The last inequality holds, since, by (,), at most one x with A e belongs to U.
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The proof goes by induction on n. The result is trivial for n 1, so we turn to
the induction step. Take an appropriate partition (n Us’ /j (where s’
(L--2j))- Take a support functional f 6 X* for an, a functional with Ilfll and
f(an) anti >- 1. For any ’j {A, A2, hr }, choose with

f(XA) >-- f(XA), k- I, 2,..., r

and set

d2j-- {A1,A2,... ,Ar, AIIJ {/7} },

1; {A, U {n},A U {n}, A,-1U {/’/}, A/+I U {/7},...,ArU {t/} }.
The partition of (n) that is needed consists of all the nonempty ’j and ’’. Clearly,
each ’ satisfies (.), since /. did originally. In , we need only check that, for each
Ak 6 , the norm of XAU {n} XA is large. This follows by applying fas follows:

x, . x >- f( xa, u XA)

f(an) + f(XA,) f(XA)

>_ f(an)>_ 1.

The profile of the new partition is a symmetric profile of (n), since each 9 of size m
splits into two, ofsizes m + and m 1. Thus by induction the theorem is proved. U]

In the proof of Theorem 1, we will be dealing with random variables and their
distributions, treating the latter similarly to the finite subsets ofE that arise in the proof
ofTheorem A. Indeed, we often regard a finite subset of as corresponding to a random
variable that assigns equal mass to those points and none to all others. We are interested
in the distribution of the sum of these random variables, that is, in the convolution of
their distributions.

More generally, we will be dealing with finite (positive Borel) measures on mthe
collection of all such we denote by //. However, we wish to stress that we will not really
be using any measure theory. Indeed, a reader who considers only measures of finite
support will not be losing much.

For t ’, the mass of is I1 u(). Just as before, the concentration of is
c(z) sup #(I), where the supremum is over all open intervals of length 1. The con-
volution of u, X //is denoted by ts X, and we write ’(m, c) for the set of all
of mass rn and concentration at most c.

Two elementary facts are summarised in the following lemma.
LEMMA 3. If# has mass rn and has concentration at most c, then . has con-

centration at most mc. Also, if(tai )’{ /[, then c( ’l ti < ’{ c(ti ).
Proof. Given any interval I (t, + ), we have

#. (I) fn fn X,(x + y)d,(x)d#(y)

fn X(I- y) d(y)

< f c du(y)= mc,

proving the first statement. The second is immediate. 7q

A standard approach in the proofs will be to split up a measure t into parts with
almost disjoint support. We need notation for these parts and therefore we define

Left (, m) z[ (-o,t xrt,
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where sup {x" /(-oo, x) _< rn} and x #(-o, t] m. Thus the support of
Left (u, rn) is contained in (-o, t] and [Left (/, rn)[ m. We define Right (u, rn) in
a similar fashion.

The next lemma, which is rather technical, enables us to peel off, from a convolution
of measures of concentration at most 1, a part that also has concentration at most 1.
This process is analogous to the transfer that occurs in the de Bruijn /Tengbergen / Kruys-
wijk proof of the existence of symmetric chain decompositions.

LEMMA 4. If# and X are measures of concentration and mass at least 1, then,
writing IRfor Right (#, and XLfor Left X, ), the measure tR * X +/ XL --/R * XL
belongs to //l rn (#) + rn(X) 1, ).

Proof. Let I (t, + be an interval of length in N. We wish to show that
u(I) _< 1. Set UL U gR and x, inf {t" (t, o) _< 1}. Similarly, let XR X XL
and xx sup {t" X(-o, t) _< 1}. Then we can also write u as UL*XL + UR*XL +
#R* XR. If #L* XL(I) 0, then u(I) #R* X(I) < 1, the last since #R has mass and X
has concentration 1. Similarly, we are finished if UR* XR (I) 0. If neither is zero, then
necessarily _< xx + x, _< + 1. In this case, we split X yet further. Write

XLL XL[ (-,t- x.], XLR kL[ (t- xu,o),

XRL XR (-,t + xA, XRR R It + x,,).

Note that/R * ’RR(I) /L * XL(I) 0, SO

v(I) UR * )XLL -" UL * XLR - UR $ kLR - It/R * kRL) (I)

(#*)kLR)(I) + (#R*()kLL -F )kRL))(I).

Since , has concentration 1, the first term is at most XLR[ XL(t X,, XX]. The measure
UR, on the other hand, has mass 1, so, to prove the lemma, it suffices to show that the
concentration of XLL + XRL is at most XL(t X,, Xx].

By considering the various ways in which an interval of length could overlap with
(t x,, xx], it is easy to see that

C(XLL + XLR) --< max { )’LL l, )kRL ], )XLR }.
Now, the first and last of these terms are ]XLLI [NLR] XL(t X,, XX], while

’R] X(t X,, X, / )XL(t X,, XX]

_< X.(t X,, XX],

since ), has concentration 1. Thus the result is proved. V1

With this lemma, it is simple to deduce the following, more comprehensible version.
LEMMA 5. If# is a measure ofmass m >_ and X is a measure ofmass 2, and each

has concentration at most 1, then the convolution . X can be written as a sum of two
measures of concentration at most 1, t* X v’ + v", with ]v’l m + and Iv"]
m-1.

Proof. With the same notation as in Lemma 4, set v’ v and v" #. X v. Then,
by that lemma, we have v’ e (m + 1, ), and certainly t* X v’ + v". Also, v" L* XR
and, since UL has concentration at most while )kR has mass 1, Lemma 3 shows that
v"e//(m- 1, 1). U]

These tools suffice for the proof of Theorem 1.
Proof of Theorem 1. Let ux, be the distribution of X and set m 2x,. The

theorem states that, whenever U is an open subset of N with diameter at most 1, then
((R)7 u,.)(U) _< (,}2). More is true; in fact, (R)7 can be written as a sum Y v, of



LITTLEWOOD-OFFORD INEQUALITIES 95

measures of concentration at most 1, where uj[ ) is a symmetric profile for (n).
Again, the proof goes by induction on n. If (R)’- 12i Pj, where each uj has concen-
tration and (I 1 )g is a symmetric profile of (n ), then Lemma 5 gives

+

Since each uj splits into two new measures, of masses IjI + and [ujl 1, the masses
of the new decomposition form a symmetric profile of ’(n). So

c Xi 2-nC ldi

2-nc

_< 2 c(,)
j=l

< 2-ns

(n){n/2J

Thus the result is proved.

2. Concentration at most ! !q. In this section, we extend Theorem to measures
ofconcentration at most / q for some fixed integer q. The techniques used are a straight-
forward extension of those in the proof of Theorem 1.

The first step is to note that the poset [q]n has a symmetric chain decomposi-
tion. This poset is ranked by weight" w(x)

_< xr) is symmetric if w(xk+ 1)) w(xk)) + and w(x1)) + w(x(r)) n(q ).
It was proved by de Bruijn, Kruyswijk, and Tengbergen [1] that [q]n has a symmetric
chain decomposition. Again, we say that a sequence (mj.) is a symmetric profile for q]n
if, for some (and hence, up to rearrangement, for any) symmetric chain decomposition
(oq), we have [b[ m. The required information about how symmetric profiles
change is here stated as a lemma.

LEMMA 6. Let (m;) be a symmetric profile for [q]n-, and, for each j 1, 2,
s, set r min { q, mj). Then the sequence obtained by replacing m by the r

values m + q + 2kfor k 1, 2, rj is a symmetric profilefor [q]
Proof. Consider a chain 0 (x)) belonging to a symmetric chain decompo-

sition of[q] n-1. For x 6 [q]n- and h 6 [q], denote by x + hen the element of[q]
formed by appending h to x. For 0 _< _< min (q, r) 1, let 5) {x) + hen
min (r k, h) }. Then each 5’t) is a symmetric chain in [q]n, and the union of all
the chains arising in this way forms a symmetric chain decomposition of[q] n. See Fig.
and for more details.
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O
X(1)/(q=l

x(2)+(q-l)cn

x(1)+C X(2)+Cn S(1)

1) x(2) x(k-D x(k)
s(O)

FIG. 1. The construction ofsymmetric chains.

The next lemma extends Lemma 5 to cover the present case. It states, in essence,
that we can treat a measure of mass rn and concentration much like the poset rn ]. In
particular, the convolution of an element of //(m, and one of /g (l, behaves
similarly to the poset[ m] l] and can be "peeled apart" in the same fashion. This
peeling process will allow us to write a convolution (R)]’ ti (where/zi (q, )) as a
sum of measures whose mass profile mimics that of a symmetric chain decomposition
of the poset q] n.

LEMMA 7. Given m, , set r min { m, }. If# l m, and 3‘ ft l, ),
then t*3‘ can be written as a sum Zk= u(k) in which u (k) //(m + + 2k, 1).

Proof. The case 2 of this lemma is precisely Lemma 5, and the case where
l is trivial: the splitting () u. 3‘ will do. The general case is proved by induction
on I. Using the result and notation of Lemma 4, set (1)

R* 3‘ / * 3‘L uR* 3‘L,
with (1)[ rn + and c(P ()) < 1. After some judicious relabelling, the induc-
tion hypothesis states that u. 3, P() tzL. 3‘g can be written as [,=2 u (), with u()
l(m+l+ 2k, 1).

Proofof Theorem 2. We prove by induction that the convolution (R)]’ qux can be
decomposed as a sum of measures of concentration at most whose mass profile is a
symmetric profile for q] n. Indeed, this is trivially possible if n 1. For the induction
step, let (uj) be a decomposition for (R)]’- qitx. Then

, *(q.x)

, uj*(qtx,).
j=l

rj (k)Now, by Lemma 7, each convolution uj*(q#x.)can be written as a sum = Pj where

r. min q, Pjl } andv.k)V) e ///(I 1 + q + 2k, for k 1, 2,..., ry. The collec-
tion of all is a decomposition of into measures of concentration 1, andnonzero
by Lemma 6 their masses form a symmetric profile for q].
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Remark. The proof of Theorem 2 can easily be extended to prove rather more.
Indeed, if (Xi)’ are independent real-valued random variables with c(Xi < /qi for all
(where ql, qn are integers), we can show that the concentration of Xi is at most

the proportion of I ]’ qi occupied by the largest layer. In fact, by using slightly more
information about the symmetric profile of I-[ ]’ [qi ], we can show that, given r open
intervals (Ik), each oflength at most 1, the probability that ]’ Xi lies in tA Ik is bounded
by the proportion of I-[ 7 qi occupied by the r largest layers.

3. Other values of the concentration. What can be said about the sum ofindependent
random variables of concentration at most c for values of c not of the form / q? Might
it be that the sum of n independent random variables, each of concentration pq (p, q
coprime integers) has concentration at most the proportion of[q] n occupied by the p
largest layers? It is easy to see that this cannot be the case, since we may have quite
complicated fractions pq that closely approximate some simple number such as 1/2. For
instance, let X1, X2 be independent and identically distributed random variables with
distribution (60 + 1 )/2. The X; certainly have concentration at most -47 However, their
sum has concentration 1/2 which is greater than 24, the proportion of 7 ]2 occupied by
the four largest layers.

On the other hand, somewhat surprisingly given this simple example, the question
above does have a positive answer when p 2, in other words, for concentrations of the
form 2/q with q odd. The proof proceeds by showing how to "peel apart" convolutions
of measures of concentration 2.

One preliminary lemma is necessary.
LEMMA 8. If q and l q, 2), then there exist measures #0, #, both of

concentration 1, with # #o + #1 and I/ol q/2 and 111 q2 ].

Proof. Split/ into parts of mass and (almost) disjoint support going from left to
fight. In other words, define u Left (#, and forj 2, 3, q set

,=Left - ,,
Now collect all the for j even together and similarly for all the odd , as follows:

/h j, h=0, 1.
j h(mod 2)

Then it is clear that 0, 1 have the correct masses. Now let I (t, + be an arbitrary
interval. Since has concentration 2, at most three of the can have (I) > 0. This is
because, if four ofthem could detect I, of necessity four consecutive ones, u, uk + , u + 2,

and Pk+ 3, say, then we would have Uk +l Uk + 2 and #(I) > 0 Uk+l)(I)
(ttk + -]" bk + 2 )(I) 2. This contradicts the fact that u has concentration 2.

If exactly three of the u give positive measure to I, then similarly they are u,
and uk + 2 with u +1(1) 1. Thus

u(I) + u+(I) #(I) u+l(I) < 2 1.

So, in the case when the support of three uk intersect I, we have 0(I), #(I) < 1. In the
case when at most two supports are involved, it is clear that both u0 and zl are at most
on I, and the proof is complete.
We are very fortunate to have the following lemma.
LEMMA 9. If# m, 2) and l, 2), with m and odd, then z. can be

written as a sum ofmeasures ofconcentration at most 2 whose massesform a symmetric
profilefor m] l]



98 I. LEADER AND A. J. RADCLIFFE

Proof. Write m 2a + and 2b + 1. By Lemma 8, we can write g g0 +
and X X0 + ,1, measures of concentration at most and masses a, a + and b,
b + 1, respectively. Without loss of generality, b < a, but there are two cases, when
b < a and when b a.

Case l. b < a.
By Lemma 7, go* X0 splits into b measures of concentration at most and masses

a + b 1, a + b 3, a b + 1. The convolution g, ,o can be decomposed into
b measures of concentration at most of masses a + b, a + b 2, a b + 2.
Summing in pairs, we can write g, X0 as the sum of b measures of concentration at most
2ofmasses2a+2b- 1,2a+2b-5 ,2a-2b+3.

In a similar fashion, both g0* and g, X split into b + pieces of concentration
at most 1. When paired up, these give measure of concentration at most 2 and masses
2a + 2b + 1, 2a + 2b 1, 2a 2b 3. The two collections together provide an
appropriate splitting for g, X.

Case 2. b a.
Partition g, X0 as before. Now, however, g0* ) splits into only a parts, of masses

a + b, a + b 2, 2, whereas gl*) splits as before into b + parts: masses a +
b + 1, a + b 1. Pair these measures, leaving the final measures of mass un-
paired. This produces b measures of concentration at most 2, of masses 2a + 2b + 1,
2a + 2b 3 5. Together with the remaining measure of mass (and therefore
certainly of concentration at most 2), this gives us exactly the desired splitting.

We are ready to study the case of concentration 2/q.
THWOREM 10. Let q be odd and let (Xi)’ be independent real-valued random

variables with c(Xi <_ 2/q. Let W and W2 be the sizes ofthe two largest layers in [q]n.
Then

c , x <_ ( + w/q.

Proof. Following the proof of Theorem 1, using Lemma 9 rather than Lemma 5,
we can write g (R) (qgx,) as a sum v, where each v- has concentration at most 2
and (I vl) is a symmetric profile for [q]n. What does this profile look like? If W < WI,
then there must be exactly WI W l’s in it. If W W, then the corresponding chain
decomposition can have no chains of length 1. In summary, exactly W W of the ,
have mass (and therefore concentration at most and the other W have concentration
at most 2. Thus

c(u) -< Z c(.)

_< 2W2 + (W W2)

ml-Av m2,

and so c(X) c(g)/q <_ (W + Wz)/qn. []

We note that Theorem 10 is best possible, as may be seen by taking each X to have
distribution 1/q)(60 + 61 + + 6o- ).

The question remains as to what can be said for other values of the concentration.
If (X,.)7 are independent real-valued random variables each of concentration at most c,
can we give good upper bounds for the concentration of X?

4. The veetor-valuefl ease. In the first three sections, we have concentrated on the
behavior of real-valued random variables. We turn now to the situation that was Jones’s
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[3] primary concern, the vector-valued case. Refer to [7 for general background and
notation about normed spaces.

Jones studied the following question. A subset M of a normed space E is said to
be 1-separated if, for any distinct x, y e M, we have x y >- 1. Given sets Mi
Xi,1, Xi,2, Xi,q for 1, 2, n such that each is 1-separated, form the corre-

sponding random variables (Xi) with Xi having distribution /q) Z= 6xi.j. Is it true
that the concentration ofX Xi is always bounded as we would wish, by the proportion
of[q] occupied by the largest layer? This question remains unanswered.

In his study of the problem, Jones introduced some useful definitions (given here
in slightly less generality than in 3 ]). Let M and M2 be 1-separated finite subsets of a
normed space E with Mil m. We say that the pair M1, M2 has the B.T.K. chain
property if their sum M + M2, counted with multiplicities, can be partitioned into a
family of 1-separated subsets whose size profile is a symmetric profile for [m] [m2].
We say that E has the B.T.K. chain property if every pair of finite 1-separated subsets of
E has the B.T.K. chain property. If E has the B.T.K. chain property, then the above
question has an affirmative answer (as may be seen by mimicking symmetric chain
decompositions of q n).

A partial ordering < on a normed space E is said to be compatible if it is translation
invariant (i.e., satisfies x < y if and only ifx + a < y + a for all x, y, a E) and has the
property that distinct x, y E are comparable if and only if x y >- 1. Thus, for
example, certainly has a compatible ordering: we let x precede y if x + < y in the
usual order.

Jones showed that, ifX has a compatible order, then Xhas the B.T.K. chain property.
He proved that two-dimensional Hilbert space, and hence each higher-dimensional Hilbert
space, fails to have the B.T.K. chain property and (afortiori) has no compatible order.
He asked whether lv has a compatible order, or at least satisfies the B.T.K. chain property.

In some sense, Jones answered this question himself, since we can find two-dimen-
sional subspaces of lv isometric to Hilbert space, and so lv cannot have the B.T.K. chain
property. In fact, compatible orders are rather hard to find: no normed space ofdimension
greater than has a compatible ordering. Moreover, the condition that < be translation
invariant is not the reason.

PROPOSITION 11. Let E be a normed space ofdimension greater than 1. Then there
is no partial ordering < on E such that distinct x, y E are comparable if and only if
Ilx- yll > 1.

Proof. It clearly suffices to show that no two-dimensional example exists, so let us
suppose that E is a two-dimensional space with such an ordering <. Let {x, x },
{x*, x ) be an Auerbach system for X. Thus x and x2 have norm 1", x and
x, belonging to E* have dual norm 1; and x (xj) 6ij (such a system can easily be
foundmsee, e.g., [7]). Consider first the set M { 0, x, xe }. Since IIx, x211 >-
x (x x2) 1, the set M is 1-separated and hence totally ordered by <.

CLAIM. Either x < 0 < x or x2 < 0 < x.
Otherwise, we may suppose, without loss of generality, that 0 _< x < x2. Consider

then y x2/2. We have that IIx yll > x*(x-y)= 1, soeitherx>yorx<y. In
the first case, we have x2 > x > y, despite the fact that x2 y 1/2. In the second
case, y > x > 0, which again contradicts the condition on < since y . So the claim
is proved.

Exactly the same reasoning, applied to M’ { 0, x, x + x2 }, shows that x must
be <-between 0 and x + x2. Similarly, we must have x + x2 between x and x2 and
also x2 between 0 and x + x2. However, these four conditions are incompatiblemthe
<-maximum of the four vectors { 0, x, x2, x + x } does not lie between two others.
This contradiction establishes the nonexistence of (E, <).
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Jones’s main positive result was that, if M1 and M_ are both 1-separated subsets of
Hilbert space, with M2 having size at most 3, then the pair M1, M2 has the B.T.K. chain
property. (We should note that Kleitman based his proof of Theorem A exactly on the
fact that in any normed space, any pair M1, M2 of 1-separated subsets has the B.T.K.
chain property if M2 has size at most 2.)

This pleasant fact about Hilbert space does not, unfortunately, generalise to arbitrary
normed spaces. We present here an example of a normed space E and two 1-separated
subsets, each of size 3, not having the B.T.K. chain property. In fact, we find 1-separated
sets M1, M2 of size 3 such that the sum Ml + M2, far from having a partition into
1-separated subsets of size 5, 3, and 1, does not even contain a 1-separated subset of
size 5.

PROPOSITION 12. There exists a normed space E and 1-separated subsets M1,
M2 c E such that MI M21 3 but MI + M2 contains no 1-separated subset of
size 5.

Proof. We define a norm on 4 in such a way that the sets M { 0, e, e2 } and
M2 { 0, e3, e4 } satisfy the conclusion of the proposition. More exactly, we ensure that
each distance marked on Fig. 2 is strictly less than 1, while both Ml and M2 are
1-separated. To ensure that the requisite vectors are short, we define our norm II"
by taking for its unit ball the absolute convex hull of these vectors. In other words, we
take as the unit ball the set

BII.II abs-co { e + e3, (e2- e) + e4, e2- e4, e2- e3,

el + (e4 + e3), e2 + (e3- e4), (e e2) + (e4- e3)}.

By definition, all these vectors have norm at most 1. Now we show that the vectors
e2, e3, e e2, e3 e4 have norm strictly greater than by exhibiting functionals of
(dual) norm at most taking large values at those vectors. For instance, for e > 0 suf-
ficiently small, the functional f + e, 0, -e, -2e) has dual norm at most 1, because
it takes values at most in absolute value at the extreme points of the I1" unit ball.
However, f( el + e > 1, and therefore el > 1. In similar fashion, we can exhibit

el+e4 e2+e4

e2+e3

0
el e2

FIG. 2. The pattern ofsmall distances in Proposition 12.



LITTLEWOOD-OFFORD INEQUALITIES 101

functionals to show that all the vectors we desire to be long are indeed long. For some
small e > 0, the following suffice:

e: (1 + e, O,-e,-2e),

e:: (3e, + e, e, 2e),

e3: (-e, e, + e, 3e),

e4: (2e, e, 3e, + e),

e: e" 1/2(1 + e, -1, 2e, e),

e3 e4" 1/2(-e, e,-1 e, 1).

The norm [l" does not behave exactly as we would likemthe norms from Fig. 2
are at most 1, rather than strictly less than 1--but for some 0 < < 1, the norm 11.
will do. It is easy to check, from Fig. 2, that M + M2 contains no 1-separated subset of
size 5. 7q

There are still many unanswered questions concerning the vector-valued case. The
most striking and interesting one, it seems to us, is whether the following conjecture
is true.

CONJECTURE 13. Let E be a normed space and let (Xi) be independent E-valued
random variables of concentrations at most 1/2. Then the concentration of X is at
most (Lnzj) 2
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Abstract. The purpose of this paper is to prove the equivalence of perfect authentication schemes and
maximum distance separable codes.

Key words, authentication schemes, incidence structures, maximum distance separable codes

AMS subject classifications. 05B05, 94A60, 94B65

1. Introduction. In this paper, we consider the following communications scenario,
which involves an originator ofmessages, a recipient of messages, and a third party called
the spoofer. The originator wishes to send a sequence S sn of n distinct source
messages to the recipient. To enable the recipient to verify the authenticity of these
messages, the originator encodes them, prior to transmission, into a sequence ofencoded
messages m,..., rnn, using one ofa finite set ofencoding rules that is agreed in advance
with the recipient. The recipient verifies the authenticity of the message mi by checking
that it is a valid encoding of si for the agreed encoding rule e. The spoofer observes the
sequence ofencoded messages m,..., rn and attempts to construct a correctly encoded
message for a different source message. That is, he attempts to find a message m that is
the encoding under the (to him unknown) encoding rule e of some source message that
is distinct from Sl s.

In 6 one of the authors established an information-theoretic lower bound for the
expected probability P(n) that the spoofer succeeds in this task and for the arithmetic
mean of P(0), P( ), P(N), where N is the maximum length of the sequence that
the originator might be required to send using the same encoding rule. In addition,
necessary and sufficient conditions on the encoding scheme are derived that ensure that
these bounds are met, and these conditions lead to the concept of an N-perfect authen-
tication scheme.

Associated with an authentication scheme is an incidence structure, and the con-
ditions that ensure that the information-theoretic bounds are met are reflected in structural
requirements on this incidence structure. In this paper, we characterise the incidence
structures associated with N-perfect authentication schemes and thereby prove that perfect
authentication schemes are equivalent to maximum distance separable codes.

The theorem proved in this paper extends a result in 3 ], where it is shown that an
incidence structure is associated with a 1-perfect authentication scheme if and only if it
is a net. It also establishes the converse ofthe observation made in 6 ], and independently
by Stinson in 5 ], that an MDS code (or, equivalently, a transversal design) may be used
to construct a perfect authentication scheme.

2. Authentication schemes, incidence structures, and codes. An authentication
scheme is a triple A__ A__(S, M, E) of finite sets S, M, and E, where each element ofE
is an injective function of S into M, and each element in M is the image under this set
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of functions of precisely one element in S. The elements of S are known as source
messages, those of M are called encoded messages, and the functions in E are called
encoding rules.

An authentication scheme as defined above is often referred to in the literature as
a nonsplitting, Cartesian scheme (see [4 ]). The nonsplitting property means that, once
an encoding rule has been selected, then the encoded message for each source message
is unambiguously defined. For each encoding rule e E and each source message s e S,
we denote by m e(s) the encoded message for s produced by e. The Cartesian property
means that there is no secrecy in the scheme, in the sense that, if an encoded message is
observed, then there is no ambiguity about which source message it encodes, even if the
encoding rule is unknown. This is a consequence of the requirement that each encoded
message is the encoding of precisely one source message. We use the notation s S(m)
to denote the unique source message corresponding to the encoded message m.

With an authentication scheme A, we may associate an incidence structure _/(A)
I(E, M, I). The set of points of this incidence structure is E, the set of blocks is M, and
the incidence relation I is defined by the rule

elm if and only if m e(S(m)).
That is, point e is incident with block m precisely when the encoded message m is obtained
by encoding S(m) under the encoding rule e. We use standard notation for inci-
dence structures, as may be found, for instance, in ]. Thus we denote by (m) { e 6 EI
e(S(m)) m} the set of all points incident with the block m, and by (e) {m MI
e(S(m)) m } the set of all blocks incident with the point e. Moreover, we extend this
notation by defining (s) { m MIS(m) s} to be the set of all encoded messages that
are encodings of the source s. Finally, we denote by [x] the cardinality of the set (x).

The incidence structure / =/(A) enjoys the properties that { (s)ls S} is a parti-
tion of M, and, for each s S, the set { (m)lm (s)} is a partition of E. That is,
{ (s)ls S} is a parallelism of _/, where we recall that a parallelism of an incidence
structure is a partition of its blocks into classes with the property that each point of the
structure is incident with precisely one block from each of the classes. The property of
having a parallelism actually characterises those incidence structures that are associated
with authentication schemes as described above.

To see this, let _/=/(P, B, I) be an incidence structure, with points P and blocks
B, which possesses a parallelism S. To avoid complications, assume that _/does not have
repeated points; that is, if (p) (p’), then p p’. We use each point p P to define a
function from S into B as follows: For each s S, set p(s) to be the unique block in the
class s that is incident with p. Then it is trivial to check that A __A(S, B, P) is an
authentication scheme and that I_(A) I.

Having defined and characterised the incidence structure associated with an au-
thentication scheme, we now turn to considering codes for authentication schemes. The
approach we take is via the associated incidence structure. Although there are a number
of other ways of associating codes and authentication schemes, this is the most convenient
for our purposes.

We begin by recalling that a code __C oflength r over a finite alphabet A is a nonempty
set of r-tuples with entries in A. The elements c (c,..., Cr) of__C are called codewords.

With any code __C, we can associate an incidence structure / _/(C), which has a
parallelism. The points of/are the codewords c. The blocks of _/are the pairs (i, a),
where e { 1,..., r }, a e A, and a is the th entry of at least one codeword. Incidence
is then defined by the rule

cI( i, a) if and only if ci a.
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Now if, for each e { 1, r} we define (i) to be the set of all blocks of the form
(i, a), then {(i)[ e {1 r } } is a parallelism of_/.

Conversely, to any incidence structure _/with a parallelism, we can associate a code
C such that/(C) _/. To see this, let _/= _/(P, B, I) be an incidence structure with
parallelism S. Let r [S[ and label the parallel classes 1, r. For each parallel
class { 1, r}, let oi be an injection from (i) into a suitably large set A and
identify block b (i) with the pair (i, oi(b)). For each point p e P, define codeword
(Pl Pr) by pg p; (b), where b is the unique block in the parallel class incident with
p. Then the set C { (Pi Pr)[P P } is a code of length r over A and _/= !(C).

Combining the observations ofthis section, we see that, to any authentication scheme
A A(S, M, E), we can associate a code C C(A). This code has length S], contains
]E] codewords, and is defined over an alphabet A of size equal to the maximum of the
number ofencodings of a source message. Conversely, given a code C, we can construct
an authentication scheme A with C(A) C.

3. MDS codes and perfect authentication schemes. Let __C be a code of length r over
a finite alphabet A of cardinality q. Then __C is a maximum distance separable (MDS)
code if and only if, for some t, it satisfies the following condition: Given any distinct
positions l,..., it and any sequence a,..., at of not necessarily distinct elements of
A, there is exactly one codeword c (Cl,..., cr) 6 __C with c;j aj for j 1, t.

We refer to a code ofthis type as an MDS code with parameters (r, t, q). For further
information on MDS codes, refer to 2 ]. It should be noted that our notation (r, t, q)
is different from that used in [2].

We need the following characterisation of MDS codes in terms of their associated
incidence structures as defined in the last section. The result is straightforward to prove
using counting arguments and is therefore presented without proof. We use the following
extension to the notation established for incidence structures in the last section. Let b
(b, bj) be a sequence ofj blocks of an incidence structure. Then (b) is the set of
points that are incident with all the blocks bl, bj, and [b] is the cardinality of
this set.

LEMMA 3.1. Let I_ I_(C) be the incidence structure associated with an MDS code
with parameters r, t, q), let 0 < j <_ t, and let b bl bj) be a sequence ofj blocks
belonging to different parallel classes. Then

[_b] q-.

Conversely, if I_ is an incidence structure with a parallelism that satisfies this condition
for some q, some t, and all 0 <_ j < t, then C C( I_) is MDS with parameters r, t, q),
where r is the number ofparalleled classes ofI_.

COROLLARY 3.2. If an incidence structure satisfies the conditions ofLemma 3.1,
then each parallel class contains exactly q blocks.

We use this lemma to establish the equivalence of MDS codes and perfect authen-
tication schemes. We begin by recalling the definition and characteristic properties of a
perfect authentication as presented in 6 ]. To do this, we must first review the information
theoretic measure of the security of an authentication scheme. For a more detailed dis-
cussion of the concepts, refer to [6].

Let A _A(S, M, E) be an authentication scheme. To use this scheme, an originator
and recipient of messages share an encoding rule e, which is selected from E according
to some probability distribution p(e). When the originator wishes to communicate a
source message, he encodes it using e and sends the encoded message m e(s). Upon
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receiving m, the recipient validates it by using e to confirm that e(S(m)) m. Suppose
that the originator sends a sequence m,..., mn ofdistinct encoded messages, all produced
using the same encoding rule e, and that these messages are observed by a spoofer. The
spoofer attempts to construct the correct encoding under e for some source message
distinct from S(m ),..., S(mn). It is assumed that the spoofer has knowledge of A and
plays the best strategy open to him. All he does not a priori know is the particular
encoding rule e. We denote by P(n) the expected probability that the spoofer succeeds
in his task. We assume that n is not allowed to exceed some maximum value N and we
let PN be the arithmetic mean ofP(0), P( ),..., P(N). The following lower bound for
PN is proved in [6]"

-log PN < H(E)/(N + < log EI/(N + ),

where H(E) is the entropy ofthe distribution p(e). These inequalities lead to the definition
of an N-perfect authentication scheme.

An authentication scheme is said to be the N-perfect if-log PN H(E)/(N +
with p(e)the uniform distribution (so that, in this case, H(E) log EI). Necessary
and sufficient conditions for an authentication scheme to be N-perfect are given in [6 ].
These conditions form the basis for the main theorem of this paper and are summarised
below in Lemma 3.3. To state these conditions and prove our theorem, it is first necessary
to model the way in which source and encoded messages are generated and also to
introduce more notation.

The sequence of source messages Sl S(ml s S(rn) generated by the
originator and observed by the spoofer is modelled by a stochastic process p(sl,..., s).
We denote by p(s / 11Sl, sn) the probability that the spoofer selects source message
s, +l with which to launch his attack, given that he has observed sl, s,. All source
messages are assumed to be distinct, so the process satisfies p(sjlsl,..., sj._ 0 whenever

s e { sl,..., s_ }. We also assume the converse. Thus our process satisfies

p(sls,..., Sj-1) 0 if and only ifsj. e {S1, Sj- }.
We assume that the selection of the encoding rule is independent of the process that
generates the source messages. Thus the probability that a sequence m (ml, mn)
of encoded messages is produced by the originator and observed by the spoofer is given
by

p(m) p(S(m))p((m)),

where we use the notation

S(m)=(S(ml),...,S(mn)) and (rn)= {eeEle(S(m))= m,j= l,...,n}.
The following additional notation will be used in the statement of Lemma 3.3 and in
the proof of Theorem 3.4. Let m (ml, m,) be such that p((m)) 4 0 and let
s e S. For each rn e (s), define

(sire) {me (s)lp((m)l(m)) 4 0}.

Thus, in terms of the incidence structure _/associated with A__, the set (slm) consists of
all those blocks in the parallel class (s) that are potential valid encodings for s, given
that the sequence m of encoded messages has already been produced. Observe that, if
n 0 so that m is the empty sequence, then (s[m) consists of all those blocks of the
incidence structure _/(A) that belong to the parallel class (s) and are incident with at
least one point e E for which p(e) 4 O.
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LEMMA 3.3. An authentication scheme A A(S, M, E) is N-perfect ifand only if,
for every 0 <_ n <_ N, thefollowing holds" Ifm (m mn) with p(m) 4: O, ifs S
with p(slS(m)) 4 O, and ifm (slrn), then

log ]E]/(N+ 1) H(E)/(N + 1) -logp((m)l(m)) log I(slm)l.

The proof of the lemma follows immediately from 6, Thm. 2 and the definition
of N-perfect. With the help of this result and Lemma 3.1, we may now prove our main
theorem.

THEOREM 3.4. Let C C(A) be the code associated with an N-perfect authenti-
cation scheme A with source messages S. Then C is an MDS code with parameters
(IS I, N + 1, q), where q Is] for all s S. Conversely, if C is an MDS code with
parameters (r, N + 1, q), then C C(A) for some N-perfect authentication scheme A
with r source messages and q encodingsfor each source message.

Proof. Let A__ A(S, M, E) be an N-perfect authentication scheme and let
_/= I(A) be the incidence structure associated with it. Applying Lemma 3.3 with n 0
yields

log[s] =log EI/(N+ 1) for allsS.

Thus the number of blocks in each parallel class of_/is a constant q, and EI qN/ .
We show that, if 0 < j < N + and if m (m,..., mj) is a sequence of blocks of_/
belonging to different parallel classes, then [m] qN+-. The first part of the theorem
then follows directly from Lemma 3.1.

To prove the above statement, we proceed by induction on j. We have already
proved the result for j 0, so we assume that < j < N + 1, and the statement is true
for j 1. Let m’ (m,..., m_ and consider the terms in the identity

p((m)) p((m) (m’))p((m’) ).

Since p(e) is uniform, and, as E] qN+ 1, we have p((rn)) [m]q-(N+ 1) and similarly
for p((m’)). Thus [m] p((mj.)I (m’))[m’]. Applying the induction hypothesis to [m’]
now gives

[m] p((mj)l(m’))qN+ l-(j-l).

Now consider the term p((m:)I (m’)). First, we apply Lemma 3.3 with n j to m’
and S(m:). This gives

log I(S(mj)lm’)l log EI/(N + 1) log q.

However, we know that S( mj) q, so (S(mj) m’) S( mj) ). Thus mj S( mj) [m’),
and Lemma 3.3 tells us that -log p((mj)l(m’)) log q. Thus p((mj)l(m’)) q-l, and
substitution of this in proves [m] qN+-j, as required.

To prove the final part of the theorem, let / /(__C) be the incidence struc-
ture associated with the MDS code and let _A A_(!) be the authentication scheme
associated with _/. Let p(e) be the uniform distribution on the set E of points of _/
and let p(s s,) be a process defined on the parallel classes S of _/that satisfies
p(sjls,..., sj_) 0 if and only ifsj {s sj_ }. We prove that A is N-perfect
by using Lemma 3.1 to show that the conditions of Lemma 3.3 are satisfied.

To this end, let 0 < n < N, let m (ml, m,) be such that p(m) 4: 0, let
s e S with p(slS(m)) 4: O, and let m e (slm). Since p(m) p(S(m))p(m)) 4: 0,
it follows that the parallel classes S(m),..., S(mn) are distinct. Moreover, since
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p(sl S(m)) =/: O, the parallel class s is distinct from S(m),..., S(m,,). Thus, from
Lemma 3.1, we have

[m] qN+ n and [m, rn] qN+ 1.

Thus

p((m)l(m)) [m, m]/[m] q-.
It follows that (slm) (s). However, H(E) log El, ILl qN+l by Lemma 3.1,
and [s] q by Corollary 3.2; so all the equalities in Lemma 3.3 hold.
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FAULT-TOLERANT CIRCUIT-SWITCHING NETWORKS*
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Abstract. The authors consider fault-tolerant circuit-switching networks under a random switch failure
model. Three circuit-switching networks of theoretical importance--nonblocking networks, rearrangeable net-
works, and superconcentrators--are studied. The authors prove lower bounds for the size (the number of
switches) and depth (the largest number of switches on a communication path) of such fault-tolerant networks
and explicitly construct such networks with optimal size O(n(log n) 2) and depth O(log n).

Key words, nonblocking networks, rearrangeable networks, superconcentrator
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1. Introduction. In this paper, we study some fault-tolerant circuit-switching net-
works under a random switch failure model. In this model, each electrical switch in the
network is independently in one ofthe following three states: openfailure (the switch
is permanently offand fails to be on) with probability 0 < 81 < 1/2, (2) closedfailure (the
switch is permanently on and fails to be off) with probability 0 < e2 < 1/2, and (3) normal
state (the switch functions correctly) with probability e e2. For simplicity of
notation, we assume that el e2 e. The measure of fault tolerance is the probability
of the network fulfilling the communication task in the presence of switch failures. This
model is essentially equivalent to that of Moore and Shannon MS ], who introduced it
in the context of relay circuits computing Boolean functions. The model retains its rel-
evance, since open and closed failures represent the two dominant failures modes both
for metallic-contact switches (still frequently used, especially for video switching) and
MOSFETs (metal-oxide semiconductor field-effect transistors), a common switching ele-
ment in VLSI circuits.

2. The networks. The circuit-switching networks we study in this paper are non-
blocking networks, rearrangeable networks, and superconcentrators. Nonblocking net-
works were introduced by Clos C1 in 1953 to epitomize the activity of telephone com-
munication. Bene [B] in 1964 described the rearrangeable network. Rearrangeable net-
works are useful architectures for parallel machines. Aho, Hopcroft, and Ullman [AHU
in 1974 posed the problem of superconcentrators. Although their purpose was to hope
to use them to establish a nonlinear lower bound for the Boolean circuit complexity of
multiplication, superconcentrators proved to be central in a number of communication
networks. For example, superconcentrators provide support for the task queue scheme
(see Co in parallel computing. Tremendous efforts on these networks have been made,
and significant results obtained.

In this paper, we describe a circuit-switching network in terms ofan acyclic directed
graph. Terminals of the network (wires that connect the network to the outside world)
are represented by distinguished vertices called inputs and outputs. Electrical links are
represented by vertices other than inputs and outputs, and switches (single-pole single
throw, connecting two links) by edges between the two corresponding vertices. The three
states of a switch in the random switch failure model are therefore interpreted as the
edge ceases to exist (open failure), (2) two vertices of the edge contract to one (closed
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failure), and 3 the edge is unaffected (normal state). In this paper, we say "graph" and
"network" without distinction, and the same is true for "edge" and "switch."

Given a directed graph with n inputs and n outputs, it is said to be a "nonblocking
n-network" if, given any set of vertex-disjoint paths from inputs to outputs and given
any input and output not involved in these established paths, a new path that is vertex-
disjoint from the established paths can be found from the requesting input to the requesting
output; it is said to be a "rearrangeable n-network" if, given any one-to-one correspon-
dence between the inputs and the outputs, there exists a set of n vertex-disjoint paths
joining each input to its corresponding output; it is said to be an "n-superconcentrator"
if, for every r < n, every set of r inputs, and every set of r outputs, there exists a set of r
vertex-disjoint paths from the given inputs to the given outputs. It is obvious that a
nonblocking n-network is a rearrangeable n-network, and a rearrangeable n-network is
an n-superconcentrator.

The networks considered in this paper are based on directed graphs and distinguish
the roles ofinputs and outputs as terminals. Variants ofthese definitions exist for networks
based on undirected graphs, and for which there is but one class of terminals. Our defi-
nition of "nonblocking" is also referred to as "strictly nonblocking," to distinguish it
from the somewhat weaker notion of"wide-sense nonblocking" that also appears in the
literature. The networks we call "rearrangeable" are sometimes referred to as "permu-
tation" networks, though the latter term is also used for some variants of this notion.

The measures ofcomplexity applied to such networks are size (the number ofedges
and depth (the largest number ofedges on any path from an input to an output). Shannon
[S] showed an ft(n log n) size lower bound of rearrangeable n-networks. Bene [B]
presented an O(n log n) size and O(log n) depth construction for rearrangeable n-net-
works. The existence of O(n log n) size and O(log n) depth nonblocking n-networks
was proved by Bassalygo and Pinsker BP ]. For n-superconcentrators, an 2(n) size lower
bound is obvious, and Valiant [V] showed an O(n) size upper bound.

3. Fault tolerance. Given 0 < e < 1/2, consider a network N subject to the random
switch failure model. Let the event space ft be the set of all graphs obtained from N. The
probability measure on each graph is assigned in accordance to the number of failed
edges. More precisely, if a graph G 6 ft has k failed edges, the probability that the random
instance ofN equals G is (2e)( 2e)-, where n is the number of edges in N. Given
0 < 6 < 1, we say that N is an (e, 6)-nonblocking n-network if the probability that the
random instance ofN contains a nonblocking n-network consisting of edges of normal
state is greater than 6. Similarly, we define an (e, 6)-n-rearrangeable network and
an (e, i)-n-superconcentrator. We observe that an (e, 6)-nonblocking n-network is an
(e, 6)-rearrangeable n-network, and an (e, 6)-rearrangeable n-network is an (e, 6)-n-
superconcentrator. It is clear that, by choosing arbitrarily small 6, an (e, 6)-nonblocking
n-network or an (e, 6)-rearrangeable n-network or an (e, 6)-n-superconcentrator can
fulfill its communication task with arbitrarily high probability.

The goal of this paper is to analyze the asymptotic behaviors of the size and depth
of the (e, 6)-nonblocking n-network, the (e, 6)-rearrangeable n-network, and the (e, 6)-
n-superconcentrator. For this purpose, the exact values of 0 < e < 1/2 and 0 < 6 < do
not matter. To see this, we first need a result of Moore and Shannon [MS].

Define an (e, e’)-l-network to be a directed graph with two distinguished vertices
called input and output, in which each edge is randomly and independently subject to
closed and open failures with probabilities of e, respectively, and in which the probabilities
that the input and the output contract into one vertex and that there is no path from the
input to the output are both less than e’.
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PROPOSITION (Moore and Shannon). Given 0 < e < 1/2 and 0 < e’ < e, there is an
explicit construction ofan (e, e’)-l-network with Cc(1og2 1/e’)) 2 edges and dc log2 1/e’)
depth, where c, and d are constants depending only on e.

To observe the fact that the exact value ofe does not affect the asymptotic behaviors
of the size and depth, we suppose that 0 < e _< e2 < 1/2 and that I, is an (e, 6)-n-
superconcentrator with size L and depth D, for some 6 < 1. By Proposition 1, there is
an (e2, el )-1-network if’ of size a and depth b (a and b are depending only on e2). The
result of substituting this network I, for each edge in ,I, is clearly an (e2, 6)-n-supercon-
centrator with size at most aL and depth at most bD. Similar arguments apply to (e, 6)-
rearrangeable n-networks and (e, 6)-nonblocking n-networks as well.

To see the invariance with respect to the value of 6, we suppose that 0 < 61 <

6. < and that is an (e, 62 )-n -superconcentrator, for some e < 1/2. The failure prob-
ability of is a polynomial in e and the constant term of this polynomial vanishes
(since the network does not fail unless some switch fails). If we replace e by e6/62,
every term in this polynomial decreases to at most 61/62 times its previous value. Thus

is also an (er/62, 6 )-n-superconcentrator. Again, substitute each edge in ,b by an
(e, e61/62)-l-network and the resulting network is an (e, 6)-n-superconcentrator with
the size and depth being affected by only a constant factor. Similar arguments apply to
(e, 6)-rearrangeable n-networks and (e, 6)-nonblocking n-networks as well.

4. Main result and the overall strategy. In this paper, we show that the size and
depth of (e, 6)-n-superconcentrators, (e, 6)-rearrangeable n-networks, and (e, 6)-non-
blocking n-networks are O(n(log n) 2) and 19(log n).

The overall strategy is that we prove the ft(n(log n) 2) and f(log n) lower bounds
for size and depth of a (, 1/2 )-n-superconcentrator, and we construct (10 -6, 6)-non-
blocking n-networks with O(n(log n)2) size and O(log n) depth for arbitrarily small 6.
The success of this strategy is ascribed to an observation we made earlier, that, for any
0 < e < 1/2 and 0 < 6 < 1, an (e, 6)-nonblocking n-network is an (e, 6)-rearrangeable n-
network, and an (e, 6)-rearrangeable n-network is an (e, 6)-n-superconcentrator. Thus
a lower bound (for size or depth) of the (e, 6)-n-superconcentrator is a lower bound of
all three, and an upper bound of the (e, 6)-nonblocking n-network is an upper bound
of all three.

The lower bounds are proved in 5. In 6 we construct the (e, 6)-nonblocking n-
network. A few observations on our upper bound are in order. First, the upper bound is
based on an explicit construction and is not merely an existence proof. Second, with
high probability we can find a nonblocking network contained in the fault-tolerant network
merely by discarding faulty components and their immediate neighbors, so no difficult
computations are hidden here. Third, because the contained network is "strictly" non-
blocking (see Feldman, Friedman, and Pippenger [FFP] for details), routing can be
performed by a "greedy" application of a standard path-finding algorithm, so again no
difficult computations are involved.

5. The lower bounds. The strategy of the lower bound proof is as follows. We as-
sociate with each input a neighborhood containing all vertices within a logarithmic distance
of the input. We show that, for a large set of inputs, these neighborhoods are disjoint
(otherwise, two inputs would be shorted by closed failures with high probability). This
gives the lower bound for depth. We then partition the vertices in the neighborhoods of
these inputs into zones according to their distance from the input. We show that, for a
large number of inputs, each ofthese zones must have logarithmic size (otherwise, some
input would be isolated by open failures with high probability). Summing over the zones
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of each neighborhood and the neighborhoods of the inputs gives the lower bound
for size.

Given a graph G, we say the distance from vertex to vertex 2, dist (1, 2), is
the number of edges in the shortest path (not necessarily directed) from to 2;
the distance from a vertex to an edge e (, #), dist (, e), is min { dist (, z),
dist (, )} + 1.

LEMMA 1. A tree with leaves, in which every internal node has degree at least 3,
contains at least l42 edge-disjoint paths, each joining 2 leaves, and each having length
at most 3.

Proof. We begin by observing that we may assume that each internal node has
degree exactly 3. For, if not, we may replace each internal node with degree d > 3 by a
"tree" comprising d- 2 new nodes with degree 3. If we find a set of edge-disjoint paths
of length at most 3 in the resulting tree, these will correspond to edge-disjoint paths of
no greater length in the original graph. Suppose then that T is a tree with leaves in
which each internal node has degree 3. Clearly, there must be !- 2 internal nodes. Let
us say that a leaf L is "bad" if there is no other leaf with distance at most 3 from L. We
show that there are at most 6l/7 bad leaves. If L is bad, there are seven internal nodes
with distance at most 3 from L (see Fig. ). Let L "pay" one dollar to each of those
nodes. We claim that each ofthe !- 2 internal nodes "collects" at most six dollars, from
which it follows that there are at most 6(!- 2)/7 < 6l/7 bad leaves. If some internal
node V collects more than six dollars from bad leaves at distance at most 3, then more
than one ofthese bad leaves must be adjacent to one ofthe six or fewer nodes at distance
2 from V. However, no more than one bad leaf can be adjacent to an internal node (see
Fig. 2). Thus at least l/7 leaves are "good" (that is, not bad). Suppose that there are m
good leaves. Let /’ be a maximal set of edge-disjoint paths, each joining two good leaves
and each having length at most 3. Say that a good leaf is "lucky" if it is the endpoint of
a path in qf’, and that it is "unlucky" otherwise. If L is unlucky, there must be a path P
in within distance 2 of L. (There is a leaf within distance 3 of L, since L is good, and
only a path in &’ could prevent L from being joined to such a leaf in the maximal set
.) Let each unlucky leaf"pay" one dollar to some such path P. Each path P "collects"
at most four dollars from unlucky leaves, since there are at most four leaves with distance
at most 2 from P (see Fig. 3). It follows that there are at most four unlucky leaves for
each path in ft. Since there are exactly two lucky leaves for each path in f’, and m >

1/7 good leaves (lucky and unlucky), this implies that there are at most m/6 > 1/42
paths in &t’. [

Remark. The bound "l/42" in Lemma can be improved to "l/4," but this requires
a more elaborate analysis, which will be presented elsewhere (see Lin [L]).

COROLLARY 1. A forest F of leaves, in which every internal node has degree at
least 3, contains at least l42 edge-disjoint paths, each joining 2 leaves, and each having
length at most 3.

C] Leaf 0 lnmal node

FIG. 1. A bad leaf.
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FIG. 2. An internal node collects at most six dollars.

LEMMA 2. Let be a (, 1/2 )-n-superconcentrator. For all sufficiently large n,
at least n/2 inputs of cb have distance (ignoring the direction of each edge) at leas1
() log2 n from each other input.

Proof. Suppose that each of n/2 inputs v has a path r(v) of length at most j to
some other input. We obtain a contradiction ifj - log2 n and n is sufficiently large.
Define a forest by starting with the empty forest, (2) considering each such input in
turn, and (3) adding to the forest the longest initial segment of r(v) that is edge-disjoint
from the forest generated thus far. Thus the resulting forest F has at least n/2 leaves,
and each "stretch" (sequence of consecutive vertices of degree 2) has length at most
j. Let G be the forest obtained from F by replacing each stretch, together with the edges
incident with its vertices, by a single edge. In G every internal node is of degree at least
3, so we may apply Corollary to obtain at least n/84 edge-disjoint paths, each having
length at most 3 and each joining one leaf to another. Replacing each edge ofthese paths
by the corresponding stretch, we obtain in F at least n / 84 edge-disjoint paths, each having
length at most 3j and each joining one input of 4 to another. Note that, if each of the
3j edges on one of the n/84 paths is in the closed failure state, two inputs of ,I will
contract to a single vertex, and the result will certainly not be an n-superconcentrator.
Since this can happen with probability at most 1/2, we have (1 (1/4)3j)n/84 < 1/2.
If we set j () log2 (n/(84 In 2)), we obtain a contradiction using the inequality
(1 x)y < e-xy. Thus, if we set j (-) log2 n, we obtain a contradiction for all suffi-
ciently large n. []

THEOREM 1. Let be a 1/4, 1/2 )-n-superconcentrator. For all sufficiently large n,
has size at least (2--)n(log2 n)2 and depth at least log2 n.

Proof. Say an input is "good" if it has distance at least log2 n from each other
input. By Lemma 2, there are at least n/2 good inputs. (Note that the existence of two
good inputs implies, by the triangle inequality of the distance, that the depth is at least
() log2 n.) For each good input v, let B(v) denote the set of all edges at distance at

Lucky leaf [=} Unlucky leaf

FIG. 3. Each path collects at mostfour dollarsfrom unlucky leaves.
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most 6 log2 n from v. For any pair v and w of good inputs, the sets B(v) and B(w)
must be disjoint, since otherwise the distance between v and w would be less than

log2 n. Thus it will suffice to show that, for each good input v, the set B(v) contains
at least (-8)(10g2 n) 2 edges for all sufficiently large n. If an input Vo has all n outputs
adjacent to some edges in B(vo), then it is certainly true that B(vo)[ >- (8)(10g2 n)
since the number of edges in B(vo) cannot be less than the number of outputs adjacent
to these edges, and n >_ (8)(10g2 n) 2 for all sufficiently large n. Thus we may assume
that, for each good input v, there is an output w(v) that is not adjacent to an edge in
B(v). Consider an arbitrary good input v. Set [( 6 log2 n J > (2) log2 n. Partition
B(v) into subsets B(v), Bi(v), where Bh(v) comprise those edges at distance h
from v. Let B*(v) denote the set Bh(V) with the minimum number of edges. It will
suffice to show that each set B * (v) contains at least - log2 n edges. Let b be the cardinality
of the set B*(v) with the minimum number of edges. It will suffice to show that b >

log2 n for all sufficiently large n. Consider an arbitrary good input v. Any path from
v to w(v) must contain an edge in B*(v), since the distance from v can increase at most

at each successive edge of a path. If edges ofB*(v) are all in open state, all paths from
v to w(v) are broken, and the resulting network is certainly not an n-superconcentrator.
This can happen with probability at most 1/2. Thus we have ()b)n/2 < 1/2. As
before, this implies that b >_ (1/2) log2 (n/2 In 2) >_ (-) log2 n for all sufficiently
large n.

6. The upper bounds. In this section, we explicitly construct 10-6, 6)-nonblocking
n-networks with O(n(log n) 2) edges and O(log n) depth for arbitrarily small 6.

The strategy of the upper bound proof is as follows. We use a standard recursive
construction for nonblocking networks, but scale the construction up by a logarithmic
factor and terminate the recursion with subnetworks of logarithmic size (rather than
constant size). We then use networks (called "directed grids" in this paper) oflogarithmic
by logarithmic size based on the "hammock" of Moore and Shannon [MS to interface
the inputs and outputs to the terminal subnetworks.

The basic building blocks of the construction are (c, c’, )- expanding graphs and
(l, w)-directed grids. A (c, c’, t)-expanding graph is a bipartite directed graph with two
distinguished sets of vertices called inlets and outlets, respectively, where every set of c
inlets is joined by edges to at least c’ outlets (that is, for every set C of c inlets, there exist
a set C’ of c’ outlets, such that, for every outlet " and C’, there is an inlet " in C and an
edge (’, ")). The constructions of(an, bn, n )- expanding graphs (where 0 < a < b <
are constants) with linear sizes (with respect to n) are quite standard. See Bassalygo and
Pinsker BP for the probabilistic version, and see Gabber and Galil GG for the explicit
construction. (We need to mention that the first explicit construction was presented by
Margulis [M] and currently the best-known explicit construction is due to Lubotzky,
Phillips, and Sarnak [LPS].) An (/, w)-directed grid is a directed graph with w stages
and vertices in each stage. A vertex in the jth stage and the ith row is denoted by a
binary tuple (i, j), < < and < j < w. An edge from vertex (i, j) to vertex (i’, j’)
exists if and only if i’ and j’ j + or i’ + and j’ j + 1. (See Fig. 4.)

Suppose that we wish to construct an (e, 6)-nonblocking n-network with n 4".
Set 3’ [log4 (34u)], so that 136u >_ 4 >_ 34u. We first construct a nonblocking 4" + -network through the recursive construction illustrated in Pippenger [P82, 9 ]. (This
network is a directed graph with 2 (u + ") + stages, with 4" + inputs on stage 0 and
4" + outputs on stage 2 (u + 3’). Each other stage contains 64.4" + vertices. Edges only
exist between some vertices in adjacent stages. The subgraph ind,ced by inputs and
vertices in stage consists of 4"+- disjoint bipartite graphs, each having four inputs
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FIG. 4. A (4, 8 )-directed grid.

on one side and 256 vertices on the other side. Similar property holds for the subgraph
induced by outputs and vertices in the adjacent stage. The subgraph induced by vertices
in stage and stage + (for all < < u + 3’ consists of 4"+ -i disjoint (32.4 i,
32( + (2 V)/8).4 i, 64.4i)-expanding graphs, with each vertex on stage having
ten out-edges and vertex on stage + ten in-edges. The subnetwork from stage
to stage 2 (u + ") is a mirror image of that from stage 0 to stage u + 3’. Network N’ is a
mirror image of network N if N’ is obtained from N by exchanging the inputs with
the outputs and (2) reversing the direction of every edge.) We then remove vertices in
the first and last "r stages and edges incident with them and let /be the remaining
graph. The first stage of //consists of 4" disjoint sets vertices, each being the inlets of a
(32.4, 33.07.4, 64.4)-expanding graph (note that 32( + (2 /)/8) > 33.07).
Construct 4" (, 64.4)-directed grids if4.. Joined to each vertex in the first
stage of i( 4") is an edge from an input vertex. Combine //with ,
(I4 and the associated inputs by letting the 4" (32.4, 33.07.4, 64.4 )-expanding
graphs in the first stage of’ correspond to (14 in any one-to-one fashion, and
(2) in each such corresponding pair, identifying the inlets of the expanding graph with
the vertices in the last stage of the directed grids in any one-to-one fashion. Similarly,
construct 4 (u, 64.4 )-directed grids , xI/4; join an output by edges to every
vertex in the last stage ofeach j. (j 1,..., 4"); combine ,..., xlt4 and the associated
outputs with /’ (and the above combined ff 4. and the associated inputs) by
identifying vertices of the first stage of XI/2 with vertices in the last stage of
Call the resulting network V’. (See Fig. 5.)

M

FIG. 5. Network 4/’.
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Network all/" has 2 (v + v) + 4v + stages. The 4" inputs and 4" outputs are on
stage 0 and stage 4v, respectively. Each other stage contains 64.4" + y vertices. The sub-
network from stage to stage v and that from stage 3v to stage 4v consist of
4, and l 4., respectively. The subnetwork from stage v to stage 3v is d///. Each
input has out-degree 64.4Y; a vertex in i has in-degree 2 and out-degree 2, except
vertices on their first stages (in-degree and last stages (out-degree 10); a vertex in the
left-hand half ofd//(stage v to stage 2v ofdV) has in-degree 10 and out-degree 10, except
vertices on stage v (in-degree 2). The subnetwork from stage 2v to stage 4v (called dtf)
is a mirror image of that from stage 0 to stage 2v (called Ye). In particular, the fight-
hand half of ////, called d//, is a mirror image of d///e, the left-hand half of d//. Network
dt/’ has 1408v4 "+y edges because there are 1280v4 "+v edges in, 128(v )4"+ edges
in i and i, for all _< _< 4", and 128.4" / y edges adjacent to inputs and outputs.

Let rt be a vertex of dl/’ that is not an input or an output. Say a vertex r/of V" is
faulty, if an edge (r, r/) or (r/, ) is in open failure or closed failure state. Given a set of
vertex-disjoint direct paths from inputs to outputs in dl/’, for an input, an output, or a
vertex that is not faulty, it is said to be idle if it is not involved in these paths, busy
otherwise. Say an (idle) vertex 1 has access to another (idle) vertex j2 if there is a path
of idle vertices from to 2. It is clear that, if has access to 2 and 2 has access to 3,
then 1 has access to 3. A network N is a majority-access network if, given any set of
directed paths from inputs to outputs, every idle input has access to a majority (strictly
more than half) of the outputs.

LEMMA 3. Let be an idle input ofnetwork dV’. The probability that has access
to at least 32.4 y + vertices in the last stage ofb (i.e., strictly more than half) is at
least c v 144e)", where C / 72e).

Proof. Let us begin by estimating the probability that does not have access to any
vertex at the last stage of b. There is no busy vertex in b, since j is idle and dV" is a
directed and staged graph. By Menger’s theorem (see, e.g., Chapter 5 of [CL]), there is
a "(vertex) cut set" of, (i.e., the removal ofwhich and their adjacent edges will separate
and the vertices at the last stage) consisting of faulty vertices only. Consider a cut set
C of l vertices. Then it must be l >_ 64.4 Y, since has this many rows. If every vertex
in C is faulty, the probability is at most (24e) t, since each vertex in (other than ,
which is not in any cut set we consider) is adjacent to at most twelve edges. For any
given l, the number of such cut set C is at most v3 t, since they are v vertices at the first
row of to start C, and at most three ways (each along an edge) to continue at each
step. Thus the probability that does not have access to any vertex at the last stage of

is at most

3’3/(24e)/= ClV(72e) 64"4".
1> 64.4

Consider an arbitrary set S of 32.4 vertices in the last stage of Z. The probability that
does not have access to any vertex in S is at most cv(72e)64"4. There are at most

(64"4) <264"4324

such S. This implies that the probability of having access to at least 32.4 + vertices
in the last stage of is at least Cl/) (144e), since 64.4 y > v. ff]

LEMMA 4. 1/7 a (32.4 u, 33.07.4 u, 64 4 U)- expanding graph in .,for any 3" <_

# <_ v + 3’ (the expanding graph is in the subgraph from stage # + v 3" to stage
# + v 3" + of 4/’), the probability that it has more than 0.07-4 outlets faulty is at
most e-’6"4u
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Proof. There are 1280.4" edges incident with outlets of the (32.4", 33.07.4",
64.4")-expanding graph (each vertex has ten in-edges and ten out-edges). For each such
edge, let xj be the random variable such that xj 0 if the edge is in normal state, x 0
otherwise, for all < j < 1280.4". It is clear that Pr [x 1] < 2e and Pr [xj. 0] >

2e. Let T ’ff])2=814u
Pr IT> 0.07.4"] Pr [er> e74"] < E [er]/e’7"4"

by Markov’s inequality. As x’s are independent,

1280.4u

E [er] I-[ E [ex] < + 2ee)1284u < e2560e’4",
j=l

since + x)y < ex, and 2560ee < 0.01 when e 10 -6. Thus the probability that there
are more than 0.07.2" outlets faulty is at most e0"01"4"-0"07"4" e-0"06"4". I-]

LEMMA 5. The probability that there exists a (32.4", 33.07.4", 64.4")-expanding
graph in tIu with more than 0.07.4" faulty outlets, for some 3’ < t < ’ + 3" 1, is less
than u(2/e)2.

Proof. It is simply a problem of counting the number of expanding graphs with
respect to the number of outlets. There are 4"+-" (32.4", 33.07.4", 64.4")-expand-
ing graphs between stage u + # 3" and stage u + # 3’ + of ’e, for all 3, _< <

u + 3’ 1. By Lemma 4, the probability that there is an expanding graph with no more
than 0.07.4" outlets is at most

u+3,- +3,--

4+’-"e-0"06"4" < 4re-0"06"4 < u4Ve--",
.=3’ .=3"

since 43" > 34.
LEMMA 6. With probability at least cu(144e)" u(2/e) e", ;V is a majority-

access network.
Proof. We may assume in this proofthat each 32.4", 33.07- 4", 64.4")-expanding

graph in /z has at least 0.07.4" outlets faulty, and each idle input has access to at
least 32.4 3" + vertices in the last stage of . It is clear by Lemmas 3 and 5 that the
probability of the assumption failing is at most Cl3"(144e)64"4 u(2/e)2. For each
pair of inputs 1 and 2, we say their relativity, relat (1, 2) relat (2, ), is d _<

d _< u) if and only if the directed paths starting from the two inputs may share a vertex
at or after the (d + )th stage but cannot share any vertex before the (d + u)th stage. It
is observed that, for each input , there are 4d 4d- 3"4d- other inputs ’ with
relat (, ’) d, for any d with _< d _< . Now suppose that is an arbitrary idle input,
let the subnetwork No of V’ be , and let N be the subnetwork induced by vertices
that can only be reached by and 4 k other inputs ’ with relat (, ’) _< k. It is clear
that Nk has 4 inputs and 64.4 3" + outputs. We prove by induction on k that has access
to at least 32.43,+g + outputs of N, thus, in particular, has access to strictly more
than half of the outputs ofV N,. The base case No is obviously true because of our
assumption. Consider N+ 1. The outputs ofN are linked to the output ofN+ via four
(32.4 3,+k, 33.07.4 3,+k, 64.43,+)-expanding graphs (with the inlets being the outputs
ofNk and the outlets being four disjoint subsets ofthe outputs ofNk+ ). By the induction
hypothesis, has access to at least 32.4 3, + k + outputs ofN. These 32.43, + + vertices
are joined by edges to at least 4.33.07.43,+ outputs OfNk+ (via the four (32.4 3,+,
33.07.4 3, + , 64.4 3, + k)-expanding graphs). By our assumption, there are at most
0.07.43" + k + outputs of
that are busy, because each busy output is one-to-one corresponding (via a directed path)
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to a busy input ofNk / l, and there are at most 4 k /1 such inputs. Thus, has access
to at least 4.33.07.4+k 0.07.4+k+

This completes our induction.
COROLLARY 2. With probability at least cu(144e)" u(2/e) 2, the mirror

image ofV’ is a majority-access network.
We observe that, if V’ and the mirror image of / are both majority-access

networks and the inputs and outputs of V" are distinct (no two input(s) and output (s)
contracting to a single vertex), then V" contains a nonblocking 4"-network of no-
failure edges.

LEMMA 7. With probability at most c2p2(160e) 2", where c2 415/( 40e), there
exist two input(s) and output(s) that contract to a single vertex.

Proof. The correctness of the lemma follows four observations. First, any simple
path joining two input(s) and output(s) must contain at least 2u edges. Second, for any

>_ 2, there are at most (64.4)2(40)/-2 such paths of length l, since the degree of
inputs and outputs is 64.4 and that of the other vertices is at most 40. Note that
(64.4)2(40) t-2 < 442(40)/, since 4 _< 136u. Third, the probability that a path of
length gets "shorted" (all edges on the path are in closed failure state) is less than
Last, there are at most (2.4 )2 such input or output pairs. []

THEOREM 2. Network t/" is a (10 -6, 6)-nonblocking n-network with at most
49n(log4 n) 2 edges and 5 log4 n depth for arbitrarily small 6, when n is sufficiently large.

Proof. We have seen that network V’ contains at most 1408u4" + edges and has
4 + depth, where n 4" and 3’ [log4 34]. Work out the constant using 4 _< 136u.
The probability that V" fails to contain a nonblocking n-network of no-failure edges is
less than 2(Cl(144e)" u(2/e)2") + c2u2(160e)", by Lemma 6, Corollary 2, and Lemma
7. This value can be arbitrarily small when n 4" is sufficiently large, given e 10-6. [--]
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SORTING ON A MESH-CONNECTED COMPUTER
WITH DELAYING LINKS*

BOGDAN S. CHLEBUS, KRZSZTOF DIKS, AND ANDRZEJ PELCt

Abstract. A mesh-connected processor array is considered in which the links are faulty in the following
sense: Each attempt by two neighboring processors to communicate by exchanging messages may fail with
some constant probability. A message sent across a link and not delivered is said to be delayed by the link. It
is assumed that all the links delay with the same fixed delay probability, independently of each other.

The problem of sorting is addressed in this model. It is proved that an n n mesh can be sorted in the
expected time O(n) with large probability. More precisely, it is shown that there are two constants c > 0
and r > 1, depending on the delay probability, such that the n n mesh is sorted in time cn + with the
probability at least 1 r-t. One specific algorithm is considered, but the analysis shows that many known
algorithms could sort in the expected time O(n), after some natural modifications.

Key words, parallel sorting, mesh-connected computer, fault tolerance

AMS subject classifications. 68M, 68M10, 68M15, 68Q25, 60Y20

1. Introduction. Parallel computers with a large number of components may have
some of the processors or links not fully operational. Hence it is an important feature
of algorithms designed for such computers to be efficient in the presence of faults.

Faulty components can be introduced to a model ofcommunication network in many
ways. The most-often-investigated scenario assumes strictly that, if a processor or link is
faulty, then it does not perform any of the specified set of functions; next, it is stipulated
whether faults are generated randomly or if the worst-case is considered. A communica-
tion network with suchpermanentlyfaulty components might be tried to be reconfigured
to obtain a network of the same pattern of interconnections among processors but of a
smaller size. Hastad, Leighton, and Newman [4] showed how to reconfigure hypercube
networks with random faulty components, and Kaklamanis et al. [5] studied faulty arrays
of processors and their reconfigurations. These results have shown that both hypercubes
and meshes are very robust in the presence of randomly generated (permanently) faulty
components.

In this paper, we study a different model of a network with faulty components. We
assume that all the processors are operational but the links may delay messages. This
means that an attempt to exchange messages along a link may fail with some fixed prob-
ability p. This numberp is called the delayprobability. If a message is not delivered, then
the processors may keep repeating attempts to communicate until eventually there is a
success. It is assumed that all the links delay with the same probability independently of
each other.

A network with delaying links does not need to be reconfigured. What becomes a
problem is to design algorithms that are robust in this situation and to evaluate their
expected behavior. In this paper, we consider n n meshes of processors with delaying
links and show that they can sort in time O(n) with large probability. The analysis shows
that many known algorithms can be readily adapted to this model and sort within time
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A large part of the analysis described in this paper is devoted to the odd-even trans-
position sort running on a line of processors. If links are delaying, then the behavior of
the algorithm is shown to be bound by the behavior of the following stochastic process.
There is a binary tree with a series of queues associated with each node. The number of
queues at a node depends on the depth of the node. There are a number of customers,
and each of them must be served by all the nodes on some branch. The customers go
through all the queues at a node and next are redirected to the children. The process
terminates when all customers have been served.

The paper is organized as follows. Section 2 contains the analysis of the odd-even
transposition sort and is broken into sections about the series of queues, the tree process,
and the main theorem. Section 3 is about the analysis ofa sorting algorithm on the square
meshes. Section 4 contains remarks and open problems.

2. Line ofprocessors. In this section, we study the odd-even transposition sort on a
line of processors connected by delaying links. It is shown that the algorithm completes
sorting in time proportional to the length of the line, with a large probability. The last
section contains a theorem giving estimates on this probability. This theorem can be
also derived from the results of Berman and Simon [1]. The probabilistic analysis of this
section was applied by the authors to evaluate the behavior of a gossiping protocol in a
faulty environment in [2].

The odd-even transposition sort operates as follows: All the odd-numbered proces-
sors exchange their keys with the right neighbors in the odd-numbered steps and with
the left neighbors in the even-numbered steps. If an exchange is successful, then the left
processor keeps the smaller key and the right one the larger key. It is known that with
all the links being operational it takes at most n steps to sort the line.

An often-used approach to proving correctness of a sorting algorithm is by using the
0 I principle, which states that the algorithm sorts all inputs if it sorts the inputs of O’s
and l’s. This principle is valid if the algorithm sorts by conditional exchanges, because
we can interpret O’s as the keys smaller than some specific key and l’s as the remaining
keys. Our approach is similar, the difference being that the keys dividing the sequence
into O’s and l’s are directly specified during various stages of the algorithm.

The odd-even transposition sort can be conceptually divided into the following stages.
Partition all the keys into two equal groups A and B, where each element ofA is less than
or equal to each element of B. Wait until all the (smaller) elements of A are to the left
of all the (greater) elements of B. Then apply the same procedure to two halves: Divide
them into equal groups of smaller and larger keys and wait until the smaller are to the
left of the larger. Repeat this iteratively until the whole line is sorted. In the following,
the elements of A are interpreted as O’s and the elements of B as l’s. The whole process
can be visualized as a tree. There is a line of n processors at the root, each storing either
a 0 or a 1, the numbers of O’s and l’s being equal. In general, a node with a line of k
processors has two children, each with k/2 processors and with equal numbers of O’s and
l’s. The process is started at the root and terminates when all the nodes are done. Start-
ing a node means starting to sort the associated line of processors. As soon as a node
becomes sorted, then both of its children are started. The time is the maximum over all
the branches of the tree. We assume that n is a power of 2.

Consider a node of the tree and a line of k processors associated with it. We may
assume that initially all the O’s are to the right of the l’s. Our approach is to interpret
the l’s as servers and O’s as customers in a queuing system. Each customer must go
through all the servers. Once a customer has been served by a server, it is moved to
the queue (maybe empty) of the customers waiting for service from the next server. For
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a 0 (customer) to be served by a 1 (server) means to be exchanged with it. All the O’s
between two consecutive l’s are in the same queue waiting for service from the left 1. If
two consecutive l’s are adjacent, then this means that the queue is empty.

We must have two things done: One is the analysis of a sequence of queues, each
with a geometric time of service, and the second is the analysis of the behavior of a tree
that has a series of queues at each node. These are done in the next sections.

2.1. Series of queues. The starting point is a series of n servers with n customers
waiting in queue for the first server. Each server processes the customers and in this
way generates them for the next server, if there is any. The output of the first server is
geometric. The second server operates in a similarway, but, since it mustwait for the first
customer for at least one unit of time, its output does not have a geometric distribution
on the waiting time. The same is true for the remaining servers, who must wait for their
first customers even longer. When the system operates long enough, the distribution of
the output of each server converges to the geometric one, and the effect of the time to
wait for the first customers diminishes. We do not estimate the rate of this convergence;
instead, we work directly with the limit stationary distribution. This is done in two steps:
First, we assume that the customers are not given but must be generated and, next, that
there are some additional "dummy" customers in the system that must be cleared before
processing the true customers.

Suppose that, instead of exactly n customers waiting for service from the first server,
the customers have been generated with a geometric distribution and, next, that each of
them is served by a series of n servers. This system can be interpreted as a (homoge-
neous) Markov chain where a state is determined by the numbers of customers in each
queue. Initially, each queue is empty. Let us first consider a single server.

A single server is also a Markov chain. We consider a situation in which customers
are generated with a geometric distribution and they are also served with a geometric
distribution, but these two distributions are different. The reason for this is that we need
an ergodic chain. A helpful visualization of the situation is obtained by interpreting the
process as a discrete random walk in one dimension with a reflecting barrier. There are
three possibilities in each step. If a new customer is generated and none completes its
service, then the number of customers increases; this is interpreted as a move away from
the barrier. Alternatively, a customer completes the service but no new one is generated
so the number of customers decreases; this corresponds to a move toward the barrier.
In any other situation, the number of customers does not change, and there is no move.
It is well known that such a Markov chain is ergodic if and only if the probability of a
move toward the barrier is greater than of a move away from it (cf. [6]).

Suppose that in each unit of time there is a new customer generated with some
input probability p and also, if the queue is nonempty, then the first customer is served
with some outputprobability q. So the input and output (if the queue is nonempty) have
geometric distributions on their waiting times with parameters p and q, respectively. The
system is said to be in state i if there are i customers in the queue. If there are k > 0
customers waiting for service, then the probability of decreasing of this number is
(1 p)q, and the probability of increasing it is r (1 q)p. The matrix P (pij) of
transition probabilities, where

p Pr (state j is entered next i is the current state),

is as follows:
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1. pij=0ifli-jl>l;
2. Poo-l-P, Plo=l;
3. Pol-P, P-l-l-r, P2----1;
4. If k > 1, then Pk-,k r, Pk, 1 r, p+, 1.

This defines an irreducible and aperiodic Markov chain. If p < q, then it is ergodic, in
the sense that the probability distribution

p() p(O)pk

converges to some distribution P independently of the input distribution p(0). The er-
godicity follows from the fact that an aperiodic and irreducible Markov chain is ergodic
if there is a nonnull solution x (xi) of the equation x xP, with Iz l < (el. [6]),
There is a unique solution satisfying the conditions -i0 xi 1 and xi > O. It gives the
stationary distribution having the property that, if it is the initial distribution p(0), then
all the subsequent distributions P(’) p(0). p, are the same as p(0). For a proof of the
next lemma, see Kemeny, Snell, and Knapp [6].

LEMMA 2.1. Ifthe inputprobability p is smaller than the outputprobability q, then the
single-queue system is ergodic.

LEMMA 2.2. If the initial distribution is equal to the stationary disbution, then the
output has a geometric distribution with theparameter being the inputprobability p.

Proof. A new customer completes the service with probability q, provided that the
queue is nonempty. Hence the unconditional probability of a new customer being served
is (1 x0) .q. To find x0, note that

l .xi xo + x ,.
\l] xo + x 1

i=0 i=0

p l-r+p
XOxo + xo 1- r r

Hence

l-r p q-p p
=1- =1xo--l_r+p l-r+p q q

and therefore (1 x0) .q p/q.q p. ]

A similar phenomenon, as described in the above lemma, occurs if the queue has
an exponential service time, this being a continuous-time distribution (cf. Gross and
Harris [3]).

Now let us return to the original series of queues. Suppose that, if a queue is
nonempty, then the first customer is served with probability q. Suppose also that the
input for the first server is generated with the geometric distribution with parameter p,
where 0 < p < q. It follows from Lemma 2 that, if the initial distribution of each queue is
the stationary distribution, then the whole series of queues is in a stationary distribution,
and the output of the system is described by the geometric distribution with parameter
p. This observation is a basis of our approach. We must get n customers through a series
of n queues, but the time to accomplish this is even longer if in the beginning there are
some d "dummy" customers in the system, where the number d is determined by the sta-
tionary distribution. In such a situation, the time to process n "true" customers becomes
the sum of the time needed to clear the system of the dummy customers and the time to
process the next n customers. First, we estimate the number of the dummy customers.
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LEMMA 2.3. Let sk be the probability that initially there are k dummy customers in all
the n queues. Ifp is selected, so that p q2, then the following inequality holds:

n/k-1 q
sk

k l+q

Proof. The generating function of the geometric distribution with parameter p is

Q(x) p + p(1 p)x + p(1 p)2x2 +...,

and the sum ofn random variables Xi, each having a geometric distribution with param-
eter p, has the generating function

)Q(x) Z n + k- 1
p’(1 -p)kxk

k=0 k

describing the negative binomial distribution. The stationary distribution of the number
of customers in a single queue is not exactly geometric since

x0-1 -pq and x (1- ) P () fori>_l.

Approximate this sequence by the one with values

(1 for i 0, 1, 2,...

in the sense that the inequality xi _< yi should hold for each i >_ 0. If i _> 1, then this
means that

which is equivalent to a > (1 p)/(1 q). The number a (1 p)/(1 q) is also good
for i 0 because of the inequality

X-P.(l_r) P
1 q

>_1 q"

Let P(x) ,k=o XkX
k be the generating function of the stationary distribution and

let R(x) ’k__o rkxk be the generating function of the geometric distribution rk
(1 r/1)(r/1) k. If Pn(x) -k=o SkX

k and [aR(x)] =o tkxk, then the inequality
8k <_ tk holds because xk <_ ark. The number sk is the probability that there are k
customers in all the queues, and the number tk is given by the formula

(n+k-l) ( r) (r)ktk an 1
k -[

This formula can be simplified, since

(r)n [ll_P(l_P(l_q))]n [ q_p inan 1-- =,
-q q(1-p) (1-q)q
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The only requirement on p is the inequality 0 < p < q to be true. Pick p q2 so that
(q p)/(1 q)q 1. Then the bound on sk becomes

( ( )( /n+k-1 r k n+k-1 q
8k

k k 1+q

Let S S, be the random variable equal to the time that it takes to get n true customers
served by the series of n queues. Let Aa be the event that initially there are d dummy
customers in the system. Then the following equality holds:

Pr(S t) Pr(S t[Ad) Pr(Ad).
d=O

The distribution of Aa has just been estimated, we need a bound on the number Pr(S
t[Aa). This probability is the same as that of an event when there is a sequence of t
Bernoulli trials, each with the probability p of success, and the last trial exactly con-
tributes the (d+ n)th success. (This follows from Lemma 2.2 and the subsequent discus-
sion.) Hence

t 1 ) pd+n(1 p)t-n-dPr(S tlAd
d + n 1

Therefore the probability Pr(S t) is bounded as follows:

()pd+n(l p)
t 1 t--n-d n + d 1 q

Pr(S t) <
d=O d+n- 1 d 1 +q

pn(1 p)t-n
t 1 n + d 1 q p

d=0 d+n-1 d l +q 1-p

Transform the product of two binomial coefficients according to the formula

(:) (:) (:_-:)
and introduce the notation A q/(1 + q). p/(1 p). This yields

Pr(S=t)<(l-P)t( P )n(t-l) (t-i-d)l-p
d=O d n-I

The sum can be estimated as follows:

(t-X )(t ) ( t-X )(t-X )Ad

d=0 d n- 1 n- 1 d=0 d

(t--X) A)t-X_< (I+
n-1
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Therefore

Pr(S=t)<[(X_p)(X+)]t( t_X ) ( pp)n 1

n-1 1S

Observe that (1-p)(1 + ) 1-p+pq/(1 / q) < 1. Estimate the binomial coefficient
by the following general inequality:

and introduce the notation 7 (1 p)(1 + A) to obtain

[ ] (pp) 1 =Tt_x[_tn-1 ep ]Pr(S= t) < 7
(t-1)e n-1 n -n-1 1 "IA i 1---p P"

LEMMA 2.4. There are two constants d and c, where 0 < d < 1 and c > O, such that

Pr(S t) < (1- d)dt,
fort >_ cra

Proof. Take as d any number satisfying the inequalities 7 < d < 1. It follows from
the above considerations that, to have the inequality Pr(S t) <_ (1-d)dt, it is sufficient
to have

(1) pTt-l( t-1 eP_ )
n-I

< (1- d)dt.
n-1 1 p

Denote
P 7b= 1-p’ep f=(1- d)d’

and =.
Then inequality (1) can be rewritten as

,2) ,t_l (:_ 1 )n-I,1.b -Y<_.

Substitute t 1 g(n 1). This transforms inequality (2) into

1

Let g be such that a.g.b < min(1, 1/f). Take c so large that if t > cn then t- 1 >_ g(n- 1),
because then

(: 11(t- b f ((gb)-f < (gbf < 1,

forn> 1. [:l

Lemma 2.4 shows that from some moment the distribution of the time S needed to
sort n O’s and l’s is bounded by the geometric distribution with parameter d. The time
period of length cn is called the principal time, and, if S > cn, then S cn is the delay
time. It follows from Lemma 2.4 that the delay time can be bounded by a geometric
distribution with parameter d. Let n denote the number of processors. Then the sum of
all the principal times over a branch is c(n/2 + n/22 +... + 1) cn, and the overall time
for a branch is cn plus the sum of the delay times of all the nodes.
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2.2. Tree process. In this section, we consider the maximum of the delay times over
the branches of the tree of queues. The problem can be considered in the following
generic form. Suppose that there is a full binary tree of height k, and a node process is
associated with each node, which is a sequence of Bernoulli trials, each trial with prob-
ability 6 of success. The whole tree defines the tree process as follows: It starts with the
initialization of the node process of the root, and, generally if a node process terminates,
then immediately the node processes at its children are started (if there are any). The
tree process terminateswhen all the node processes have terminated. Let G G, be the
random variable equal to the time that the tree process must terminate, where n 2k.
The following notation is used in the following:

Pk(t) Pr(C < t),

Rk(t) 1 Pk(t) Pr(G > t).

Throughout the paper, the notation lg x means log2 x.
LEMMA 2.5. Thefollowing inequality holds:

t--1

< + i),
i--1

fork> 1.

Proof. It follows from the definition of the tree process that numbers Pk(t) satisfy
the following recursive equality:

Substitute 1 Ri(x) for Pi(x) to obtain

-I -I

6(1 6){-I 26 -(1 )i-lRk_l(t i) + A,
i=1 i=1

t-1where A Ei=I 6(1 t)i-IR_ (t i) _> 0. Rearrange the terms to obtain

-I -I

Rk(t) 1 6(1 6)i-1 -- 26 -(1 6)i-lRk_l(t i) A.
i=i i=1

Use the equality
t-1

1 (i )i--1 (I )t--1
i:1

and discard -A to obtain the inequality. [:]

LEMMA 2.6. There are two constants x > 0 and y > 1, depending on 6, such that the
following inequality holds:

(3) Rk(t) <_ 2k y-t.
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Proof. The proof is by induction on k, and simultaneouslywe stipulate the conditions
that x and must satisfy for the proof to be correct.

If k 1, then R1 (t) (1 6)t. Inequality (3) holds if y satisfies the inequality
y(1 5) < 1. Take y such that 1 < y < 1/(1 5).

Let k > 1. By Lemma 2.4 and the inductive assumption,

t-1

Rk(t) < (1 6)t-1 + 26(1 6)i-. 2(k-)x

i=1

(1 )t-1
__

2kx y-t. 21-x. .y

1 [(1 )ylt-1
1 (1 8)y

<_ (1 5)t- + 2 y-t. z,

where

Z
1 (1 5)y"

We need the following inequality to be true:

(1 5)t- + 2k y-t z <_ 2k y-t.

This is equivalent to

((1 5)y)t. 2-kx < (1 5)(1 z).

The left-hand side of the last inequality is largest for t 1. For this value, the following
is equivalent:

(4) y2-z _< 1 z.

Note that, for sufficiently large x, the inequality 1 z > 0 holds; namely,

1 < z iff 21-- 5y
1 (1 5)y

25y )<1 iff x>lg
1-(1-)y

since y(1 5) < 1. Then inequality (4) is equivalent to

Y2kz >

Take x sufficiently large to satisfy this inequality.
COROLLARY 2.7. Ifx and y are the same as in Lemma 2.6, then

Pr(Gn > (x + t)logu n) < n-t.

Proof. Denote s (x + t) logu n. Then, by Lemma 2.6,

Pr(Gn > s) Rk(s) < 2ky- 2xlgn" y-(Z+t)iogun nn-n-t n-t. [1

2.3. Back to the line of processors. The analysis of the tree of processes concerns
the delay time G,, the total time bounded by cn + G,, where cn is the principal time as
defined in 2.1.
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THEOREM 2.8. Let T denote the time needed to sort a line ofnprocessors with delaying
links. There are constants r > i and D > 0 such that the following is true"

Pr(T > Dn + t) < r-t.

Proof. Let numbers z and y be as in Lemma 2.6. Take for r any number satisfying
1 < r < y. Number D will be specified later, but it will be greater than c, where cn is the
principal time. By the definition of the principal time, the following inequality holds:

Pr(T > Dn + t) < Pr(G, > (D c)n + t).

Denote s (D c)n + t. Then, by Corollary 2.7,

Pr(Gn > s) < n-(s/lgun-x) 2-s’lgn/lgun+xlgn 2-slgy+xlgn-- y-S. n.
The inequality y-’n <_ r-t holds if and only if y-(D-)"n <_ ( ) t. Take

x xlgn
D=C+g > C+

nlgy

because then y-(D-c)n, nz <_ 1 < (y/r) U
The following terminology, extending that from 2.1, will be used in the following to

refer to bounds like those in Theorem 2.8. Suppose that X, is a random variable equal
to the length of a time period depending on n and also that an exponential inequality

Pr(Xn > f(n) + t) < r-t

holds. Then f(n) is called the principal time, t is the delay time, and r is the exponential
factor.

3. The two-dimensional case. In this section, we discuss sorting on a square mesh
of processors interconnected by delaying links. If we take an algorithm that has the
operations of sorting of rows or columns as its basic steps, then we expect it to sort in
time O(n) because the analysis from the previous section guarantees that each single row
or column is sorted quickly. There are many such algorithms known in the literature,
among them those developed by Lang et al. [8], Ma, Sen, and Scherson [12], or Schnorr
and Shamir [14]. To be specific, we consider a simple algorithm of Leighton described in
[11]. It sorts in the snake-like order, that is, the rows are ordered to the right and to the
left, alternatingly. The global snake is an indexing scheme of processors corresponding
to the snake-like ordering. The following is the algorithm that we later analyse.

Sorting Algorithm

1. Recursively sort each quadrant in the snake-like order.
2. Sort the rows alternatingly to the right and to the left.
3. Sort the columns.
4. Perform 4n steps of the odd-even transposition sort along the global snake.

Steps 2-4 are referred to as merging. This algorithm sorts in O() time if all the links
are fully operational (cf. [11]). In the situation when the links are delaying, a next step
of the algorithm cannot start before the previous one has been completed. To control
this, the following mechanism can be used. Consider, for instance, the step of sorting
all the rows in parallel. Designate the leftmost processors as controlprocessors and the
top leftmost one as masterprocessor. In each row, the rightmost processor sends to the
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left not only the key but also an additional control packet. This packet travels to the
left and verifies if the row is sorted by comparing its value with the encountered keys. If
the ordering has henceforth been correct, then the packet remembers the current key
and is moved to the left; otherwise, it gets destroyed. When a control packet eventually
reaches the control processor, then it testifies that the whole row has been sorted. The
master processor learns about all the rows being sorted by receiving a packet originated
by the bottom control processor and then forwarded and confirmed by the other control
processors. The master processor then sends a signal to all the processors to start the
next step.

We prove that this algorithm sorts the mesh in time O(n) with large probability. In
the next sections, the consecutive steps of the algorithm are investigated.

3.1. Merging. Suppose that there are four k/2 x k/2 submeshes, where k < n, and
that they are merged by steps 2-4 of the algorithm. The first phase is sorting k rows or
columns. Let UO be the delay time to sort the jth column, where 1 < j < k. We need to
estimate the distribution of

U max{Ull < j _< k}.

It follows from Theorem 2.8 that

Pr(Uj < t) > 1- r-t

for some r > 1. Hence

Pr(U < t) > (1- r-t)n > 1- nr-t.

We would rather have an inequality of the form

Pr(U < t) > 1- s-t

for some s > I and sufficiently large t. Take s (r + 1)/2. Then

Pr(U<t)>l-s-t iff t.lg( 2r )r/l >lgn.

Therefore there is a constant c such that, if t > c lg n, then

Pr(U < t) > 1- s-t,

for s > 1. The time period c lg n is a contribution to the overall principal time.
The next phase of merging is the 4k steps of the odd-even transposition sort along

the global snake. Divide the snake into intervals of length 4k and assume that the algo-
rithm is performed only within the intervals. Next, shift the intervals by 2k, execute the
algorithm, and finally execute the algorithm once more on the original partition. Simi-
larly as for the phase of sorting rows and columns in parallel, we obtain an exponential
bound on the delay time with the principal time being O(lg n). Also, the coordination
of steps by the master processor can be handled in the same way.

3.2. Recursion. The algorithm can be implemented bottom-up, that is, the sub-
meshes are sorted and next merged into larger and larger ones. There are lg n levels.
We estimate the maximum time of merging on a level. The obtained bounds are again
exponential with only polylogarithmic principal time.
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We have proved that the time T to merge four k x k submeshes satisfies the inequality

Pr(X > ck + t) < t-t

for some c > 0 and r > 1. Let ri denote the exponential factor on the level i. Define
r0 r and ri r i(r/2 lg n), for i 1, 2,..., lg n. If there are merges on level i
and U denotes the delay time of the jth merge, then the overall delay time on this level
U max{Ull < j < l} is estimated as follows:

Pr(U < t) > (1- r-t) > 1- nzt-t.

This can be extended to 1 nz ri > 1 t-_ for sufficiently large t; namely,

21nn
1 nz -t iff t >.tCt>l-V+l

’i+1

However,

ir

ri 2 lg n 1 1

+ r 1 + .91- n i- 1
< 1 + qi---ti+l

21gn

Since ln(1 + z) < z, for 0 < z < 1, we obtain t > 2 In 2 lgz n. Therefore there is a
polylogarithmic contribution to the principal time at each level.

The delay times are summed over the levels: If X is the delay on level i, then the
’lg ntotal delay is T z_,i=l Xi. Since Pr(Xi > t) < (t/2) -t for 1 < i < lg n, we can

assume that all the distributions of X’s are bounded by some geometric distribution
with parameter p, 0 < p < 1, specifically,

Pr(Xi t) < p(1 -p)t.

Then

lgn+t- 1 )Pr(T t) < plgn (1 -p)t.
t

The general bound

n ) nn

k
<- kk(n- k)-k

yields

x+y
_< 1+x

From this, we obtain

t+lgn- 1 ) < 1+
t

1+
t

lg n--1
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Use (1 + z/t)t < e to transform this into

(t+lgn-X) ( t )
lgn-t

t
{glgn-1. 1 + lgn- 1

Substitute it in the bound on Pr(T t) to obtain

Pr(T=t)_< ep l+lgn_l (1-p)t.

We would like it to be bounded by qt for some 0 < q < 1 and suciently large t. Take
aw I p < q < 1, such as q 1 p/2. en the inequali

ep 1 + lg n- 1
(1- p)t < qt

holds only if the following holds:

t>-ln(l-P)lgnln(ept),q
for t R 2 and n 8, because then 1 + t/(lg n 1) N t. ke t > In n. en

t lgn (I-p)In(ept) >
In

Hence Pr(T t) qt for t > lg n. From this, it follows that

i=lg

this being valid for suciently large n. is foula contributes only O(lg n) to the
principal time.

EOREM 3.1. ere are constants c > 0 and r > 1 such that an n x n mesh ith
delaying lin can be soned in time

o@ e time to sort the mesh is a sum of some finite ed set of random vari-
ables, each depending on n and satising an eonential inequali with at most linear
principal time.

4. Celmm ae rles. We considered the problem of soing on a
mesh-connected processor array in which eve attempt of communication beeen
neighboring processors Nils with a constant probabili and all such Nilures are inde-
pendent of each other. It was proved that an n x n mesh can be soed in the eected
time O(n). though we considered one specific sorting algorithm, it follows from the
presented analysis that maw other own algorithms can be readily adapted to sort in
time O(n) on the model under consideration. is holds, for instance, for the algorithms
developed in [8], [10], [1-[51.

The results presented in this paper can be eended to include sorting on multidi-
mensional meshes (cf. [7], [9], [121, [15]). It would be also interesting to consider sorting
and related problems for other architectures with delaying links, such as hercubes or
butterflies.
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LABELING CHORDAL GRAPHS: DISTANCE TWO CONDITION*

DENISE SAKAIt

Abstract. An L(2,1)-labeling of a graph G is an assignment of nonnegative integers to the vertices of G
such that adjacent vertices get numbers at least two apart, and vertices at distance two get distinct numbers.
The L(2, 1)-labeling number of G, ,k(G), is the minimum range of labels over all such labelings. It is shown
that, for chordal graphs G with maximum degree A(G), A(G) _< (A(G) + 3)2/4; in particular, if G is a unit
interval graph with chromatic number x(G), )(G) <_ 2x(G), which is a better bound. As a consequence, it is
shown that the conjecture A(G) </Xa(G) by Griggs and Yeh [SIAMJ. Discrete Math., 5 (1992), pp. 586-595]
is true for chordal graphs.

Key words, labeling, T-coloring, chordal graphs, unit interval graphs

AMS subject classification. 05C78

1. Introduction. In the channel assignment problem, we wish to assign a channel
(nonnegative integer) to each TV or radio transmitter such that interfering transmitters
get channels whose separation is not in a set of disallowed separations. This problem
was first formulated as a graph coloring problem by Hale [4], who introduced the no-
tion of T-coloring of a graph. Here, the transmitters are represented by the vertices of
a graph, called the interference graph, the edges represent interference, the channels are
the colors assigned to the vertices, and T is the set of disallowed separations. For recent
surveys about T-colorings and the channel assignment problem, see Roberts [6], [7] and
Tesman [8].

In 1988, Roberts (in a private communication to Griggs) proposed a variation of the
channel assignment problem, where "close" transmitters must receive different channels
and "very close" transmitters must receive channels at least two apart. Griggs and Yeh [3]
and Yeh [9] consider a more general problem. Given a real number d > 0, an Ld(2, 1)-
labeling of a graph G is an assignment f of nonnegative real numbers to the vertices of
G such that, if x and y are two adjacent vertices, then If() f(y)l > 2d, and, if the
distance between x and y is two, then If(z) f(y)l -> d.

Griggs and Yeh [3] concentrate their attention on the La(2, 1)-labeling number of
G, denoted by A(G, d), the smallest number m such that G has an La(2, 1)-labeling with
no label greater than m. If f is an La(2, 1)-labeling of G, we say that f E La(2, 1)(G),
and then

A(G, d) min Ilf(G)ll,
fELd(2,1)(G)

where IIf(G)II maxvEv(G) f(v). A(G, d) is sometimes called the span and is the min-
imum separation between the largest and the smallest channels used. Griggs and Yeh
characterize A(G, d) in terms of A(G, 1) and find that for A(G, 1) it suffices to consider
labelings using only nonnegative integers. So, in what follows, we focus on L1 (2, 1)-
labelings using only nonnegative integers. For simplicity, we denote L1(2, 1)(G) by
L(2, 1)(G), and A(G, 1) by A(G). Griggs and Yeh [3] find exact values for A(G) for par-
ticular graphs G.
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PROPOSITION 1.1 (Griggs and Yeh [3]). (i) Let P, be a path on n >_ 2 vertices. Then

2, if 2,
A(Pn) 3, ifn 3, 4,

4, /fn >_ 5.

(ii) Let C, be a circuit on n >_ 3 vertices. Then ;k(C,) 4.
For some other families ofgraphs, they find interesting bounds for ,k(G). To mention

a few, ,(T) </(T) + 2, ifT is a tree with maximum degree A(T) _> 1; A(Q,) <_ 2n+ 1,
if Q, is an n-cube, i.e, a graph with vertices given by the n-tuples with 0,1 coordinates,
and with two vertices adjacent if they differ in only one coordinate.

They also propose the following interesting conjecture.
CONJECTURE 1.2 (Griggs and Yeh [3]). For any graph G with maximum degree

/X(G) > z
Many classes of graphs satisfy this conjecture, for instance, the class of graphs with

diameter 2 considered by Griggs and Yeh [3]. In 2 we show that one more important
class of graphs satisfies Conjecture 1.2, namely, the chordal graphs, i.e., graphs that do
not contain induced circuits with more than three vertices. A better bound for )(G)
is obtained if we restrict our attention to a particular subfamily of the chordal graphs,
namely, the unit interval graphs.

The class of unit interval graphs and its generalization, the class of R-unit sphere
graphs, are of particular interest in the channel assignment problem. A graph is R-unit
sphere if we can assign a closed sphere of unit diameter in R-space to each vertex so
that edges correspond to pairs of spheres that overlap. When transmitters are located in
R-space, for R-l, 2, or 3, interference sometimes takes place if and only if two transmit-
ters are within ra miles. In this case, the interference graph is an R-unit sphere graph.
Unfortunately, no useful characterization of R-unit sphere graphs is known exceptwhen
R 1. The 1-unit sphere graphs are sometimes called unit interval graphs since a closed
sphere of unit diameter in 1-space is simply an interval of unit length. So the unit inter-
val graphs can be interpreted as interference graphs of transmitters located in a linear
corridor, where interference corresponds to being within re miles. In 2, in addition
to finding an upper bound for A(G) when G is unit interval, we also characterize unit
interval graphs with a certain number of vertices, for which this bound is tight.

2. L(2,1)-labelings of unit interval graphs. We begin this section by presenting an
upper bound for A(G), for G a chordal graph. First, let us recall an important property
of chordal graphs due to Dirac. A simplicial vertex of a graph is a vertex such that its
neighbors induce a clique in the graph.

THEOREM 2.1 (Dirac [1]). IfG is a chordalgraph, then it has a simplicial vertex.
In particular, if G is a chordal graph and v is a simplicial vertex, then the graph G-v,

obtained from G by removing vertex v and all the edges incident to v, is also chordal.
THEOREM 2.2. Let G be a chordal graph with maximum degree/(G). Then IX(G) <_
+

Proof. The proof is by induction on the number ofvertices of G, IV(G)I. If IV(G)I
1, then A(G) 0 --/(G), and obviously A(G) <_ (/(G)+3)2/4. Suppose that IV(G)I >
1 and that G is chordal. By Theorem 2.1, since G is chordal, it has a simplicial vertex,
say v, and G v is also chordal. We can apply induction to conclude that

< + a) < +
4 4
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Let y e L(2, 1)(G v) with IIf(G v)ll (G v) and denote by k the degree of v
in G. Then v is distance one away from k vertices and distance two away from at most
k(A(G) k) vertices (recall that v and its neighbors form a clique in G). Therefore
there are at most 3k + k(A(G) k) numbers used by f to be avoided by v. However, the
function g(k) 3k + k(A(G) k) has its maximum at k (A(G) + 3)/2 and g((A(G) +
3)/2) (A(G) + 3)2/4; i.e., there are at most [(A(G) + 3)2/41 numbers used by f to
be avoided by v. Hence there is still at least one number in {0, 1, ...,/(A(G) + 3)2/4J }
to be assigned to v to extend f into a labeling in L(2, 1)(G). [q

Unfortunately, we do not have examples where this upper bound is sharp.
As a corollary, we have that chordal graphs with maximum degree greater than 1

satisfy Conjecture 1.2.
COROLLARY 2.3. Let G be a chordal graph with maximum degree A(G) > 2. Then

(a) <_/(C).
Proof. Lt G be a chordal graph with A(G) _> 2. If A(G) 2, then G is a disjoint

union of paths and triangles. $o, by Proposition 1.1, A(G) _< 4 A(G). If A(G) >_ 3,
then (A(G) + 3)2/4 < A2(G), and therefore, by Theorem 2.2, )(G) < A2(G). U

In the following, we use the notation n(G), x(G), and w(G) to denote the number
of vertices, the chromatic number, and the size of the maximum clique of the graph G,
respectively. Where there is no possibility of confusion, we write n n(G), X x(G),
and w w(G).

We concentrate on a particular family of chordal graphs, the unit interval graphs,
and, in the next theorem, we improve the bound for A(G) given by Theorem 2.2.
Roberts [5] showed that a graph G is unit interval if and only if it has a compatible vertex
ordeng, i.e., an ordering v, v, v, of vertices in G so that, if i < j < k and {v, vk}
is an edge, then {vi, v}, {v, vk} are edges in G. With this characterization, it is not
difficult to see that unit interval graphs are chordal. It is worth noting that, if G is a unit
interval, then x(G) w(G) can be seen easily by greedily (proper) coloring the vertices
in the compatible ordering.

THEOREM 2.4. Suppose that G is a unit interval graph. Then

X(a) <_ (a) <_ X(a).

Proof. Let G be a unit interval graph and suppose that Vl, v2, ..., v, is a compatible
vertex ordering. Start labeling the vertices from the beginning of the compatible vertex
ordering in order, with the numbers in the following sequence:

2X 2, 2X 4, ..., 2, 0, 2X 1, 2X 3, 3, 1, 2X.

If the sequence of numbers finishes and there are vertices still unlabeled (i.e., if n(G) >
2x(G) + 1), continue labeling, repeating the same sequence until no more vertices re-
main to be labeled.

Let us show that the above labeling is in L(2, 1)(G). Only two possible problems
could occur. We now investigate them.

Problem 1. A vertex u labeled 2i with i e {0, 1, ..., x(G)} is adjacent to a vertex v
labeled 2i + 1: We show that this problem cannot occur. If u va, then the first vertex
following u labeled 2i+ 1, if there is such a vertex, is vq+x. So, if vq and v,+x are adjacent,
then the vertices v, V+l, ..., v+ form a clique of size x(G)+1, which is an impossibility,
since x(G) >_ w(G) for any G. Thus vq and v,+ are not adjacent; then v cannot follow
u and be adjacent to it, since otherwise v will follow v,+x and force the adjacency of vq
and Vq+x. On the other hand, the vertex labeled 2i + 1 preceding Vq that is closest to vq,
if there is any, is v,_. If v and v,_x are adjacent, however, then v,_, v,_x+, v,
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form a clique of size x(G) + 1, a contradiction. Then v cannot precede u and be adjacent
to it, since otherwise v will precede vq_x and force the adjacency of vq and vq_x.

Problem 2. Two vertices at distance two get the same label: Let u and v be two
vertices at distance two and, without loss of generality, assume that u vq and that v
follows u in the compatible vertex ordering. If vq has label i e {0, 1, ..., 2x(G)}, then
the first vertex following vq with label i, if there is any, is vq+2x+l. So v vp for some
p >_ q+2x(G) + 1. Since u and v are at distance two, then there is a vertex vr such that vq
and vp are adjacent to yr. Now q < r < p, for otherwise, say, without loss of generality,
that r > p. Then v adjacent to vq implies v, adjacent to vq, contrary to the assumption
that v and v are at distance two. Therefore either Vq, vq+, ..., v or v, v+, ..., v is a
clique of size greater than x(G) (because p > q + 2X(G) + 1), a contradiction. Hence
Problem 2 cannot occur either.

Note that the labeling constructed above has span 2x(G); hence A(G) < 2X(G).
Obviously, A(G) > 2x(G) 2 since G contains a clique of size x(G). U

An immediate corollary of the proof of Theorem 2.4 is the following.
COROLLARY 2.5. Suppose that G is a unit intervalgraph with n(G) < 2x(G) + 1. Then

2x(G)- 2 < A(G) < 2x(G)- 1.
Since, for any graph G, X(G) < A(G) + 1, it follows from Theorem 2.4 that, if G is

unit interval and A(G) > 0, then

2x(G)- 2 < A(G) < 2x(G) < 2(A(G)+ 1) < (A(G) + 3)2

improving the upper bound given by Theorem 2.2 for general chordal graphs when
A(G) 1. Also, note that A(G) > 2x(G) 2 holds for all perfect graphs, not just
unit interval graphs.

The lower bound for A(G) given in Theorem 2.4 is attained, for instance, when G
is a complete graph. In Proposition 2.7, we show that the upper bound for A(G) is also
tight.

LEMMA 2.6. Let f e L(2, 1)(G) with IIf(G)ll t. If v is a vertex ofdegree t 1, then
f(v) 6 {0,

Proof. The proof is straightforward, and we omit the details.
An r-path is a graph with vertex set Vl, v2, ..., v,, n > r, and vi, vi+l, ..., v+ is a

clique, for i 1, 2, n r. Clearly, an r-path is unit interval, has chromatic number
r / 1, and Vl, vz, v, is a compatible vertex ordering.

PROPOSITION 2.7. Let G be an r-path with 2r + 3 vertices. Then A(G) 2(r + 1)

Proof. If r 1, then G is a path on five vertices and, by Proposition 1.1, A(G) 4
2X(G). Suppose that r > I and assume, byway of contradiction, that A(G) _< 2X(G) 1.
Let f L(2, X)(G)with [[f(G)[[ 2X(G) 1.

By Lemma 2.6, since vx, v+x, vx+ have degree 2r 2X(G) 2, they must get
labels in {0, 2X(G) 1}. However, r > i forces vx, vx+l vx+z to be a triangle, and it is
not possible to label it with only two distinct numbers. Therefore A(G) 2x(G).

It seems to be difficult to characterize those unit interval graphs G with A(G)
2x(G). By Corollary 2.5, we know that such graphs must have at least 2x(G) + 1 vertices.
The next few results give a characterization of unit interval graphs G with A(G) 2X(G)
and n(G) 2x(G) + 1.

LEMMA 2.8. Let G be a unit interval graph with n(G) 2x(G) + 1 vertices. Ifthere is
a compatible vertex ordering vl, v, ..., vn ofthe vertices such that either
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(i) {vl, vx} E(G), or
(ii) {vx+2 v,} E(G), or
(iii) {v2, vx+}, {v3, v+2}, ..., {vx, v2x-} E(G), or
(iv) {v3, vx+2}, {va, vx+3}, {vx+, v2} E(G),

then A(G) < 2x(G)- 1.

Proof. If one of the above items is satisfied, then labeling vi, v2, ..., v, in order with
the numbers in the sequence

(i) 1, 2X 2, 2X 4, ..., 2, 0, 2X 1, 2X 3, ...3, 1,
(ii) 1,3,...,2X 3,2X- 1,0,2,..., 2X 4,2X- 2,1,
(iii) 2X 1, 2X 3, ..., 3, 1, 2X 2, 2X 4, 2, 0, 2X 1, and
(iv) 2X 1, 0, 2, 2X 4, 2X 2, 1, 3, ..., 2X 3, 2X 1,

respectively, we obtain a labeling in L(2, 1)(G). So (G) < 2x(G) 1. D
Before presenting the next main result, Theorem 2.12, we must introduce further

notation and some auxiliary results.
For each integer k > 2, let

Ki(k) {xi(k),Xi+l(k),...,xi+k-(k)},

for i 1, 2, ..., k + 1, where

xj(k) 2(k j), j) +
for j 1, 2, k. Let Hk be the graph with vertex set

V(Hk) {xl(k),x2(k),...,x2k(k)}

so that
{x, y} e E(H) => x, y e Ki(k),

for some i 1, 2, ..., k + 1. Note that Hk is an r-path for r k i with {Ki(k) i

1, 2, ..., k + 1} as the set of all its maximal cliques. It is clear that the following property
is satisfied.

PROPERTY 2.9. If i < j < are integers and x E Ki k fq Ks k then x Kj k).
Actually, we should mention that Property 2.9 gives us a characterization of interval

graphs. A graph G is an interval graph if we can assign an interval to each vertex so that
edges correspond to pairs of intervals that overlap.

THEOREM 2.10 (Fulkerson and Gross [2]). A graph is interval ifand only ifthere is a
ranking K1, K2, Kp ofall its maximal cliques, which satisfies Property 2.9.

The following lemma provides all the possible sets of labels to be assigned to the
cliques of size k in an arbitrary graph G, by a labeling f L(2, 1)(G) with IIf(G)ll <_
2k 1. This family of sets proves to have an interval graph structure.

LEMMA 2.11. Let G be a graph and let k be an integer greater than 2. Suppose that
there is an f L(2, 1)(G) such that IIf(G)ll _< 2k 1. IfK is a clique ofG with size k,
then f(K) Ki(k)for some i 1, 2, k + 1, where f(K) {f(v) v K}.

Proof. We argue by induction on k. If k 3, then

x1(3)=4, x2(3)=2, x3(3)--0, x4(3)=5, x5(3)=3, x6(3)=1,

and we can check that

K1 (3) {4, 2, 0}, K2(3) {2, 0, 5}, K3(3) {0, 5, 3}, K4(3) {5, 3, 1},

are all the possible sets of labels that can be associated by f to a clique of size 3.
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Suppose that k > 3. Let K be a clique of size k. Since )(K) 2k 2, either 2k 1
or 2k 2, but not both, is in f(K). Let G’ be the graph obtained from G by removing
all the vertices labeled 2k 1 or 2k 2 and the edges incident to them. More formally,
G’ G- X, where X {z V(G) f(z) 2k- 1 or 2k- 2). Let f’ be the restriction
of f to the vertices of G’, i.e., f’(z) f(z) for z V(G’). Note that f’ L(2, 1)(G’)
and II/’(C’)ll < 2k 3 2(k 1) 1. Let v K with f(v) {2k 1, 2k 2}. Then
K’ K v is a clique of size k 1 in G’. By the induction hypothesis f’(K’) Ki(k 1)
for some i 1, 2, ..., (k 1) + 1. However, K(k 1) {2k 1, 2k 2} , for
j=1,2, ,(k-1)+land

K(k) K1 (k 1) U (2k

K+(k)- K(k- 1)U (2k- 1}, i- 1, 2,..., k.

Therefore

f(K) f(K’ U {v}) f’(K’) U {f(v)} Kj(k)

for some j 1, 2, ..., k + 1. U
Finally, the next result gives a characterization of unit interval graphs G on n(G)

2X(G) + 1 vertices with A(G) 2x(G). It essentially shows that the converse in Lemma
2.8 also holds.

THEOREM 2.12. Let G be a unit interval graph on n(G) 2x(G) + 1 vertices and
X(G) > 2. There is a compatible vertex ordering vl, vz, v, such that either

(i) {Vl, VX}, {Vx+2, Vn}, {Vq, Vq+x_ } E E(G) for some 3 < q < x(G), or

(ii) {v, vx}, {vz, vx+}, {vx+x, v,-l}, {vx+, v,} E(G),
ifand only if )(G) 2x(G).

Proof. Suppose first that )(G) 2X(G) under the hypothesis of the theorem and
choose any compatible vertex ordering. Observe that neither one of the items in the
statement of Lemma 2.8 can occur. So one of the above items must occur.

Conversely, suppose that (ii) holds and by way of contradiction that there is f E
L(2, 1)(G) such that IIf(G)ll _< 2x(G) 1. Since vl, v2, ..., v, is a compatible vertex
ordering and {v2, vx+l }, {vx+l Vn_ }

_
E(G), the sets

A {vz, v3, ..., vx+l }, B {vx+l vx+2 ..., Vn-1}

are two cliques with AfqB {vx+1}. Since vx+ has degree 2X-2, IIf(G)ll 2x(G)- 1,
and v+l must get label 0 or 2x(G) i by Lemma 2.6. Suppose that f(vx+ 0 (the
case where f(vx+l) 2x(G) i is symmetric). By Lemma 2.11, the only possible sets
of labels that can be assigned to A or/3 are

KI(X(G)) {0, 2, 4, ..., 2x(a) 2},

Kx(X(G)) {0, 3, 5, ..., 2x(G) 1},

since the vertices in A {vx+l } are at distance two ofvertices in B {vx+ }, so f(A) fq

f(B) {0}. Suppose that f(A) K(x(G)). Since {vx, vx} E(G), {v, v, vx}
is also a clique and f({vz, va, vx}) {2, 4, 2x(G) 2}, the only possible label for
vl is 0. However, Vl is at distance two from vx+l labeled 0. Therefore f(A) cannot be
K(x(G)). Similarly, f(B) cannot be K(x(G)), and we have reached a contradiction.
Hence A(G) 2x(G).
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On the other hand, suppose that (i) holds and, by way of contradiction, assume
that there is f L(2, 1)(G) with IIf()ll -< 2x( ) 1. Since {vx, Vx}, {Vx+,
{vq, Vq+x_ } E(G), for some 3 < q < X(G), and vx, v, ..., v, is a compatible vertex
ordering,

A {v, vz, ..., vx}, B {vx+z v+z, ..., v,}, C {va, vq+, v+x_}

are cliques of size x(G).
By the previous lemma, there are i,j,1 {1, 2, ..., x(G) + 1} such that f(A)

Ki(x(G)), f(B) Kj(x(G)), and f(C) K(x(G)). Since 3 < q < x(G), A f-1 C,
C fq B, A C, B C, and C (A t_J B) are nonempty sets, and A
Clearly, i j. Suppose that i < (the case where i > is similar). If j < l, either
< x(G) or i,j > 2, since Ki(x(G)) f K,(x(G)) and K(x(G)) f3 Kt(x(G))

Then, however, Ki(x(G)) f3 Kj(x(G)) f3 K(x(G)) . This forces the existence of
a vertex v C f3 B and a vertex w A (or, symmetrically, v C f3 A and w B)
such that f(v) f(w). Note, however, that v and w are distinct, since A
and they are at distance at most two, so they cannot get the same label, a contradiction.
Therefore we must have i < < j. Since n(G) 2x(G) + i and we have 2x(G) labels
in {0, 1, ..., 2x(G) 1}, there must exist a label y and two vertices v and w with this
label. However, if v E C, then the distance in G between v and w is at most two, so
f(v) f(w). So v C. Similarly, w C. Then, without loss of generality, v E A
and w B. Then y Ki(x(G)) f3 K(x(G)), and, by Property 2.9, since i < < j,
y Kt (X(G)). However, any vertex in C with label y is distinct from v and w, and it is
at distance at most two from v and w, a contradiction. So (G) 2x(G).

3. Further research. The ultimate objective of our work is to understand Griggs
and Yeh’s Conjecture 1.2, mentioned in the Introduction, by restricting ourselves to the
class of chordal graphs and, in particular, to the class of unit interval graphs. This seems
to be a reasonable way to approach a problem of this surprising difficulty, especially
considering the fact that positive results for very simple classes of graphs are not easy
to obtain. A natural class of graphs to be examined next would be the class of interval
graphs.

Let us close by addressing a few more questions left unsolved in this paper.
(i) Is the upper bound of Theorem 2.2 sharp?
(ii) Generalize Theorem 2.12 for unit interval graphs G with more than 2x(G) + 1

vertices.
(iii) Characterize unit interval graphs G with (G) 2x(G) 2 and with (G)

2x(G) 1 (from Theorem 2.4, we know that 2x(G) 2 < A(G) < 2x(G)).
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POLYHEDRAL CHARACTERIZATION OF
THE ECONOMIC LOT-SIZING PROBLEM

WITH START-UP COSTS*
C. P. M. VAN HOESELt, A. P. M. WAGELMANS;, AND L. A. WOLSEY

Abstract. A class of strong valid inequalities is described for the single-item uncapacitated economic
lot-sizing problem with start-up costs. It is shown that these inequalities yield a complete polyhedral charac-
terization of the problem. The corresponding separation problem is formulated as a shortest path problem.
Finally, a reformulation as a plant location problem is shown to imply the class of strong valid inequalities,
which shows that this reformulation is tight, also.
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1. Introduction. Good integer linear programming formulations for NP-hard prob-
lems are a valuable aid in solving these problems with linear-programming-based solu-
tion methods. One way of improving formulations with strong valid inequalities is by
looking at relaxations or substructures that are polynomially solvable. For such a relax-
ation, contrary to the original NP-hard problem, we may be able to find a complete linear
description. This holds, for instance, for several economic lot-sizing problems. Research
on strong valid inequalities for the uncapacitated single-item economic lot-sizing prob-
lem (ELS), as defined by Wagner and Whitin [17] and Manne [11], started with Barany,
Van Roy, and Wolsey [1], [2], who developed the so-called (/, S)-inequalities. The poly-
hedral structure of generalizations of the economic lot-sizing problem has been the sub-
ject of several papers. Leung, Magnanti, and Vacani [9] and Pochet and Wolsey [13] give
strong valid inequalities for the capacitated ELS. Pochet and Wolsey [12] consider the
extension with backlogging. They describe an implicit characterization of the problem.

We consider the extension of the economic lot-sizing problem with start-up costs in-
cluded (ELSS), i.e., costs for switching on a machine or changing over between different
items. Schrage [15] introduced these costs to distinguish between normal set-up costs,
which are incurred in each period that a certain item is produced, and costs that appear
only in the first of a consecutive set of periods in which an item is produced. Problems
in which start-up costs appear have been studied by Van Wassenhove and Vanderhenst
[16], Karmarkar and Schrage [7] and Fleischmann [4]. The standard dynamic program-
ming formulation of the economic lot-sizing problem with start-up costs can be solved
in O(TlogT) time; here T is the length of the planning horizon (see van Hoesel [5]).

The polyhedral structure of several mixed integer programming formulations for
ELSS was first investigated by Wolsey [18]. For the formulation in a natural set of vari-
ables, he derived a class of strong valid inequalities by generalizing the (/, S)-inequalities
for the corresponding formulation ofthe economic lot-sizing problem (Barany, Van Roy,
and Wolsey [2]). In this manuscript, we further generalize these inequalities to the so-
called (/, R, S)-inequalities. The main result that we present is that these inequalities
imply a complete linear description for this formulation. We use a proof technique due
to Lovfisz [10], which appears to be especially suitable for problems where a greedy al-
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gorithm solves the dual linear program arising from a complete linear description of
the problem (see van Hoesel, Wagelmans, and Kolen [6]). Conditions under which the
(1, R, S)-inequalities are facet-defining are provided by van Hoesel [5]). In addition, we
discuss separation for the (1, R, S)-inequalities by formulating this problem as a set of T
shortest path problems on acyclic networks, each with O(T) nodes.

A related formulation for ELS is the plant location reformulation, in which the pro-
duction variables are split. This formulation has been introduced by Krarup and Bilde
[8]. The plant location reformulation for ELSS is shown to be at least as strong as the
formulation in the original variables. This is done by viewing the inequalities as di-cut
inequalities (Rardin and Wolsey [14]) in a fixed-charge min-cost flow problem. For other
related formulations and similar results, see Wolsey [18] and Eppen and Martin [3].

In 2 ELSS is formulated as a mixed integer programming problem. The (/, R, S)-
inequalities are introduced and shown to be valid. In 3 it is shown that the (/, R, S)-
inequalities provide a complete linear description. The separation algorithm for the
(1, R, S)-inequalities can also be found in this section. In 4 the plant location model is
discussed. Finally, in 5 some concluding remarks are made.

2. Formulation ofELSS: The (1, R, S)-inequalities. Consider ELSS with a planning
horizon consisting of T periods. For each period t, a demand dt must be satisfied by
production in one or more ofthe periods in { 1,..., t}. The costs for production in period
t are ct per unit. If production takes place in period t, a set-up must be performed at
a cost of ft. This is the formulation of ELS as defined by Wagner and Whitin [17]. In
ELSS there are additional fixed costs for start-ups: Each set of consecutive periods in
which a set-up is performed should begin with a period t in which a start-up is performed
at a cost of gt. For reasons of simplicity, in the formulation we present, the inventory
variables are deleted (see, for instance, Wolsey [18] or van Hoesel [5]). ELSS can be
modelled as a mixed integer program with the following parameters and variables.

Parameters:
dt (1 <_ t <_ T)" the demand of the item in period t;
ct (1 _< t _< 7’)" the unit production cost of the item in period t;
ft (1 <_ t <_ T): the set-up cost of the item in period t;
gt (1 <_ t <_ 7’): the start-up cost of the item in period t;
Variables:
zt (1 _< t _< T)" the production of the item in period t;

1 _< t _< T)
1 if a set-up of the item is incurred in period t;

0 otherwise.

(1 _< t _< T) / 1 if a start-up of the item is incurred in period t;
zt

0 otherwise;

T

(1) (ELSS) min (gtzt + ftyt + ctxt),
t=l

T

(2) s.t. E xt d,T,
t--1

(3) E xr>_ dl,t, (1 _< t _< T- 1),
-=1
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(4) y < y_ + z, (Yo --= 0), (1 < t < T),

(5) xt <_ dt,Tyt, (1 _< t _< T),

(6) x > 0, (1 < t < T),

(7) y, z e {0, 1), (1 <_ t <_ T).

By ds,t(1 < s < t < T), we denote the cumulative demand ofthe periods {s,... ,t},
i.e., ds,t -r=s dr.

Constraint (2) restricts production to the total demand over the planning horizon.
Constraints (3) ensure that ending inventory in each period is nonnegative. Constraints
(4) model the start-ups. Constraints (5) force a set-up in a period with positive produc-
tion. Note that (2) and (3) (for t 1) imply the upper bound dt,T on the production in
each period t as mentioned in (5).

The remainder ofthis section is devoted to the description ofthe (1, R, S)-inequalities
and a proof of their validity. Take an arbitrary period E {1,..., T} and let Nt
{1,..., l}. Let S be an arbitrary subset of {1,..., N; } and R be a subset of S, such that
the first element in S is also in R. The corresponding (1, R, S)-inequality is defined as
follows:

(8)
teN\S tER tES\R

where p(t) max{j E SIj < t}. If S fq {1,..., t 1} }, then p(t) O.
Example. 15; S {2, 4, 5, 7, 10, 11, 14}; R {2, 10}. The coefficients of the

left-hand side of the (1, R, S)-inequality are given in the following table:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 1 1

d2,l dlo,!

d4,l d4,l ds,t dT,l dT,l d,t dl4,l d4,l d14,/

The inequalities derived in Wolsey [18] are a special case of the (/, R, S)-inequalities
in the sense that each maximal set of consecutive periods in S should begin with a period
in R there. The above example is not included, because the set {4, 5} does not begin with
an element in R (4 S\R).

LEMMA 2.1. The (/, R, S)-inequalities are valid.

Proof. Take an arbitrary (l, R, S)-inequality as defined above. Denote an arbitrary
feasible solution by (z, y, z) {zt, yt, ztlt 1,..., T}. We prove that this solution
satisfies the (1, R, S)-inequality. We distinguish two cases.

Case 1. S does not contain a period with positive production, i.e., xt 0 for all
t S. Then

xt=xt>dl,t.
tNt\S t=l
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Case 2. S contains a period with production. Let s be the first such period, i.e.,
> 0. First,

tENt\S tENs_l\S tNs_

Now choose 7- as small as possible such there are set-ups in all periods {T,..., s},
i.e., z- y- Y8 1. Since at least one of these variables appears in the left-
hand side of the (1, R, S)-inequality with a coefficient that is at least ds,t, the inequality
is satisfied by this solution.

3. Linear description of ELSS and separation for the (l, R, S)-inequalities. The
main result in this section is that addition of the (/, R, S)-inequalities to the model for
ELSS gives a complete polyhedral description. More precisely, we show the following
result.

THEOREM 3.1. Constraints (2), (4), (6), the variable bounding constraints
0 < Yt, zt < 1 (1 < t < T), and the (/, R, S)-inequalities (8) describe the convex hull
ofELSS.

Note that inequalities (3) are (, , )-inequalities. Inequalities (5) can be derived
from (2) and (8), where S R {) and T.

The technique we use to prove the theorem is somewhat different from the usual
techniques. Basically, the idea is to show that, for an arbitrary objective function, de-
noted by

_
(a+fl + 7zt), the set of optimal solutions, denoted by M(c,/,

satisfies one of the inequality constraints as equality. Clearly, then the inequality con-
straints must include all facets of the convex hull of solutions.

We consider an arbitrary cost function

_
(c + fl + 7z) and we denote its

set of optimal solutions by M(a, 3, ,).
Case O. min{ct It 1,..., T} 6 0.
As ’Tt= zt d,T, we can subtract 6 times inequality (2) from the objective function

without changing the set of optimal solutions.
Thus, in the following, we can assume that min{ctlt 1,..., T} 0.
Case 1.7t < 0 for some t E {1,..., T}.
Any solution with zt 0 can be improved by setting zt 1. Thus M(c,/3, 7) c_

{(x, y, z)lzt 1}.
Case 2. "Tt >_ 0 for all t, t < 0 for some t.
(i)/3t + 7t < 0 for some t.
Any solution with yt 0 can be improved by setting yt zt 1. Thus M(a,/3, 7) c_

(ii) t + "t >_ 0 for all t.
Let s min{tlt < 0}. We show that M(a,/, 7) c_ {(x, y, z)lys_ + z8 ys}. As

% > 0, any solution with ys- z8 1 can be improved by setting z8 0. In addition,
any solution with ys- / z8 1 and y8 0 can be improved by setting y8 1. Thus, the
claim follows.

We are left with objective functions satisfying min{atlt 1,..., T} 0;/t >_ 0
(t 1,..., T); 7t _> 0 (t 1,..., T). In the following, l, S, and R are determined, step
by step, in this order. First, the period is fixed. This is done such that the demands of
the periods {1 / 1,..., T} can be produced at no cost, with respect to the given objective
function. For notational convenience, a period T+1 is definedwith aT+ 0, flT+ 0,
7T+1 0, and the demand of T + 1 is supposed to be positive.
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Choice of 1. Take k and rn (1 < k < rn < T + 1), both minimal, such that . fl
/3, c, 0. The period is chosen as the last period in {1,..., m 1} with

positive demand, i.e., d > 0, and dt+ d,_ 0. If d,,_ 0, then 0.
Case 3. Since d+,,_ 0, any production in the periods {l + 1,..., T} can be

moved to period m at no cost, by taking zk g g, 1.
It follows that (i) if c > 0 for some > + 1, then M(c, 3,-) c_ {(, y, z)lx 0};

(ii) If fl > 0 for some > min{k,/+ 1}, then M(a,,7) c_ {(x,g,z)lg 0}; (iii) If
-/ > 0 for some t > min{k, + 1}, then M(a,3,.) c_ {(x,g, z)lz 0}.

If the contrary holds in one of these cases, then the solution can be improved by
taking the solution mentioned above.

Note that, if 0, then we are finished. In that case, the only objective function
left is the one with zero cost coefficients for all variables. Thus, in the following, we may
assume that > 0. Moreover, we may suppose that, for > min{k, + 1}, we have
/3 - 0, and, for > + 1, we have c 0. We proceed by specifying the choices of
S and R.

Choice of ,.q. S {t < liter 0}.
Choice ofR. R "= {t S[t > 0}.
With regard to the following ease note that, if T, then S is not empty, since

min{atlt 1,..., T} O.
Case 4. If S , then M(a, , /) c_ {(x, y, z)l t=l xt d,z}.
S implies that < T and at > 0 for t {1,..., 1}. Therefore, if It > 0 (the

inventory at the end ofperiod 1), then the production costs canbe reducedby transferring
units ofproduction from the last production period in { 1,..., l} to period l+ 1. Note that

o14-1 lh-1 ")’14-1 0. This proves the claim, since h 0 implies that -t= xt dl,t.
In the following, we may suppose that S # .
Case 5. Suppose that, for some t S\R, there is an s {p(t) + 1,..., t} with/3, > 0.

Then for this t the following holds: M(a,/3, 7) c_ {(x, y, z)ly, + Zs+l "l"’’" "Jr" Zt Yt}.
Note that the equation y, + Z,+l + + zt yt implies that yt- + zt yt (s < t

since t R). Before we proceed, some properties of the coefficients of the variables are
stated. First,/3 > 0 and 3,+x,... ,t 0 (since t R). Second, a,..., at-1 > 0,
since s {p(t) + 1,..., t 1}, and, since t S, we have at 0. Finally, if 7 0
for some T {S + 1,..., t}, then 7 3 t at 0, which implies that
< t, a contradiction. It follows that %+1,..., 7t > 0. Concluding, the variables on the

left-hand side of the constraint y, + z,+ -4-... + zt yt have positive cost coefficients,
and the variable on the right-hand side has cost coefficient zero.

(i) First, suppose that y,+z,+l+.-.+zt > 2. Let u be the first period in {s+ 1,..., t}
in which the variable z,, has value 1. If y 1, then a cost reduction can be achieved by
setting y+,..., y= 1, and z= 0. If y 0, then let v be the first period after u with
z. 1. In this case, a cost reduction can be obtained by setting y= y. 1 and
Zv =0.

(ii) Second, suppose that / + Z+l +... + zt 1 and /t 0. If no produc-
tion takes place in s,..., t 1, then setting 1 / z+ -4- / zt 0 leads to a cost
reduction without losing feasibility. Otherwise, production takes place in one or more
of the periods {s,..., t 1}. Let zt be the last production period in {s,..., t 1}. If
It_ > 0, then production from period u can be transferred to t, at a cost reduction,
since/3,+x fit ct 0, and c,..., ct_ > 0. Thus, we may assume that
It-1 0. Then dt must be zero, since /t 0, which implies that > t. Thus, the
positive demand dt+,l is produced at a positive cost in some of the periods in the set
{t + 1,...,/}; othenvise, would have been chosen smaller (see choice of 1). Now, how-
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ever, it is cheaper to produce this demand in period t at zero cost. Of course, this implies
that y+ t 1, where u is the last production period in {s,..., t 1}.

In the following, we may assume that, for each t S\R, we have p(t)+
t 0. The following case treats the problem, where the first element in S in not in R.

Case 6. If 31 t 0, where t is the first element in S, then we have the
following: M(a, fl,7) c_ {(x,y,z)l t-ET=I Zt dl,t--1}.

By definition of t, we have {1,...,t 1} F3 S ), and thus al,...,at-i > 0.
Moreover, since t E S, we have at 0. If Yl -- -" yt 0, then ET--I Xt 0 dl,t-1.
If yx /’" / yt > 1, then we can produce in t at no additional production costs, and thus,

t--1since al,..., at-1 > 0, we have It-1 0. Therefore, Y’=I xt dl,t-1.
It follows from Case 6 that we may assume that the first period in S is in R.
Case 7. We claim that the (l, R, S)-inequality

(9)
tEN\S

X "4- y dt Y "- dt Zp +l -4-’"-- zt > d
tER tES\R

is satisfied as equality for all points in M(a, , 7).
The following properties concerning the cost coefficients are valid:
For t Nt\S, at > 0, by definition of S;
For t R, t > 0, at 0, by definition of R;
For t S\R, q’v(t)+,-.. ,Tt > 0, since (t)+l =/t at 0. Otherwise,

l<t.
(i) Suppose that yt 0 for all t E R and zv(t)+l + + zt 0 for all t S\R.

Then yt 0 for all t S, which implies that there is no production in the periods of
S. Moreover, the contribution of the variables in the left-hand side of the periods in
S is zero. It remains to prove that teN\S xt dl,t. If It > 0, then the costs can
be decreased by transferring production from the last production period in { 1,..., l} to
+ 1. Recall that a+ +1 7t+ 0. Thus It 0. This proves the claim.
Now take the minimal t S such that yt 1 (if t R) or zv(t)+l +... + zt > 1 (if

t e S\R).
(ii) If t e R, then by the minimality of t this gives the following: (a) For T < t,

7- R, y 0, and (b) For T < t, T S\R, zv()+l,..., z- 0. Since at 0, and
yt 1, the production of dt,l can take place at no additional cost in t. Therefore, the
following hold:

(c) For r > t, r E Nt\S, x 0, since a. > 0,
(d) For - > t, r e R, y 0, since > 0,
(e) For r > t, - S\R, zp()+l z 0, since %()+,...,7 > 0.

Thus, the value of the left-hand side of the (l, R, S)-inequality is reduced to the quantity
ErENt-I\S x’r -f-dt,l. It remains to be proved that YEN,_\Sx equals dl,t-1. Suppose
that It_ > 0. From the minimality of t, it follows that there are no production periods
in SfqNt_1, and therefore we can reduce the production costs by transferring production
from the last production period in Nt_ to t.

(iii) If t E S\R, then let s {p(t) + 1,..., t} be the first period with z 1. By the
minimality of t we have the following:

(a) For - < t, r e R, y 0,
(b) For " < t, e S\R, zv()+l,..., z 0.
Moreover, since t is minimal {s,..., t 1} f3 S , and therefore p(t) < s. Since

/, Bt at 0, the production of dt,t can take place at no additional cost in t.
Therefore
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(c) For 7- > t, 7- E Nt\S, xr 0, since ar > 0,
(d) For 7- > t, 7- E R, yr 0, since fir > 0,
(e) For > t, - S\R, zp(,)+ z 0, since 7p(,)+,..., 7, > 0.
Note that z8+1,..., zt 0; otherwise, the costs can be reduced by setting y8+1

Vt 1. By the minimality of s, it follows that zp(t)+ z,_ 0.
Since the coefficient of z is dr,l, the value of the left-hand side of the (/, R, S)-

inequality is reduced to the quantity -rN,_I\S zt + dt,l. It remains to be proved that

-rN,_\S zt equals dl,t-1. Suppose that lt-x > 0. From the minimality of t, it follows
that there are no production periods in S f Nt-, and therefore we can reduce the pro-
duction costs by transferring production from the last production period in Nt-1 to t.

This ends the proof of the theorem. The following theorem shows which of the
(/, R, S)-inequalities define facets ofthe convex hull ofELSS (for a proof, see van Hoesel
[5]).

THEOREM 3.2. Suppose that the demands dt (1 < t < T) are positive. The (1, R, S)-
inequalities definefacets, ifand only ifthefollowing conditions hold. 1 S # 0 and < T
or IRI 1.

A separation algorithm for the (l, R, S)-inequalities. Here, we show that the separa-
tion algorithm for the (l, R, S)-inequalities can be formulated as a shortest path problem.

We fix I. Then we define the following three nodes for each t E {0, l}" ut, vt,
and wt. Moreover, a starting node no and an ending node n, are defined. There are the
following three arcs with no as a tail: (no, u0), (no, v0), and (no, w0) all with zero costs.
Moreover, there are the following three arcs with head nt" (ut, nt), (vt, n,), and (wt, nt),
also with zero costs. To model the (1, R, S)-inequalities in a network, we define three
types of arcs, below:

Type 1. arcs (ut-, ut), (vt_, ut), (wt-, ut) with cost
Type 2. arcs (ut-, vt), (vt_, vt), (wt-, vt) with cost dt,tyt,

t-1Type 3. arcs (vp(t), wt), (wp(t), wt) with cost ’r=p(t)+ xr + -r=p(t)+ dt,lzr.
Each path in the network corresponds to the left-hand side of a unique (/, R, S)-

inequality. In particular, the nodes {vt} and {wt} correspond to the sets R and S\R,
respectively. Therefore, the shortest path in the network can be compared with d,, to
find a violated (1, R, S)-inequality for a fixed 1. See Fig. 1.

There are O(l) arcs in the network, and, since it is acyclic, the slaortest path problem
in the network can be solved in O(12) time. Repeated for each period {1,..., T},
this leads to an O(Ta) algorithm to find the most-violated (1, R, S)-inequality. This is to
be compared with the single max-flow calculation on a graph with O(T3) nodes derived
in Rardin and Wolsey [14].

4. The uncapacitated facility location reformulation of ELSS. In this section, we
consider the uncapacitated facility location reformulation ofELSS (ELSS-UFL) in which
the production variables are split. The variables zt,r (1 <_ t < 7- <_ T) are introduced as
the production of the item in period t to satisfy demand in period 7-. Clearly, the con-
nection with the original production variables is zt -r=t Zt,r. ELSS-UFL is modeled
as follows:

(10) (ELSS-UFL)

(11) s.t.

min gtzt -t- ftYt q- ct xt,r
t=l r=t

Ext,r =dr, (1 _< 7- _< T),]
t=l
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Ut-- 0

0

Ut

Vt--I Vt

Wt--I Wt

u_ O 0u

Vt--1 0 Vt

Wt--1( costs dt,lYt o wt

uv(t)o 0 ut

t--1costs ’’=p(t)+l X- 4- -’=p(t)+l dt,tzr
v(t)o....

wv(t)

Fro. 1. Arcs in the networkfor the separation problem.

0 vt

0wt

(12) Yt < Yt- + zt, (Yo 0) (1 < t < T),

(13) xt, < dyt, (1 < t < T < T),

(14) xt, > 0, (1 < t < r < T),

(15) yt, zt e {0, 1}, (1 _< t < T).
The LP-relaxation of ELSS-UFL is not tight, in the sense that it still allows frac-

tional solutions. By adding the following constraints, the so-called (r, s, T)-inequalities,
we get a reformulation of ELSS, which is at least as strong as the formulation given in
the previous section.

Letl <_r<_8<_T<_T,

E
tEN\{r s}

xt, + d(y + zr+i +... + zs) > dr

These inequalities can be found in Wolsey [18]. The (r, s, -)-inequalities can be
viewed as cuts in the following fixed-charge multicommodity network flow problem. The
flow network consists of the following vertices and arcs. There is a source s, and there
are the following three layers of nodes: {ut[1 <_ t _< T), {vt[1 < t < T}, and {wt[1 <_
t<T}.

The arcs (s, ut), (1 < t < T) model the fixed start-up charges; i.e., if such an arc
contains a positive flow, then zt 1.
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The arcs (ut, vt), (1 < t < T) model the fixed set-up charges.
The arcs (vt, ut+l), (1 < t < T 1) are included to allow for multiple set-ups in

consecutive periods without a start-up in these periods.
The arcs (vt, wt), (1 < t < T), model the production in period t.
The production is exactly equal to the flow through the arc. Finally, the flows through

the arcs (wt, wt+1), (1 < t < T- 1) denote the inventory at the end ofperiod t or, equiva-
lently, at the beginning ofperiod t+ 1. There are T different commodities r, (1 < r < T)
in the network, consisting of the source s and sink w, and with a demand of dr units
of flow. For a commodity r, the flow through the arcs (vt, wt), (1 < t < r) is the pro-
duction in period t for period r, and therefore it is denoted by mr,,.. The arcs (wt, Wt+l),
(1 < t < r 1) contain the inventory at the end of period t for demand in period r. It
is denoted by lt,..

Example. Consider a feasible flow of dr units of a given commodity r. The flow
"through" a cut (V, W) separating s and w is at least dr units. For each type of arc, we
can derive an upper bound on the flow through such arcs as follows. The flow through an
arc (s, ut) is bounded bydzt, the flow through an arc (ut, vt) is boundedby dyt. Finally,
the flow through an arc (vt, wt) equals zt,. We consider cuts that "contain" these types
of arcs only. In that case, it follows trivially that the sum of these upper bounds for all
arcs in the cut, constitutes an upper bound on the flow d. See Fig. 2.

z z2 z3

u

vt

Y:

Wt
1,7 2,7 3,7

Z4 Z5 Z6 Z7

I 15 16 7 td
FIG. 2. Fixed-chargeflow network.

The cut (V, W) that constitutes the validity of the (r, s, T)-inequality is the following:

V {s, u,..., u, u+,..., u, v,..., v_, v+,..., v};

Clearly, we may take more closed intervals {r,..., s}, as long as they are mutually
disjoint. In fact, for a given l, R, and S, we take the maximal closed intervals that start
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with a period in R and end with a period in S\R such that no intermediate periods are
in R. This leads to the following valid inequality for r"

xt,+ dyt+
tN\S tR tSr\Rr

d zp( +x +’" + zt >_ d

Here R N fq R and S N fq S. Addition of these inequalities for T 1,...,
results in the (/, R, S)-inequality. This result can be found in Rardin and Wolsey [14].
There it has been shown that the (r, s, T)- inequalities are so-called di-cut inequalities in
the uncapacitated fixed-charge network flow model.

Note. Ifthe demands in all periods are positive, we can obtain a more compact model
than ELSS-UFL. The latter contains O(T3) constraints. This can be reduced to O(T2)
as follows. ELSS has always an optimal solution in which xt,/d are nonincreasing in 7-

(t fixed). A simple exchange argument then shows that the (r, s, s)-inequalities suffice.

5. Concluding remarks. We characterized the convex hull of the set of feasible so-
lutions of ELSS by use of the (/, R, S)-inequalities and we provided a separation algo-
rithm for these inequalities. This formulation has O(T) variables and an exponentional
number of constraints. In addition, we showed that the uncapacitated facility location
reformulation is tight. This formulation has O(T2) variables and O(T3) constraints. If
the demands are strictly positive, the number of constraints can be reduced to O(T2).

These results are of a purely theoretical nature. It is therefore hard to judge which
of the two formulations is better used in practical problems in which ELSS appears as a
relaxation.
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A NOTE ON MULTISET PERMUTATIONS*
LILY YENt

Abstract. The author studies permutations ofthe multiset { 1,1, 2, 2,..., m, m, m+1, m+2,..., n} such
that 1, 2,..., n occurs as a not-necessarily consecutive subsequence. From the theory of symmetric functions,
the generating function for the number of these permutations is known [Goulden and Jackson, Combinatorial
Enumeration, John Wiley, New York, 1983, p. 73]. It is used to obtain a recurrence relation and then to give a
purely combinatorial proof of the recurrence.
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1. Introduction. We want to give a combinatorial proof of the following theorem.
THEOREM. Let :[m (n) be the set ofperrnutations ofthe multiset

{1,1, 2, 2, m, m, m + 1,m + 2,...,n}
such that 1, 2,..., n occurs as a not-necessarily consecutive subsequence. Let lm(n) denote
the cardinality of:[, (n). Then

(1) Im+t(n) (n + 2m)Im(n) m(n + m)In_(n),
where m > 1, n > 1, Io (n) 1, and Ix (n) r

H. S. Will pointed out that this is implied by a theorem of Gessel [G, p. 261].
Notation and definitions. We say that a permutation of a multiset has an n-increasing

subsequence, if 1, 2,..., n is a not-necessarily consecutive subsequence of the permuta-
tion. We use t to denote multiset union. We call a letter x in a permutation of a multiset
inessential if it appears in no n-increasing subsequence, otherwise essential. We use In]
to denote the set { 1, 2,..., n}. Let x [n] and let S be a (k 1)-subset of [n] that does
not contain x. We define (x, S) (respectively, (x, S)) to be the set of all permutations
of the multiset In] t S t {x} with an n-increasing subsequence such that both copies of x
are essential and the set of all letters that occur between the two copies ofx is a nonempty
(respectively,possibly empty) subset of S.

To prove the theorem, we need the following lemma.
LEMMA 1. Let S be a k 1)-subset of In] and let 7" be the set ofpermumtions of In] S

with an n-increasing subsequence. Then 17"1 Ik_ (n).
Proof. The result is true for all such sets S if it is true for one such. If S [k 1],

however, then the assertion is just the definition of Ik- (n). [q

2. Description of the sets ’Dm+ and Qmo
LEMMA 2. Let x [n] and let S be a k 1)-subset of [n] that does not contain x. Then

(n + k 1)Ik_ (n) Ik(n) is the cardinality of(x, S).
Proof. Let 7" (respectively, 7"" ) be the set of permutations of [hi @ S (respectively,

In] t S @ {x}) that have an n-increasing subsequence. We identify a set of permutations
that are counted by the expression (n / k 1)Ik_ (n) Ik(n). Note that, by Lemma 1,
1’1"’] Ik-l(n) and [T"[ Ik(n). For each permutation a’ in T’, we construct n + k 1
distinct permutations by successively inserting x into each of the n+ k available slots and
noting that two of these slots, namely, the two that surround the copy of x that is already
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research was supported in part by the Natural Sciences and Engineering Research Council of Canada.
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present, give the same result. As a’ runs through all elements of T’, we create a multiset
that is counted by (n + k 1)I-l(n), since 17"1 I_1 (n) by Lemma 1. It remains to
identify the permutations that have been doubly created in this construction.

Let ’ be the set of T E 7" such that one of the two copies of x E T is inessential.
We claim that a permutation Tk has been double-counted if and only if T .’ and its
two copies of x are not adjacent. First, if k E ’, then T has been counted only once
because the deletion of the z that is inessential yields a a’ E 7"’. The map is reversible.
Second, suppose that T
has been counted only once because the deletion of either copy of z yields the same T.

The map is also reversible. Third, ifT ’k and its two copies ofx are not adjacent, then
T has been counted twice, which completes the proof of the claim. The permutations
that are doubly counted are exactly all the permutations in (x, S). Thus the lemma
follows.

Now we prove the theorem.
Proofoftheorem. Let n be fixed, Ira(n) be denoted by 2m, and 1,(n) be denoted by

I,,. We prove (1) or the equivalent form

(2) (n + m)Im Im+ m((n + m)Im- I.).
We identify a set, 79+, of permutations that are counted by the left side of (2).

By Lemma 2, with S [m] and x m + 1, we conclude that the left side of (2) is
I(m + 1, [m])l. Thus we can take ’+ (m + 1, [m]).
We identify a set Q, of permutations that are counted by the right-hand side of (2).

We claim that
m

e-, U v(j, [-] \ {J})
j’-I

is such a set.
Proofofclaim. First, we show that [(z, S)[ (n + m)I,_ I,,, where z Ira]

and S [m] \ {z}. Since 9(z, S) \ (z, S) is the set of permutations of the multiset
[m] t In] with an n-increasing subsequence such that the two copies of z are adjacent and
every permutation p in 9(z, S) \ (z, S) corresponds to a permutation of the multiset
S t In] with an n-increasing subsequence simply by the deletion of a copy of z in p,
19(z, S) \ (z, S)I I,-1. By Lemma 2, we obtain

I(, S)l ( + m 1)lm_: lm+ Ira-1
(n -t- m)Im-1 Ira.

It remains to account for the factor of m on the right of (2). Since for each x Ira] and
S [m] \ {x}, we have (n + m)I,_ I, Ig(x, S)I. We thus conclude

m

U V(x, [m] \ {})
x---1

(( + m),_ z)

and
m, U g(x, [.] \ {}).

3. Description of a bijection between T’.+I and Q,. Given a permutation where
both copies of z are essential, we let the subscript F (respectively, L) denote the first
(respectively, last) copy of z as z occurs in the permutation. We define a map g
79m+1 as follows: Given a permutation in I,(z, [m] \ {z}), if z < m, g first inserts a new
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copy ofm + I into the position immediately preceding zL, then it moves m + 1, ZL, and
everything from ZL up to, but not including, the last essential copy of z+ 1, as a block, to
the place immediately preceding the old copy of m + 1. If z m, then g simply inserts
a new copy of m + 1 into the place immediately before mL.

To check that the image of g is in 7,,+1, we only need to check that both copies of
m / I are essential. First, we consider the case where z < m. The old copy of m + 1 is
essential because there is an n-increasing subsequence using ZF, the last essential copy
of z + 1, and the old m + i before g is applied. Since g alters a block that is not used
in the formation of an n-increasing subsequence and leaves the rest intact, the same n-
increasing subsequence still exists after # is applied. The new copy of m + 1 is essential
because the same n-increasing subsequence using zF, the last essential copy of z + 1 in
the old permutation, and the old m/1 can now use the newm/1 to form an n-increasing
subsequence by the action of g. In the case where z m, # does nothing but inserting a
new copy ofm + 1 into the place immediately before mL. Hence, the old copy ofm + 1
is still essential. The new copy ofm + 1 is also essential in an n-increasing subsequence
using mr.

We define a map f 79,+1 Qm as follows: (We will show that f #-1.) For every
element in 79,+1, f locates the (nonempty) segment sandwiched between the two copies
ofm+ 1 and notes the letter y that appears immediately after (m+ 1)F. If y < m, then f
deletes (m+ 1)F and moves the segment (excluding m+ l’s) to the position immediately
before the last essential copy of y + 1 outside the segment. If y m, then f simply
deletes (m +

To check that the image of f is in Q,, we only need to show that both copies of
y are essential. First, we consider the case where y < m. Before f is applied to a
given permutation in 79,+x, the permutation has an n-increasing subsequence such that
(m + 1)L is used and, before (m + 1)F, it contains y, y + 1, and m, where the y + 1
used is the last essential one before (m + 1)F. Since f deletes (m + 1)F and moves
the segment sandwiched between the (m + 1)’s with y as its first .member to the place
immediately before the y+1 used in the n-increasing subsequence, the same n-increasing
subsequence that does not contain (m + 1)F can use the newly allocated y instead of the
old y. Thus both copies of y are essential. If y m, then there is an essential m before
(m + 1)F, and an m(= y) immediately after (m + 1)F, before f is applied. After f is
applied, i.e., the deletion of (m + 1)F, there are two copies of m placed before m + 1.
Thus both copies of m are essential.

It is easy to check that fo9 is the identity mapping on Q,; gof is the identity mapping
on 7,+1. Thus, we have exhibited a bijection between Q, and T’,+I.
An example ofthe actions of f and g. Let n 9, m 5, and

p 312324564567189.

The segment between two 6’s is 45; thus y 4 and y / 1 5. Since there is only one
essential y / 1 outside the segment between two 6’s, f puts 45 in front of 5 and deletes
6 to obtain

a 31232445567189.

Next, let z 4, n 9, m 5, and S [5] \ {4} ( 1, 2, 3, 5}. Note that z < m. By the
definition of #, 6 is inserted in front of the second copy of 4, then the block 645 is moved
to the place immediately before 6, giving

g(a) 312324564567189.

The example also shows that # o f(/9) p.
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A generalization. I. M. Gessel found the following theorem.
THEOREM. Let r be a positive integer. Then the number ofpermutations ofthe multiset

.. Ttr{1r+l 2r+’ .,mr+’ (m+ 1)r,...,

containing 1, 1,..., 1, 2, 2,..., 2,..., n, n, n (r copies ofevery letter) as a not-necessar-
i!y consecutive subsequence is the coe]ficient ofx"/m! in

(1-z)-‘rn+’) exp (1-___r)
From Gessel’s generating function, we have the following theorem.
THEOREM. Let:(n) be the set ofpermutations ofthe multiset

{lr+’, 2r+’,... ,mr+’, (m + 1)r, (m + 2)r,... ,nr}
such that 1, 1,..., 1, 2, 2,..., 2,..., n, n,..., n (r copies of every letter) occurs as a not-
necessarily consecutive subsequence. Let I, (n) denote the cardinality of:(n). Then

+ + +
where n > rn > 1, r > 1, I0 (n) 1, and I1 (n) rn + 1 r.

In the following equivalent form of the recurrence

(rn + m + 1 r)Im Ira+, m((rn + m)Im-, Ira),
we can use the techniques in the proof of the theorem to identify two multisets and find
a bijection between them.

Acknowledgments. I thank H. Will for introducing me to this problem and for a
number of comments that have improved the presentation. I also thank I. M. Gessel for
communicating his generalization to me.
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INDIFFERENCE DIGRAPHS: A GENERALIZATION
OF INDIFFERENCE GRAPHS AND SEMIORDERS*

M. SEN AND B. K. SANYAL*

Abstract. Indifference digraphs, an analogue of indifference graphs, are introduced. They are shown to be
equivalent to two restricted classes of interval digraphs, unit interval digraphs and proper interval digraphs, also
introduced in this paper. These digraphs are characterized in terms of their adjacency matrices and in terms of
a generalized concept of a semiorder. The results generalize the corresponding results for undirected graphs and
provide a generalization of the Scott-Suppes theorem characterizing semiorders.
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1. Introduction. Indifference graphs were introduced and studied by Roberts [9].
An undirected graph is an indifference graph if there exists a real-valued function fon
the vertices such that vertices u, v are adjacent if and only if If(u) -f(v) < 1. We may
call fan indifference representation of G. Roberts characterized indifference graphs and
proved that they are equivalent to proper interval graphs (intersection graphs of intervals
in which no interval properly contains another) and to unit interval graphs (intersection
graphs of unit-length intervals). In this paper, we generalize these results to directed
graphs.

We first introduce an analogue of indifference graphs for directed graphs (hence-
forth "digraphs"). A digraph with edge set E is an indifference digraph if there exists an
ordered pair of real-valued functions f, g on the vertices satisfying uv E if and only if
If(u) g(v) < 1. Here f(v) and g(v) are called the source value and sink value of the
vertex v, respectively, and the pairf, g is called an indifference representation. Interchanging
the source value and sink value of each vertex shows that the converse of an indifference
digraph (obtained by changing the direction of each edge) is also an indifference digraph.
A complete digraph (that is, a digraph in which every ordered pair of vertices forms an
edge including the loops) is also an indifference digraph, as can be seen by assigning
arbitrary source and sink values all within the interval [0, ].

Beineke and Zamfirescu and Sen et al. introduced and studied (in different
contexts) a natural analogue of intersection graph models for directed graphs. Let V be
a finite family of ordered pairs of sets and assign a vertex v to each ordered pair. The
first set assigned to v is called its source set S, and the second set is its sink set T. The
intersection digraph of the family of pairs is the digraph D (V, E) such that uv E if
and only if S fq T 4: . An interval digraph is the intersection digraph of a family of
ordered pairs of intervals on the real line; these were characterized in [11] and [12].

By placing constraints on the source and sink intervals, we introduce two types of
interval digraphs. Unit interval digraphs are interval digraphs with interval representations
such that all the source intervals and sink intervals have unit length. Proper interval
digraphs are interval digraphs with representations such that no source interval properly
.contains another source interval, and no sink interval properly contains another sink
interval. Note that there is no restriction on the inclusion relationship between a source
interval S and a sink interval T.

Received by the editors January 31, 1990; accepted for publication (in revised form) August 20, 1992.
Department of Mathematics, North Bengal University, Darjeeling, Pin 734 430, West Bengal, India.
Department of Mathematics, University College, Raiganj, W. Dinajpur, Pin 733 134, West Bengal, India.

157



158 M. SEN AND B. K. SANYAL

Given an indifference representation f g, setting Su If(u) 1/2, f(u) + 1/2] and
T [g(u) 1/2, g(u) + 1/2] for all u provides an interval representation. Hence every
indifference digraph is an interval digraph; indeed, it is a unit interval digraph, since
these intervals have length 1. Conversely, settingf(u), g(u) to the midpoints of Su, Tu in
a unit interval representation yields an indifference representation, so indifference digraphs
are precisely the unit interval digraphs. Section 2 contains an explicit interval digraph
that is not an indifference digraph.

Making use of the characterizations of interval digraphs in 11 ], we give character-
izations of the more restricted classes to prove that the classes of indifference digraphs,
unit interval digraphs, and proper interval digraphs are all the same. The most important
characterization, from which others are obtained, is a characterization of the adjacency
matrices ofthese digraphs. We say that a 0,1-matrix has a monotone consecutive arrange-
ment if there exist independent row and column permutations exhibiting the following
structure: The O’s of the resulting matrix can be labeled R or C such that every position
above or to the fight of an R is an R, and every position below or to the left of a C is a
C. The name arises from an equivalent restatement of the condition described in 2.

Roberts [9] proved equivalence for the analogous classes of undirected graphs. Our
results reduce to the earlier results on undirected graphs when we view undirected graphs
as symmetric digraphs with loops (i.e., symmetric and reflexive binary relations). The
adjacency matrix ofthe corresponding digraph is obtained by adding l’s on the diagonal;
this is called the augmented adjacency matrix A*(G) for an undirected graph G. A sym-
metric digraph with loops has an indifference representation if and only if it has an
indifference representation with f g, because the symmetry implies that averaging f
and g will not change the resulting edges. Conversely, every indifference representation
with f g yields a symmetric digraph with loops. This establishes a bijection between
indifference graphs and indifference digraphs representable usingf g.

Hence our characterization implies that G is an indifference graph if and only if
A*(G) has a monotone consecutive arrangement. This reduces to the Roberts character-
ization [8] that G is an indifference graph if and only ifA*(G) has a column permutation
so that the l’s appear consecutively in each row (called the consecutive ones propertyfor
rows). A monotone consecutive arrangement exhibits the consecutive ones property for
both rows and columns. Conversely, the symmetry ofA* allows us to apply any column
permutation also to the rows to achieve the consecutive ones property for each simul-
taneously, while leaving l’s on the diagonal; this is a monotone consecutive arrangement.

In fact, this correspondence between indifference graphs and special indifference
digraphs holds in the more general setting of interval graphs. A graph G is an interval
graph if and only if the corresponding symmetric digraph with loops G* is an interval
digraph, because an interval representation for G* becomes an interval representation
for G when S [a, b] and T [c, d] are replaced by I [(a + c)/2, (b + d)/2]. The
details ofthis proofwill appear in 13]. The effect is that some ofthe results about interval
graphs are actually special cases of the results about interval digraphs in [11 and 12].

Roberts introduced indifference graphs as a graph-theoretic concept related to
semiorders, which are a special type of binary relation. In discussing a binary relation P,
we use the notation xPy, xy P, and x -- y interchangeably, corresponding to the
following several equivalent notions: (1) P as a binary relation, (2) P as the set of ordered
pairs of a relation, and (3) P as the edges of a digraph. We use whichever notation is
convenient. Luce [6] and Scott and Suppes [10] defined a semiorder to be an irreflexive
binary relation (loopless digraph) satisfying (1) ab, cd P implies aPd or cPb and (2) ab,
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bc P implies aPd or dPc, where, in each case, a, b, c, d are arbitrary (not necessarily
distinct) elements (or vertices). The Scott-Suppes theorem 10] characterizes semiorders
as those binary relations P for which there exists a real-valued function fsuch that xPy
if and only iff(x) > f(y) + for some constant 6 (which can be taken to be 1). This
condition expresses P as a transitive orientation of the complement of an indifference
graph; hence we call f a coindifference representation. When viewing an indifference
graph as a symmetric digraph with loops, this result was rephrased by Roberts [9] by
saying that a graph with edges E is an indifference graph ifand only ifthere is a semiorder
P such that/ P LJ p-l, where P- is the digraph obtained from P by reversing the
directions on all the edges.

We introduce a generalization of semiorders that behaves in the analogous way for
indifference digraphs. We obtain the Scott-Suppes theorem and Roberts’s rephrasing of
it as special cases of the resulting theorem. We define a generalized semiorder to be a
pair of disjoint binary relations (edge-disjoint digraphs) H, H2 on the same set such that
(1) aHib and cHid imply aHid or cHib (i s { 1, 2}), (2) aHb and cHub imply aHd or
cHzd, and (3) aHb and aHzc imply dH b or dHzc, where a, b, c, d are arbitrary (not
necessarily distinct) elements.

Observe that if H2 Hi-1, then conditions (2) and (3), directly above, coincide, and
disjointness forbids loops, so that H, H are semiorders. We prove that a digraph with
edge set E is an indifference digraph if and only if there is a generalized semiorder H,
H on the vertex set such that E H tA H2. In particular, we prove the following
generalization of the Scott-Suppes theorem: (H, H2) is a generalized semiorder on the
elements A if and only if there are two functions f, g: A -- R such that xHy ,f(x) >
g(y) + and xHy g(y) > f(x) + 1. The two functions f, g are called a coindifference
representation.

To obtain the Scott-Suppes theorem as a corollary, suppose that H is a binary
relation and let H H, H2 H-. If H has a coindifference representation f (with
threshold 1), then xHy if and only iff(x) > f(y) + and similarly xHy if and only if
f(y) > f(x) + 1. Hence (H, H2) is a generalized semiorder, which implies that H is a
semiorder as noted above. Conversely, suppose that H is a semiorder. This implies that
(H, H2) is a generalized semiorder, so we obtain a coindifference representation f, g
satisfying xHy , f(x) > g(y) + and yHx , g(x) > f(y) + 1. Let h(x) [f(x) +
g(x)]/2. If xHy, then h(x) > h(y) + 1. If h(x) > h(y) + 1, then xHy or yHzx, i.e., xHy,
and h is a coindifference representation of H.

We note that other generalizations of semiorders have been introduced, including
the bisemiorder of Ducamp and Falmagne [4] and the double semiorder of Cozzens and
Roberts [3]. In both cases, some analogues of the results on undirected graphs were
obtained.

2. Properties of adjacency matrices. We observed earlier that every indifference
digraph is an interval digraph. We will need the characterizations of interval digraphs.
First, a digraph is a Ferrers digraph or Ferrers relation if it satisfies condition (1) in the
definition of semiorder: ab, cd P implies aPd or cPb. This definition, introduced by
Riguet [7], is equivalent to forbidding the adjacency matrix to have a 2 2 submatrix
that is a permutation matrix, or to requiting the successor sets (or predecessor sets) to
be ordered by inclusion. The name arises from another characterization: The rows and
columns of the adjacency matrix of a Ferrers digraph can be independently permuted
so that the positions of the l’s form a Ferrers diagram.
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THEOREM (see [11], [12]). For a digraph D, thefollowing are equivalent:
(1) D is an interval digraph;
(2) D is the union oftwo disjoint Ferrers digraphs;
(3) The rows and columns ofthe adjacency matrix ofD can be permuted indepen-

dently such that each 0 can be labeled with R or C in such a way that every position to
the right ofan R is an R and every position below a C is a C.

A matrix satisfying condition (3), above, has the partitionable zeros property; note
that it is a weaker form of the monotone consecutive arrangement condition described
earlier. This characterization enables us to show that the indifference digraphs are properly
contained in the interval digraphs.

Example (an interval digraph that is not an indifference digraph). The adjacency
matrix below satisfies the characterizations above, so the corresponding digraph is an
interval digraph:

0 0

0 0"
0 0 0 0

Let v, I)2, 1)3, I)4 denote the vertices in order and suppose that there is an indifference
representation with f(vi) f and g(Pi) gi. All sink values must lie in the interval
[J 1,j + ]. Since edges are determined by absolute value off gj, we may assume
that g4 > J. Now the O’s in rows and 3 forcef,J <j, and then g3, g > J. However,
a 2 2 permutation submatrix has no indifference representation in which both source
values are less than both sink values; the larger source value must be more than away
from one of the sink values, which then cannot be within distance of the smaller
source value.

A more straightforward characterization ofinterval digraphs in 11 can be restricted
in a natural way to characterize proper interval digraphs. A generalized complete bipartite
subdigraph (GBS) of a digraph is a subdigraph consisting of vertex sets X, Y and edges
from all ofX to all of Y. The word "generalized" indicates the fact that X, Y need not
be disjoint; any submatrix of l’s in the adjacency matrix yields a GBS. IfB {(Xk, Yk)}
is a collection of GBSs, we can form the incidence matrix between the vertices V and
the source sets {X }, called the V, X-matrix, and similarly the V, Y-matrix between the
vertices and sink sets. Since the rows in the two matrices can be viewed as source sets
and sink sets, with the GBSs corresponding to elements that can be placed in order along
a line, we obtain the following result.

THEOREM 2 (see [11]). A digraph is an interval digraph ifand only if its edges can
be covered by a collection ofGBSs B that can be indexed so that the l’s in each row of
the V, X-matrix and the V, Y-matrix appear consecutively.

To obtain proper sets of intervals, we want the resulting matrices to have the proper
consecutive ones property (for rows) introduced by Fishburn [5]. This is defined to be the
existence of a column ordering so that the l’s in each row appear consecutively and do
not properly contain the l’s in any other row. Such an ordering "exhibits" the property.
By transforming a proper interval representation into GBSs corresponding to the endpoints
of all intervals, and conversely by transforming membership in an appropriate sequence
of GBSs into intervals, we obtain the following result.

THEOREM 3. A digraph is a proper interval digraph ifand only if its edges can be
covered by a collection ofGBSs B that can be indexed so that the l’s in the rows ofthe
V, X-matrix and in the rows ofthe V, Y-matrix exhibit theproper consecutive ones property.
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Note that, given a matrix with the proper consecutive ones property for rows, we
can permute the rows to exhibit a monotone consecutive arrangement. The converse
does not hold, as a monotone consecutive arrangement allows proper inclusion of l’s in
rows. We see in Theorem 5 that the condition ofTheorem 3 for proper interval digraphs
is equivalent to requiting the weaker monotone consecutive condition for the incidence
matrices of some family of maximal GBSs that cover D. We will need a rephrasing of
the monotone consecutive condition that focuses explicitly on how the l’s in rows must
behave. The following characterization is the source ofthe name "monotone consecutive
arrangement." Note that zero rows or columns can be placed at the bottom or fight
without affecting the existence of a monotone consecutive arrangement.

LEMMA 1. A O, l-matrix with n nonzero rows has a monotone consecutive arrange-
ment if and only if it has independent row and column permutations such that the l’s
appear consecutively in each row and the values {ai } and { bi } denoting the initial column
andfinal column ofthe interval of l’s in row satisfy al <- <- an and b <_ <_ bn.

Proof. The labeling of the O’s in a monotone consecutive arrangement guarantees
ag_ _< ag and bg + >_ bg. Conversely, ifMis permuted so sequences a and b are monotone,
let a 0 in position (i, j) have label C ifj < ai, or label R ifj > bi. By construction, the
labeling condition is satisfied in rows, and monotonicity ofthe sequences guarantees that
it is satisfied in columns.

Finally, it is worthwhile to note that, although a monotone consecutive arrangement
implies the consecutive ones property for both rows and columns, the converse does
not hold.

Example (continued). The adjacency matrix shown in the previous portion of
this example has the consecutive ones property for both rows and columns, but it does
not yield an indifference digraph. By the characterization we claim, it thus does not have
a monotone consecutive arrangement. For clarity and motivation, we give a short direct
proof of that. In a monotone consecutive arrangement, the O’s of a 2 2 permutation
submatrix cannot be both C or both R. By symmetry of v and v3 in this digraph, we
may assume that the 0 in position (1, 3) is labeled R and that the 0 in position (3, 1) is
labeled C. Since row 2 has all l’s, it thus must be under row and over row 3 in any
monotone consecutive arrangement. This implies that the O’s of column 4 cannot be
both C or both R. With one of each in these rows, column 4 must occur after column 2
and before column 2 in any monotone consecutive arrangement, which is impossible.

3. Equivalence of digraph classes. In this section, we prove characterizations ofthe
digraph classes we have been considering. First, we characterize the adjacency matrices
and show that the classes are equivalent.

THEOREM 4. IfD is a digraph, thefollowing conditions are equivalent:
(a) D is an indifference digraph;
(b) D is a unit interval digraph;
(c) D is a proper interval digraph;
(d) The adjacency matrix ofD has a monotone consecutive arrangement.

Proof. We noted (a) <= (b) (c) in the Introduction. For (c) (d), suppose that
D is a proper interval digraph. By Theorem 3, we have a collection B {(Xk, Yk)) of
GBSs that cover D, such that, for the V, X- and V, Y-matrices, the l’s in each row appear
consecutively and do not properly contain the l’s of any other row. We may assume
that each row has a 1; otherwise, the corresponding row or column of the adjacency
matrix can be placed at the end, which will not affect the existence of a monotone
arrangement.
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Let a(v), b(v), respectively, denote the first and last columns containing in the row
of the V, X-matrix corresponding to v; similarly, define c(v), d(v) from the V, Y-matrix.
Index the vertices u un so that a(u) < < a(un); the proper consecutive ones
property also implies that b(ul) < < b(u,,). Similarly, index them as vl v so
that c(vl) <- < c(v,,) and d(vl) < < d(v,,). Let ai a(ui), be b(ui), Cj

d(vi). We may assume that all source sets and sink sets are nonempty, which means
that, for any (Xk, Yk) e B, there exist i, j such that k e [ai, bi] and k e [c, d].

We claim that the row ordering ul, u and column ordering vl, v, of the
adjacency matrix exhibit a monotone consecutive arrangement. The edges with tail ui
are covered by the GBSs with source sets X,i, Xbi; hence the successors (out-neighbors)
of ui are Yai I,.J I,,J Ybi. Let ai min {j: ai - [Cj, dj]} and/i max {j: bi [Cj, dj]}.
The proper consecutive ones property of the V, Y-matrix (and lack of 0 rows, except
possibly at the end) implies that the ones in row of the adjacency matrix are { j:
J < fli . It also implies that ai <- ai +1 because ai <- ai +, and that i /i+ because bi <-
bi +1. By Lemma 1, we have a monotone consecutive arrangement.

To prove (d) (a), we take a monotone consecutive arrangement of an m by n
0,1-matrix Mwith rows ul,..., Um and columns vl,..., vn and construct an indifference
representation, writingf f(ui) and g; g(v). To avoid technical degeneracies, we use

A0induction on m + n. In particular, if the matrix has a 0 decomposition, then we can
take representations of the two smaller matrices by induction and shift one by a large
constant to obtain a representation of54 (similarly for zero rows or columns). Hence we
may assume that every row and column has a (including position (1, 1)) and that each
consecutive pair of rows have l’s in some common column.

From the monotone consecutive arrangement, we have nondecreasing sequences
{ai and {bi such that the successor set of U is ai {’Oa Vb }; the existence of a
common is equivalent to a; < bi-1. We distinguish the maximal successor sets, those
not contained in any other. We present an iterative algorithm such that, at the end of
stage i, we have specified gl < < gb and Jq < < f to form an indifference
representation of the first rows and gbi columns. Furthermore, the values are chosen so
that gb f gai + if ai is maximal and gb <f < ga + if Qi is not maximal.
As an initialization, we can specify any desired value; we choose gl and by convention
we take b0 and go -1 to treat stage inductively.

To begin stage i, we set the sink values through gb,. If bi bi-1, then these are
already known. If b; > bi-1, then we need to set the sink values above bi-
b;_ 1, the value ga, has been set. Choose gb_ / gb as an arbitrary increasing sequence
in the open interval (f_ + 1, ga + 2), except set gb, ga, + 2 if Qi is maximal. This
interval is nonempty because fi-1 <- ai-i + <_ ai + 1, and the first inequality is strict
if Q;_ is not maximal, while the second is strict if Qi-1 is maximal and b; > bi- 1. The
resulting inequality gb_ +1 > f- + guarantees that the representation is correct on
the new columns and old rows. Note also thatf_ + >_ gb_ 1, SO the sink values remain
increasing.

To complete stage i, we choose f to add row to the representation and preserve
the stated restrictions. We must have gb _< f _< ga + (with strict inequalities if
is not maximal and equalities if Qi is maximal), andf/> g;_ + 1. Letf (X + u)/2,
where X max {gai-l + 1, gb } and ga, + 1. By the construction ofgb,, we have, < u, with equality if and only if Qi is maximal. This guarantees thatf satisfies all the
restrictions, and the monotonicity of {a and {b } guaranteesf >f_

Example 2. Below is a monotone consecutive arrangement and an indifference
representation that is an outcome of the algorithm described in the proof:
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f(ui)
g(vi)

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 O’
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9 10 11 12

2 3.8 3.9 4.5 4.9 5 5.9 6.3 6.8 7 7.9
2.6 2.8 3 4 4.8 5 5.6 5.8 6 7.8 8

Using the adjacency matrix characterization, we can now give an alternate char-
acterization ofproper interval digraphs as a variation on Theorem 3. We can restrict our
attention to maximal GBSs if we allow the flexibility of a monotone consecutive ar-
rangement of the incidence matrices instead of requiting the proper consecutive ones
property.

THEOREM 5. A digraph D is a proper interval digraph (or indifference digraph) if
and only if it has a covering by afamily ofmaximal GBSs B {(X, Y)} numbered so
that the V, X-matrix and V, Y-matrix exhibit monotone consecutive arrangements.

Proof. For necessity, we may assume that we have a monotone consecutive ar-
rangement of the adjacency matrix, with [ai, hi] being the interval of columns with l’s
in row i. Again, we implicitly use induction on rn / n to avoid degeneracies and assume
that there is a in every row and column and a common column in any two consecutive
rows. There is a natural set of maximal GBSs associated with such a configuration. As
suggested by viewing the matrix in the example, these are the maximal rectangular blocks
of ones determined by corners of the region of l’s in the matrix. The upper corners are
the positions of the form (i, bi) with b; > bi-; the lower corners have the form (j, a)
with a < a/ . If _< j and a <_ bi, then these form a maximal GBS B(i, j).

To select an appropriate family {B}, begin with B B(1, r), where r
max {i: ai }. Having determined B_ B(c_ , d_ ), let a be the next row
below c_ having an upper corner (if any) and let be the next row below d_ hav-
ing a lower corner (if any). Since we have avoided degeneracy, we must have a _<

dk_ or aa <_ bc_, (unless Bk_ completes the coveting), which implies that B(a, dg_ )
or B(Ck-1, r) can be chosen as Bk B(Ck, dk). Since we shift by one corner at a time,
the resulting sequence covers all the l’s.

In this sequence, the vertices ofX are the consecutive set Uc, Ud. Since each
step we take increases ck or dk while leaving the other fixed, {c } and {d ) are monotone,
and the transpose of the V, X-matrix has a monotone consecutive arrangement. Since
the original definition is invariant under transpose, the V, X-matrix also has a monotone
consecutive arrangement. Applying the same argument to the transpose of the original
adjacency matrix shows that the V, Y-matrix of B also has a monotone consecutive
arrangement.



164 M. SEN AND B. K. SANYAL

For sufficiency, let B be a collection of GBSs coveting D that is indexed so the
V, X-matrix and V, Y-matrix exhibit monotone consecutive arrangements. By Theorem
3, it suffices to show that, ifthere is any proper inclusion between the l’s of a consecutive
pair ofrows in the V, X-matrix or V, Y-matrix, then we can add one GBS to the sequence
to reduce the number of proper inclusions.

By symmetry, we may assume that there is such an inclusion in the V, X-matrix,
with ai < ai +1 but bg bi+l k. Define a new GBS (X’, Y’) by X’ Xk { uj: j <
and Y’ Yk and insert this into the sequence immediately following (X, Yk). Now bi <
b +1, and the other such inequalities remain unchanged.

4. Generalized semiorders and indifference digraphs. Using Theorem 4, it is easy
to prove the generalization of the Roberts restatement of the Scott-Suppes theorem, as
described in the Introduction. The generalization of the Scott-Suppes theorem itself
follows as a corollary. Complementation is taken with respect to the complete relation
V V, including loops.

THEOREM 6. A digraph D (V, E) is an indifference digraph if and only ifE
H1 t_J H2, where (HI, H2 is a generalized semiorder on V.

Proof Necessity follows easily from Theorem 4 by considering a monotone con-
secutive arrangement of the adjacency matrix. Let [ai, bi] be the interval of l’s in row i.
Let HI correspond to the O’s labeled R (those after bi) and H2 to the O’s labeled C (those
before a;). Hence E HI U H2, and H1, H are disjoint. Monotonicity implies that H1
and H are Ferrers digraphs, which is equivalent to the generalized semiorder condition
(1) that uHiv and xHiyimply uHiy or xHiv (i e { 1, 2}).

For the other conditions, let ui, u be the (not necessarily distinct) source vertices
and let vj, Vl be the (not necessarily distinct) sink vertices, indexed as in the monotone
consecutive arrangement. To prove that (2) uiH v and uH2v imply uiH
note that the hypothesis implies j > b and j < ak. If > j, then 1 > b; and uiH Vl, while,
if _< j, then < ak and uH2v. When we appeal to the fact that the transpose of a
monotone consecutive arrangement is also a monotone consecutive arrangement, the
proof is the same for (3) uiHl v and uiH2 vt imply ukH v or ukH2 v.

For sufficiency, suppose that E H tO H2, where (H1, Hz) is a generalized semiorder
on V. As noted in the Introduction, we can view HI, H2 as relations or as digraphs on
V; let di+ (u) denote the set of successors (out-degree) of u in H; similarly, define d,.- for
in-degree. We claim it is not possible to have both di (u) > d{ (u’) and d(u) > d(u’).
If these hold, then there are vertices v, v’ such that uv H but u’v q! H and uv’ H2
but u’v’ H2, but this is precisely the configuration forbidden by condition (3). Similarly,
the combination d-f (v) > d-{ (v’) and d(v) > d(v’) is forbidden by condition (2). This
implies that we can order the elements as ul, un and as v, vn so that, for _<

< n, we have d{ (ui) <- d(ui + ), d- (ui) > d(ui + ), d-{ (vi) >- d-{ (vi + ), and d (vi) <
d(vi+). By condition (1), HI and H2 are Ferrers digraphs, and this ordering of the
degrees simultaneously places the relations ofH in the upper fight and H2 in the lower
left so that any position above or to the fight of a position in H is also in H, and any
position above or to the fight of a position in H2 is also in H2. In other words, this
ordering of the rows and columns is a monotone consecutive arrangement. []

The generalization of the Scott-Suppes theorem is just a rephrasing of this result.
COROLLARY 1. A pair (HI, H) of relations on a set is a generalized semiorder if

and only if it has a coindifference representation f, g; that is, real-valued functions f, g
exist on the elements so that xHy ifand only iff(x) > g(y) + 1, and xHy ifand only
ifg(y) > f(x) + 1.
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SOME NEW BOUNDS ON SINGLE-CHANGE COVERING DESIGNS*

GUO-HUI ZHANG"

Abstract. A single-change coveting design SCD (v, k, b) on a v-set V is a sequence of b k-sets (blocks) on
V that together cover every pair of elements of V at least once, such that two successive blocks have k
elements in common. Let f(v, k) denote the smallest b for which there exists an SCD (v, k, b). Some new
upper and lower bounds forf(v, k) are given.

Key words, coveting designs, design with a hole, single-change

AMS subject classification. 05

1. Introduction. Given positive integers v, k, and ), a (v, k, ) )- covering design is
a collection of k-subsets (blocks) of a given v-set V in which every pair of elements of V
occur together in at least ) of the blocks. For a general discussion of coveting designs,
see, for example, 2 ]. An ordered v, k, ) )- covering design is a (v, k, ))-coveting design,
together with a way to order the blocks of the design. A single-change ordered block
design SBD (V, B), or SBD (v, k, b), on a v-set V is a sequence B of b k-sets (blocks)
on V such that two successive blocks have k- elements in common. A single-change
covering design SCD (V, B) (or SCD (v, k, b)) is an SBD (V, B) (or SBD (v, k, b)) such
that each pair of elements of V occur together in at least one block. An SCD (v, k, b) is
called perfect if b’ _>- b for every SCD (v, k, b’). We will user(v, k) to denote the number
of blocks in a perfect SCD (v, k, b).

Ordered coveting designs arise in the testing of electrical components for compat-
ibility. For a more detailed explanation of their applications, refer to [4 ], where it was
noted that economical single-change coveting designs provide an ideal model for such a
testing. The following two results were proved in [4 ].

LEMMA 1.1 (see [4]). f(v, k) >= (v(v 1) (k 1)(k 2))/2(k 1)], with
equality ifk 2 or 3.

LEMMA 1.2 (see [4]). f(v, k) >_- 2 (v k) + 1, with equality ifv <= 2k and k >= 3.
A single-change covering design with a hole SCDH (V, B), or SCDH (v, k, b), is

an SBD (V, B) (or SBD (v, k, b)) such that every pair of elements of V occur together
in at least one of the blocks, except for one pair called a hole, say ab, which has the
property that one of a and b appear in either the first or the last block of B. We use
f’(v, k) to denote the smallest b for which there exists an SCDH (v, k, b). Trivially,
f(v, k) <-_ f’(v, k) + 1. Hence any upper bound for f’(v, k) will also provide one
forf(v, k).

It should be mentioned that the idea of using designs with "holes" to study original
designs is typical in combinatorial designs. For example, orthogonal Latin squares with
"holes," called incomplete orthogonal arrays, were studied in ]; Kirkman triple systems
with "holes" were referred to as frames and studied in [3].

The proof of the following result is parallel to that of Lemma 1.1.
LEMMA 1.3. f’(v, k) >- [(v(v (k- )(k- 2) 2)/2(k- )], with equality

ilk= 2or3.
In 2 an upper bound forf(v, k) is given by studying f’(v, k). As a consequence,

a tight bound for f(v, k) is obtained in the case of k 4. In 3 a lower bound for
f(v, k) is given, which is perfect in many cases. Finally, we discuss a recursive method
for estimating f(v, k) in 4, where a conjecture is also formulated.

Received by the editors January 13, 1992; accepted for publication (in revised form) August 23, 1992.

" Department ofMathematical Sciences, University ofAlabama at Huntsville, Huntsville, Alabama 35899.

166



SOME NEW BOUNDS ON SINGLE-CHANGE COVERING DESIGNS 167

2. An upper bound. Assume that v n(k- 1) + i, where k + =< =< 2k- 1,
n>=0, andk>-4. Letd(v,k)=2(i-k)+n(i+k-3)+n(n- 1)(k- 1)/2. Then
we have the following result.

THEOREM 2.1. It holds thatf’( v, k) <= d( v, k).
Proof. We use induction on n.
Case 1. n 0. Let the v (=i) treatments be 1, 2,..., i. Then the following sequence

So of blocks shows that f’(v, k) -< 2 (v k) d(v, k), where is the hole:

(i-k+ 1)...(k- 1)k...i
(i-k)...(k- 1)(k+ 1)...i

3...(k- 1)(i- 2)(i- 1)i
2...(k- 1)(i- 1)i
1...(k- 1)(i- 1)
1..-(k- 1)(i- 2)

1-..(k- 1)k.

Case 2. n 1. Let the v treatments be i, a ak- . The blocks in So of
Case plus the following sequence S ofblocks shows thatf’(v, k) =< d(v, k) with 3ak-
as a hole:

1...(k- 1)a
1.. "(k )a2
1...(k- 2)aza3
1... (k 3 aa3a4

2a2’’’ak-
a2" "ak-

a a2" ak-
(i-- 1)aa2...ak_

4 a a2" ak-

Case 3. n 2. Let the v treatments be i, a ak-, b bk-.
The blocks in So (3 S of Case 2 plus the following sequence $2 of blocks shows that
f’(v, k) =< d(v, k) with ak- 3bk- as the hole:

b a a2""ak-
b2 a a2 ak
b2 b3 a2’’’ak-

b2" , a, z ak
b_" bk_ 3 ak-

3 b b2"" bk-
2 b b2" "bk-
b b2" "bk-

4 b b" bk-

b b2"" k-
a b b2"" bk-

ak-4 bl b2" k-1.
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Case 4. n >-3. Let the v treatments be 1, Vo, a, ak-1, bl
bk_, Cl, Ck-, where v=3(k- 1)+Vo and Vo>--k+ 1. By induction, there
exists an SCDH (vo, k, d(vo, k)) SCDH (Vo, S), with vo as the hole, where Vo
{ 1, 2 Vo }. Without loss of generality, we assume the last block of S consists of
1,2,...,k.

Let S’ and S be the sequences ofblocks obtained from SI and S, respectively, by
changing the symbol to vo. We now obtain a sequence of d(v, k) d(vo, k) + 3Vo +
6k 12 required blocks by using S, S’I, S in that order, and appending the following
blocks with bk-3Ck- missing"

Cl bl b2"" bk-l
C.2 bl b2" bk
C2 C3 b2"’" bk-

C2" Ck- bk- 2 bk-
c2" Ck ak- bk-
1" Ck-l ak-3
el" Ck ak- 2

C" Ck- ak-1
Cl Ck- ak-4

Cl" "Ck-1 al

CI" Ck- bl

CI Ck- bk-4
Cl’’’Ck_

CI Ck 11)0

This shows that f’(v, k) =< d(v, k) for any v >= k + >- 5 by induction. Vl

By Theorem 2.1 and some elementary calculations, we can obtain

v - + (k- 5)v (k- 3)(7k- 1)- 4
f’(v, k) <=

2(k- 1) 8(k- 1)

which, together with Lemmas 1.1 and 1.3, immediately implies the following corollary.
COROLLARY 2.2. (i) f’(v, 4) [(V e V 8)16] for all v >= 5;
(ii) [ (v 2 V 6) / 63 =< f(v, 4) _<- [ (v 2 1) 2) / 6] for all v >- 5. In particular,

f(v, 4) (v 2 v 2)/6 ifv 2 (mod 3).

3. A lower bound. Select a perfect SCD (V, B) such that V {x, x } and
B { Bl, B6 }. We say that x is introduced in B if x B\Bi_ i. For this pur-
pose, we assume that B0 , so that all members ofB are introduced in B1. We say
that x is deletedfrom Bi if x Bi- l\Bi. Let s denote the smallest subscript such that
B U tO Bs V, and let Ti denote the set of treatments in V that are introduced
.exactly times among the blocks B Bs, and t Til for 0 _-< -< s. Trivially,
to 0 by the choice of s. Moreover, we have v Z]= t and s + k Z}= jt
I) -1

t- = 2 (j- 1)tj. Therefore,

(1) s =v-k+ + (j- 1)tj.
j=2



SOME NEW BOUNDS ON SINGLE-CHANGE COVERING DESIGNS 169

Now define

X= {Bili > s and Bi\(B tO tO Bi_l)

Y {Bi]i > s and Bi-l\(Bi to 1.3 Bb) }, and

C= {Bili > s and Bi Xto Y}.
Then we have the following result.

LEMMA 3.1. It holds that XI YI v k.
Proof. Assume that a Bs\Be- 1; then we have a B tO tO Be- by the choice

of s. For any x a Be, since the pair xa must appear together in some block, we see that
x Be / tO tO Bb. This indicates that each treatment not in Be is introduced in some
block after Bs or, equivalently, Xl v k, Similarly, for any x Bb, x is deleted from
some block after Be, which implies that

Write T’ --2 T; and t’ IT’ll for convenience. We have the follow-
ing lemma.

LEMMA 3.2. It holds that IX fq Y <= t’ + k.
Proof. Assume that X N Y {Brl, Brm}, where rl < r2 < < rm and

m -> t + k + 1. Also, assume that ai and bi are deleted from and introduced in Br,
respectively, for _-< =< m. Clearly, we have a; 4: ay and bi 4: bj whenever 4: j by the
definitions ofX and Y. We also note that, for any =< -< j -< m, ai 4: by, and the pair
aiby must appear together in some block Bt, where < s. Let Pi (ai, bi for -_< -<
m. We now obtain a new sequence { ai } of ordered pairs based on { Pi } by applying
the following procedure.

Step 1. Select -<-j < =< m such that by at T’I if possible, delete P, and replace
Py by (ay, bt). Then denote the resulting sequence of ordered pairs by {P }, where =<

=< m 1. Similarly, select =< j < l =< m 1, say Pj (a), bj) and P (a, b), such
that b) a T’ if possible, delete P, and replace Pj. by (a), b). Then denote the
resulting sequence of ordered pairs by { P’ }, where -< =< m 2. We continue this
process until we obtain a sequence { Q
whenever 4: j, where we consider each ordered pair Q as a set consisting of two cor-
responding elements.

Step 2. For any such that Q N T’ 4: , we delete Q. Then denote the resulting
subsequence of { Q} by { Qi }, where -<_ =< r, say.

Without loss of generality, we assume that Q; (x;, yi for _-< =< r. Then it can
be easily checked that the sequence { ai } has the following properties:

(i) { xi, Yi } -- T for =< -_< r;
(ii) xi 4: xy and Yi 4: yy whenever :/: j;
(iii) For any =< _-< j =< r, we have xi 4: yy, and the pair xi yy must appear together

in some block B, where < s;
(iv) r>_-rn-t’>=k+ 1.
Suppose that Xl is introduced in Bc,, where c _-< s. Let dl be the smallest index such

that x c: Bd and { y, Yr} - Bc tO Bc+ tO tO Bd. Then we have d =< s and
x . Bc f’l BI+ f3 fq Bd because Xl

B for some 2 =< i =< r. Then, however, XzYfi must appear together in some block Bt,
where c < l =< s, which implies that x2 B,+I tO tO Bs. Similarly, we can select
yy, Bd, for some 2 _--< j =< r. This implies that x2 - B tO tO Bd,-, since Xzyy, must
appear together in some block B, where _-< < d. Therefore, we have x2

tO Bd,-i because x2 T.
Now, assume that c2 is the smallest index such that c2 >= c and { x, x2 }

___
Bc and

that d2 is the largest index such that d2 =< d and { x, x2 }
_

Ba. This indicates that
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C --< Cz -< d2 -< d and { x, x2 } Be2 71 71 Ba2. Then we can easily check that
{ Yz Yr } Bc2 to to Ba_ by property (i) of the sequence { Qi }.

Continuing this process, we can obtain a sequence of indices c =< c2 -<- ck =<
dk =< -< d, so that {x xt }

_
Be, 71 71 Bat and { yt, Yr }

Bat for every =< l -< k. This, however, is impossible, since r >- k + and each block has
length k. This contradiction shows that

We are now ready to prove the main result of this section.
THEOREM 3.3. f(v, k) >= 3v 4k + 1, with equality ifk >= 4 and 2k + <- v <-_

3k- 1.
Proof. Applying and Lemmas 3.1 and 3.2, we have

f(v, k) s + (b s)

=v-k+ + (j- 1)tj+ IXtYI + ICI
j=2

>_-v- k + + (j- 1)tj + IXl /IYI- IX fq YI
j=2

3(v k) + (IX 71 YI t’l) + (i- 2)ti
i=3

>=3(v-k)+ 1-k

3v-4k+ 1.

In particular, ifk>-4and2k+ =<v=< 3k- 1, we have f( v, k 3v-4k+ by
Theorem 2.1. This completes the proof of Theorem 3.3. [2]

By Lemma 1.2 and Theorem 3.3, we have that the smallest unknown number for
f(v, 4) is v 2, in which case we proved that 2 -< f( 2, 4) -<- 22 by Corollary 2.2.

Lemmas 1.1 and 1.2 and Theorem 3.3 immediately imply the following corollary.
COROLLARY 3.4. f(v, k) -> 2(v k) + 1, with equality ifand only ifv <= 2k and

(v, k) 4: (4, 2).

4. A recursive method.
THEOREM 4.1. f(mv, ink) <= [f(v, k) 1]m + for any positive integer m.
Proof. Select an SCD (v, k, b) on a v-set X { 1, 2,..., v } having block-sequence

B {BI, B2,..., Bb}, where b =f(v, k). Assume that xi Bi\Bi+ and Yi Bi+ \Bi
for _-< =< b 1. Let V = Vi be a union of v disjoint sets Vi of size m and define

Vx { Olil, oli2 Olim

Bm Vj for0=<i=<b-1,
J-Bi+

gj gt( i- )m [,-J ai 0o* } \ { ai ai. }
forl <-i=<b- land0<j* =j-(i- 1)m<m,

B’ (B), B’l,..., B}o_ 1)m).

Therefore we have obtained an SCD (V, B’) consisting of (b )rn + blocks, which
implies thatf(mv, mk) <- If(v, k) rn + 1.

By Theorems 3.3 and 4.1, we immediately have the following corollary.
COROLLARY 4.2. Iff(v, k) 3v 4k + l, thenf(mv, ink) 3my 4mk + for

every positive integer m.
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THEOREM 4.3. It holds thatf(v + 2, k + =< f(v, k) + 2.
Proof. Select an SCD(V, B) SCD(v, k, b) with block-sequence B

(B, B2,..., Bb), where b f(v, k). Clearly, it suffices to construct an SCD (v + 2,
k+ 1, b+ 2).

Let s be the smallest index such that B1 tO tO Bs V, and V’ V tO a,/3}.
Select an arbitrary element x in Bs. Now define a sequence of b + 2 new blocks B’
(B’, B+ 2) as follows:

Bi tO

Bi-2 tO

ifl <=i<=s,

ifi=s+ 1,

ifi>=s+2.

Then the SCD (V’, B’) satisfies the requirement, ff]

By induction on m, Theorem 4.3 can be generalized as follows.
COROLLARY 4.4. f v + 2m, k + m) <= f v, k) + 2mfor all m >= 1.
Similar to Corollary 4.2, we have the following corollary.
COROLLARY 4.5. If f(V, k) 3v 4k + 1, then f(v + 2m, k + m)

3 (v + 2m) 4(k + m) + for every positive integer m.
Trivially, we have f(v, k + _-< f(v, k) and f(v + 1, k + _-< f(v, k). In

general, we have the following conjecture.
Conjecture 4.1. f(v + n, k + =< f(v, k) + (n for all n >_ 0.
By induction on m, we have that Conjecture 4.1 is equivalent to the following

conjecture.
Conjecture 4.2. f v + mn, k + m) <= f v, k) + m[ 1] for all nonnegative

integers m and n.
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ON THE ANGULAR RESOLUTION OF PLANAR GRAPHS*

SETH MALITZ* AND ACHILLEAS PAPAKOSTAS*

Abstract. It is a well-known fact that every planar graph admits a planar straight-line drawing. The angular
resolution of such a drawing is the minimum angle subtended by any pair of incident edges. The angular
resolution of the graph is the supremum angular resolution over all planar straight-line drawings of the graph.
In a recent paper by Formann et al. [Proc. 31st IEEE Sympos. on Found. ofComput. Sci., 1990, pp. 86-95],
the following question is posed: Does there exist a constant r(d) > 0 such that every planar graph of maximum
degree d has angular resolution >_ r(d) radians? The present authors show that the answer is yes and that it
follows easily from results in the literature on disk-packings. The conclusion is that every planar graph of
maximum degree d has angular resolution at least ad radians, 0 < a < a constant. In an effort to assess whether
this lower bound is existentially tight (up to constant a), a very natural linear program (LP) that bounds the
angular resolution of a planar graph the authors analyze from above. The optimal value of this LP is shown to
be ft(1/d), which suggests that the ad lower bound might be improved to fl(l/d). Although this matter remains
unsettled for general planar graphs, 2(1/d) is shown to be a lower bound on angular resolution for outerplanar
graphs. Finally, an infinite family of triangulated planar graphs with maximum degree 6 is constructed such
that exponential area is required to draw each member in planar straight-line fashion with angular resolution
bounded away from zero.

Key words, planar graph, outerplanar graph, angular resolution, disk-packing, max-flow min-cut theorem

AMS subject classifications. 51, 68

1. Introduction. Graphs are useful devices for representing many important objects
in computer science, such as VLSI circuits, parallel computer architectures, networks of
terminals, state graphs, data-flow graphs, Petri nets, entity-relationship diagrams, and so
forth. When the structure of such a graph (signifying one of these objects) must be un-
derstood by a human being, a visual representation of the graph can be indispensable.
Naturally, if there are many graphs under consideration, it is desirable that the process
used to render them be automatic. The annotated bibliography of Eades and Tamassia
[6] is a superb survey of graph-drawing algorithms and related theoretical results.

Perhaps the simplest way to render a graph is to represent the vertices as distinct
points in the plane, and the edges as straight-line segments. There now remains the task
ofpositioning the vertices so as to yield a drawing with low visual complexity. Naturally,
it makes sense to optimize certain parameters defined over the space of all drawings.
These may include minimizing the number of edge-crossings, maximizing uniformity in
the placement of vertices, maximizing "angular spread" among incident edges, and
so forth.

It is, in fact, this latter goal of attempting to generate large angular spread among
incident edges that is the subject of the present paper. The first authors to formalize this
concept and explore some of its properties were Formann et al. [8], who called this
quantity the resolution of the graph. In this paper, we call it more precisely the angular
resolution. Given an arbitrary graph G, the angular resolution of a straight-line drawing
for G in the plane is defined to be the minimum angle subtended by any pair of edges
incident to the same vertex. The angular resolution of G is then the supremum angular
resolution over all straight-line drawings of G. (Thus, for example, if G has maximum
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degree d, then the angular resolution ofG is bounded above by 2rld. In general, however,
this bound is not achieved, as witnessed by the complete graph K3, which has maximum
degree 2 and angular resolution -/3.)

The authors of [8] provide many interesting results. They prove general upper and
lower bounds on the angular resolution of a graph as a function of its maximum degree
and show how to create straight-line drawings with high angular resolution for many
interesting graph families. In particular, they show that any planar graph with maximum
degree d has angular resolution ft(1/d), independent ofthe number ofvertices. However,
in these drawings, line segments representing the edges of the planar graph are allowed
to cross. This led the authors of [8] to pose the following question: Is there a constant
r(d) > 0 such that any planar graph with maximum degree d has angular resolution >
r(d), where now angular resolution is computed over all planar straight-line drawings,
i.e., drawings where the edges do not cross? (That every planar graph has a planar straight-
line drawing is a famous theorem due independently to Steinitz and Rademacher 18],
Wagner [23], Ffiry [7], and Stein [17].)

This paper answers this question in the affirmative by showing that the angular
resolution ofany triangulated planar graph (i.e., a planar graph all ofwhose faces, including
the exterior face, are triangles) with maximum degree d is at least ad radians, where 0 <
c < is a constant. (From this, it follows that the angular resolution of an arbitrary
planar graph of maximum degree d is bounded below by a3d, since an arbitrary planar
graph can be triangulated by at most tripling the degree at each vertex.) The proof is an
easy application oftwo results from the literature on disk-packings. The first is that every
triangulated planar graph can be realized as a disk-packing in the plane (for proofs, see
Koebe [13], Andreev [1 ], [2], Thurston [20], and Colin de Verdiere [4], [5]). The second
is the extension by Hansen [10] of the Rodin-Sullivan Ring Lemma (see Rodin and
Sullivan [15]), which provides a tight lower bound on disk radii in a certain "flower-
like" configuration of disks.

Next, we try to ascertain whether there exist triangulated planar graphs with max-
imum degree d and angular resolution exponentially small in d by analyzing a very
natural family of linear programs (LPs) that are in one-to-one correspondence with the
class of triangulated planar graphs. An LP in the family has a collection of variables
called "angles." For a fixed triangulated planar graph G the associated LP requires us to
maximize the minimum "angle" subject to the following constraints: (1) the "angles" at
every vertex sum to 2r, (2) the "angles" inside any interior face sum to r, (3) the values
of all "angles" are greater than or equal to zero. Clearly, any planar straight-line drawing
of G satisfies these constraints. The converse is not necessarily so--not every solution to
the constraints corresponds to a planar straight-line drawing. Consider, for instance, the
complete graph K4. Figure shows an assignment to the "angles" that satisfies all the
constraints, but that does not correspond to a planar straight-line drawing. So the above
LP only partly captures the problem of computing angular resolution. More precisely,
the value of this LP is an upper bound on the angular resolution of the associated graph.
The question we attempt to answer is: How small can this upper bound be in terms of
d, the maximum degree of the graph? By casting the LP as a max-flow problem and by
applying the max-flow min-cut theorem, we prove that the optimum value of the LP is
always ft(1/d). This suggests that ft(1/d), and not ad, is perhaps the true lower bound on
angular resolution for triangulated planar graphs with maximum degree d. We are cur-
rently unable to answer this question.

However, we do settle the matter for triangulated outerplanar graphs (i.e., outerplanar
graphs in which every interior face is a triangle) with maximum degree d. We demonstrate
not only that 2(1/d) is a lower bound on angular resolution for this class of graphs, but
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FIG. 1. This assignment to the "angles" ofK4 satisfies the constraints ofthe linear program, but does not
correspond to any planar straight-line drawing ofK4.

that any such graph admits a planar straight-line drawing in which every angle is ft(1/d)
and all interior faces are similar isosceles triangles.

Finally, we consider the relationship between area and angular resolution in planar
straight-line drawings of triangulated planar graphs. We construct a series triangulated
planar graphs Gn of maximum degree 6 on 3n vertices such that, for any constant c >
0, any planar straight-line drawing of Gn (with vertices at gridpoints) with angular reso-
lution greater than c requires area exponential in n. Thus, it is not always possible to
achieve large angular resolution and small area in the same drawing. (Incidentally, de
Fraysseix, Pach, and Pollack [9] and Schnyder [16] show that, if we ignore the issue of
angular resolution, then any planar graph on n vertices admits a planar straight-line
drawing in quadratic area, which is the best area possible in general.)

The organization of the paper is as follows. Section 2 describes recent related work
of Kant 11 ], 12], who supplies, among other results, a linear-time algorithm that takes
as input an arbitrary 3-connected, 3-valent planar graph and outputs a planar straight-
line embedding of the graph in a hexagonal grid such that all but one interior face is
convex. Section 3 demonstrates the ad lower bound on angular resolution for triangulated
planar graphs with maximum degree d. Section 4 analyzes a linear program that bounds
the angular resolution of a triangulated planar graph from above and shows that its
optimal value is always ft( 1/d). Section 5 establishes the lower bound of ft(1/d) on angular
resolution for triangulated outerplanar graphs. Finally, 6 discusses the issue of area
versus angular resolution in planar straight-line drawings of triangulated planar graphs.

2. Related work. Recently, Kant 11], 12] has obtained a number of interesting
results concerning planar straight-line drawings ofplanar graphs where angles are bounded
away from zero and where the total number of bends in the edges is severely limited or
zero. He has shown, for example, the following results:

(i) There is a simple linear-time algorithm that takes as input a 3-connected, 3-
valent planar graph G on n vertices and outputs a planar embedding ofG in a hexagonal
grid (so that all angles are nonzero multiples r/3) of size n/2 n/2 such that at most
one edge of G has a bend, and all but one interior face is convex. This drawing can be
altered slightly so that there are no bends in any edge, all faces are convex, and all angles
are > r/6 (although the new drawing is typically no longer an embedding in the hexago-
nal grid);

(ii) There is a simple linear-time algorithm that takes as input a connected 3-valent
planar graph G and outputs a planar embedding of G in a hexagonal grid (so that all
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angles are nonzero multiples of 7r/3), where at most one edge of G has a bend. In some
cases, the area required by such an embedding is exponential in the number of vertices
in G. The drawing can be modified so that no edges are bent and all angles are > 7r/6.

Kant 11 conjectures that every 3-connected planar graph of maximum degree 4
can be embedded planarily in an octogonal grid (so that all angles are nonzero multiples
of r/4) with at most a constant number of bends--at the moment, he has a linear time
construction with n/2 bends in an n n/2 grid.

3. The angular resolution of planar graphs. A planar graph is triangulated if all of
its faces, including the exterior face, are triangles. In this section, we show that, given
any triangulated planar graph G with maximum degree d and distinguished face fext,
there is a planar straight-line drawing of G with exterior face fxt and angular resolution
bounded below by aa radians, where 0 < a < is a constant. (It follows that the angular
resolution of an arbitrary planar graph of maximum degree d is bounded below by c3a,
since an arbitrary planar graph can be triangulated by at most tripling the degree at each
vertex.)

The proof follows easily from known results on disk-packings, which we describe
below. First, however, we need some definitions. A disk-packing is a collection of disks
in the plane with nonoverlapping interiors. A disk-packing P induces a planar graph G
as follows: Place a vertex at the center of each disk and connect two vertices by an edge,
if and only if their respective disks are tangent. If these edges are drawn as straight-line
segments, then P induces a planar straight-line drawing of G. Letfxt be the exterior face
of G in this planar drawing. We say that P realizes the pair (G, fxt).

THEOREM 3.1. Given any triangulated planar graph G and distinguishedface fxt,
there exists a disk-packing P that realizes (G, fxt).

A number ofdifferent proofs exist for this remarkable result (see Koebe 13], Andreev
[1], [2], Thurston [20], and Colin de Verdiere [4], [5]). Very recently, Mohar [14] dem-
onstrated a polynomial-time algorithm for obtaining such a disk-packing within any
specified accuracy.

A finite sequence of closed disks having disjoint interiors is called a chain if each
disk except the last is tangent to its successor. A chain is a cycle if the first and last disks
are tangent. A flower with n petals consists of a cycle of n disks that surround the unit
disk and are all tangent to it. Rodin and Sullivan 15] proved that there is a constant r
depending only on n such that, for any flower with n petals, all petals have radius of at
least r. They named this result the Ring Lemma. Hansen [10] went on to evaluate the
largest value of r for which the Ring Lemma holds. The following is a trivial corollary
of Hansen’s result.

THEOREM 3.2. There is a constant between 0 and such that, in anyflower with
n petals, every petal has radius ofat least 3n.

Given any triangulated planar graph G with maximum degree d and distinguished
face fext, let P be a disk-packing that realizes (G, fxt) such that the three outer disks of P
all have unit radius. (That such a P exists can be seen by first applying Theorem 3.1 and
then applying two bilinear transformations to obtain the three outer radii of unit value.)
Let I’p(G) denote the planar straight-line drawing of G induced by P. Let P’ be the disk-
packing obtained from P by adding nine additional unit disks to P such that each outer
disk ofP is now at the center of a flower with six unit disks as petals. Let G’ be the planar
graph induced by P’. Clearly, G’ has maximum degree at most d + 4.

Consider any vertex v of G and consider all its neighbors in G’. The disks in P’ that
correspond to v and its neighbors form a flower (under suitable translation and adjustment
for scale). By Theorem 3.2, all petals of this flower have radius of at least C/a+ 4, and thus
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it follows that all angles at v in Fp(G) have value of at least ad for some constant a

between 0 and l, independent of v.
Thus, we have the following theorem.
THEOREM 3.3. Let G be an arbitrary triangulated planar graph with maximum

degree d and distinguishedface fext. Then G admits a planar straight-line drawing with
exterior face fxt and angular resolution of at least Ot

d radians, where a is a constant
between 0 and 1.

Hansen 10] constructs a flower Fd with d petals such that the smallest petal in the
flower has radius bounded above by #d, for some constant # between 0 and 1. The planar
graph Hd induced by Fd is a triangulated planar graph of maximum degree d. It follows
from Hansen’s results that, for any disk-packing P that realizes Hd, the induced planar
straight-line drawing I’,o(Hd) has angular resolution bounded above by vd, for some constant
v between 0 and 1. Hence, planar straight-line drawings induced by disk-packings cannot
guarantee angular resolution of more than vd, in general.

4. A linear program and its evaluation. In this section, we define a very natural LP
associated with a triangulated planar graph G of maximum degree d whose optimal
objective value is an upper bound on the angular resolution of G. By casting this LP as
a max-flow problem and applying the max-flow min-cut theorem, we prove that its
optimal value is at least 7r/(3(d- 1)) for all G, as above.

Let G (V, E) be a triangulated planar graph with maximum degree d >_ 2 and
exterior face fxt. Introduce a collection of variables called "angles," representing angle-
values in a drawing of G. The LP that we are interested in maximizes the minimum
"angle" subject to the following constraints: (1) the "angles" at every vertex sum to 27r,
(2) the "angles" inside any interior face sum to 7r, and (3) all "angles" are greater than
or equal to zero.

Special cases of this LP were considered for orthogonal drawings by Vijayan and
Wigderson [22] and Tamassia [19], and for upward drawings by Bertolazzi and Di Battista
[3]. Vijayan [21] considered the linear-programming problem of determining whether a
planar graph with preassigned angles admits a planar straight-line realization. Our result
is the following theorem.

THEOREM 4.1. The above LP has optimal value ofat least r/(3(d- 1)).
Proof Let F be the collection of all faces of G, includingfet. Let deg (v) denote the

degree of vertex v in G. Let Vex Vbe the subset of vertices that lie onfext. Let H denote
the directed bipartite graph (V, F, I), where (v, f) I if and only if vertex v e V and
facef F are incident in G.

We now describe a max-flow problem corresponding to the above LP. Begin with
the digraph H (V, F, I). Let all arcs of H have infinite capacity. Add to H two new
vertices, s and t. Fix a real number c [0, r/d]. Create an arc from s to each vertex v e
V with capacity 2r a deg (v). Create an arc from each vertex fe F- fext to vertex
with capacity - 3a. Create an arc from fext to with capacity 57r 3c. Call this
capacitated network K. Clearly, K has an s flow saturating all s-arcs, if and only if a
is a lower bound for the LP.

Now, by the max-flow min-cut theorem, K has an s flow of value

[27r a deg (v)]
vrV

(and hence saturating all s-arcs) if and only if every s cut has capacity >

[2- a deg (v)].
vrV
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Let us consider any finite-capacity s cut. Such a cut is of the form (S, S), where S
{s} U V’ U F’, where V’

_
V, and F’

_
F denotes a set of F-vertices containing all those

incident to V’.
It suffices to consider only those cuts where V’ and F’ are tightly coupled, which

means that they satisfy the following two properties: (1) F’ consists of exactly those F-
vertices incident to V’, and (2) any superset of V’ is incident to an F-vertex not in F’.
Clearly, in the lowest-capacity cut (S, S), the sets V’ and F’ are tightly coupled.

Thus, ifS containsfext, we may assume S also contains at least one member of Vext.
However, if S contains fext and does not contain all members of Vext, then a cut with
lower capacity can be obtained by removingfext and all members of Vext from S. Hence,
in the cut (S, S) with least capacity, S either contains no vertices among Vext U { fext} or
contains all these vertices.

To begin, we assume the former, that S contains no vertices among Vext U {fext}.
In this case, the capacity of the cut (S, S) is

[2r-adeg(v)]+ [Tr-3a].
vet V’ fF’

We wish to determine the values of a for which this capacity is greater than or equal to
Zv v [27r a deg (v)] (the saturation flow value for K) for all tightly coupled V’, F’,
where V’

__
V- Vex and F’

__
F- fext. The inequality can be expressed as

Z [Tr-3a]> E [27r-ozdeg(v)].
fF’ V’

Simplifying further, we ask for the values of a where

(1) (r 3)IF’I 27rl g’l + c deg (V’)

is greater than or equal to zero for all tightly coupled V’, F’, where V’
_
V- Vex and

F’
_
F- fext. (Here deg (V’) denotes the sum of the degrees of all the vertices in V’.)
Henceforth, we denote the quantity (1) by h(V’, F’).
We say a vertex (edge) is incident to a face of a planar graph if it participates in the

cycle that defines the face. Let GF, be the subgraph of G whose vertices and edges are
exactly those incident to faces in F’. Suppose that GF, consists ofbiconnected components
G Gp. Let V} denote the vertices of Gi that belong to V’ and let F} denote the faces
of Gi that belong to F’. Then each pair V}, F} is tightly coupled, and

h(V’, F’) h(V’, F’) + + h(V,, F).

Hence, a tightly coupled V’, F’ pair that makes h(V’, F’) as small as possible is associated
with a GF, that is biconnected. We now assume that GF, is biconnected.

Let Vb and Eb consist of all vertices and edges, respectively, in GF, that are incident
to faces in F- F’. Clearly, Vb and V’ are disjoint vertex sets. Call Vb the boundary vertices
of GF, and Eb the boundary edges of GF,. Note that each connected component of the
graph (Vb, Eb) looks like a tree of cycles (by cycle, we always mean simple cycle). See
Fig. 2(a).

Let T be such a tree of cycles. An articulation point v of T has multiplicity m if v
participates in exactly m cycles of T. Consider the following transformation of GF,.
Duplicate each articulation point v of T a number of times equal to its multiplicity
(maintaining each copy of v in Vb), SO that T now becomes a cycle. See Fig. 2(b). This
transformation in no way affects the values of V’I, IF’l, and deg (V’) and therefore
preserves h(V’, F’). Thus, without loss of generality, we assume that in GF, each connected
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FIG. 2. (a) Bold lines illustrate the connected components of(Vb, Eb). Thefaces ofGv, that belong to F’ are
shaded. (b) What GF, looks like after duplicating all the articulation points of(Vb, Eb).

component of (Vb, Eb) is a cycle. Let k be the number of such cycles that constitute
(Vb, Eb).

We now derive a lower bound for h(V’, F’) that holds for all tightly coupled V’, F’,
where V’

__
V- Vex and F’_ F- fxt.

First, we observe that any triangulated planar graph on n vertices has 2n 4 faces.
Thus

IF’I- 2(I V’I + Vbl + k)- 4- Val 21V’I + VI + 2k-4,

where Vbl is the number of boundary vertices in GF,. This formula is obtained by
placing an imaginary vertex inside each cycle of (Vb, Eb) and triangulating.

In a triangulated planar graph on n vertices, the total vertex degree is 6n 12. From
this, it follows that the total vertex degree in GF, is

deg (V’ t.J Va) 6(I V’I + Vl + k) 12 21 val 61V’l + 41Val + 6k 12.

Again, this formula is obtained by placing an imaginary vertex inside each cycle of
Vb, Eb) and triangulating.

Since every vertex in GF, has degree at most d, we have

Thus

deg (V’) > deg (V’ t.J Vb) dl Val 61V’l + 41Val + 6k 12 -dl Val

=61V’l +(4-d)lVal +6k- 12.

h(V’, F’) (Tr 3c01F’l 2rrl V’l + deg (V’)

>_ (Tr- 3)(21V’l +lVl + 2k 4)

2r] V’I + (61V’I + (4 d)l Vbl + 6k- 12)

(r (d 1)a)l Val + 27r(k 2).

This last expression is smallest when Val and k assume their smallest possible values,
namely when Vb 3 and k 1. Plugging in these values yields

h(V’, F’) > (r (d 1)c01Vbl / 2r(k 2) > (r (d 1)c03 2r.

This last quantity is greater than or equal to zero if and only if c < rr/3(d 1). Thus,
the condition c < rr/3(d- 1) implies that h(V’, F’) >_ 0 for all tightly coupled V’, F’,
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where V’
___
V- Vex and F’

_
F- Axt. This completes the case where S contains no

members of Vext t.J { fxt}.
Let us now assume that S contains all the members of Vext tO {fxt}. In this case,

fxt F’, and the capacity of the cut (S, S) is

4r+ [2r-adeg(v)]+ [r-3a].
v V’ fF’

We are interested in the values of a for which this capacity is always greater than or
equal to v [2r a deg (v)]. That is, we ask for the values of a where

47r + (Tr 3a)lF’l 2rl V’I + a deg (V’)

is greater than or equal to zero for all V’ V containing Vxt and F’ F containingfxt,
where V’ and F’ are tightly coupled. Arguing as before, we obtain

h(V’, F’) > 4r + (r (d 1)a)l Vbl + 27r(k 2).

The fight-hand side is as small as possible when Vbl and k are as small as possible,
namely, when Vbl 0 and k 0. Thus, we conclude that h(V’, F’) is always greater
than or equal to zero independent of a. This completes the case where S contains all the
members of Vxt tO { fxt}.

We have now shown that all s cuts (S, S) have capacity > Yv v [2r c deg (v)]
as long as c r/(3(d 1)). For such a, K has an s t flow that saturates all s-arcs.
Thus, c r/(3(d 1)) is a lower bound for the optimal value of the LP.

5. The angular resolution of outerllanar graphs. An outerplanar graph is trian-
gulated ifevery interior face is a triangle. In this section, we prove that every triangulated
outerplanar graph of maximum degree d has a planar straight-line drawing in which all
angles are ft(1/d) and where all interior faces are similar isosceles triangles.

First, we introduce some notation. Let AB denote a line segment in the plane with
endpoints labeled A, B. Let AABC denote a triangle with vertices labeled A, B, C. Let
/__ABC denote the magnitude of the angle between the line segments BA and BC. We
begin with a technical lemma.

LEMMA 5.1. Fix any integer > 2. Let a r/2(t + 2). Draw AABC as an isosceles
triangle with edge AB of length lying on the x-axis, vertex C above the x-axis, and
Z_CAB /__CBA c. Let s be the height of vertex C above the x-axis and let r be the
length ofthe edge AC. Let RA be a ray emanatingfrom A and passing through a point
QA directly above C at a height s .,= o r above the x-axis. Then the angle [3 between
RA and the edge AC satisfies (t 1)a + < 7r/2. (See Fig. 3.)

Proof The result follows from a short sequence of equalities and inequalities,

/3 + a arctan 2l

2s 2s
arctan < (because tan x > x for x > 0)

-r -r

2 sin c
2 cos a

(because r cos a 1/2 and r sin c s)

<

2(1---)--1 1--o2-<4z as long as o _<

Since o r/2(t + 2) < 1/f, we have from above, < 3o. Therefore, (t- 1) + <
+ 2)c _< r/2.
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A < B

FIG. 3. Construction for statement ofLemma 5.1.

To state and prove the theorem of this section, we need two more definitions.
(i) Given an isosceles triangle AABC with axis of symmetry passing through C,

define the base angle to be the value Z_CAB (or, equivalently,/__CBA).
(ii) Given a triangulated outerplanar graph G, the dual graph for G is obtained by

placing a vertex in each interior face of G and connecting two vertices by an edge when
the corresponding faces of G share an edge of G. Clearly, the dual graph of a triangulated
outerplanar graph is always a tree.

THEOREM 5.1. Let G be a triangulated outerplanar graph with exteriorface F and
maximum degree d. Let AABC be anyface ofG, where edge AB lies on F. Let 6A denote
the degree ofvertex A in G and let 6B denote the degree ofvertex B in G. Then G admits
a planar straight-line drawing D(G) in which all interiorfaces are similar isosceles triangles
with base angle a 7r/2(d + 2). Assume that, in this drawing, the edge AB of triangle
AABC is of length and lies on the x-axis. Let 3 be the angle defined in Lemma 5.1.
Then D(G) lies inside a triangle AABP, where /_PAB <_ (6A 1)a + /3 < r/2 and
/_PBA <_ (6- 1)a +/3 < r/2.

Proof Let T be the dual tree of G and suppose that T is rooted at ZXABC. We prove
the theorem by induction on the height of T.

If the height of T is zero (so that G consists only of the face zXABC), the theorem
clearly holds.

Next, suppose that the theorem holds when the height of T is _< h. We now show
that the theorem holds when the height of T equals h + 1.

G G G2

II II

A A2
FIG. 4. Construction for proof(f Theorem 5.1.

C2



ANGULAR RESOLUTION 181

I \
I\

\ I \
I
\ I \

I \

A 1

FIG. 5. Construction for proofof Theorem 5.1.

Consider the triangle zXABC. By removing the edge AB from G and duplicating the
vertex C (let B and B2 denote the copies of C), the graph G is split into two triangulated
outerplanar subgraphs G and G2. See Fig. 4. Let A1 A and A2 B. Let T be the dual
tree for G rooted at the face zXABC and let T2 be the dual tree for G2 rooted at the
face zXABzCz. The height ofboth T and T2 is at most h. So, by the induction hypothesis,
there are planar straight-line drawings D(GI) and D(G) satisfying the conclusions of the
theorem for each of G and G2, respectively.

Now we construct the drawing D(G) for G and show that it satisfies the conclusions
of the theorem. Take the naked triangle zXABC and draw it isosceles with base angle a.
Put the edge AB on the x-axis and give it length 1. Next, scale and rotate the drawings
D(G) and D(G2) so that they abut the triangle zIBC, as shown in Fig. 5. Let D(G)
denote the resulting drawing of G. Clearly, D(G) is planar because, by the induction
hypothesis, each of D(G) and D(G2) is planar and each lies inside a triangle of the
appropriate shape so that there is no conflict between them.

It remains to show that D(G) lies inside triangle ZL4BP with the desired angles. Let
r < be the length of the edge AC in the triangle zABC, let s be the height of C above
the x-axis. It is not difficult to see that the highest vertex in the drawing D(G) has height
less than s h- r r;.i=o < s E= o Let denote the value s Z= 0 r Consider the ray R
emanating from A defined as follows. If G , then RA passes through a point QA
directly above C at a height l above the x-axis. (The angle between RA andAC is precisely
/3 from Lemma 5.1.) If G 4: , then RA coincides with the edge AP of the triangle
zL4BP that contains D(G). Similarly define the ray Re. By the induction hypothesis,
the angle between the ray RA and the segment AB is at most (6 2)a + /3 + a

(6A 1)a + /3 < ’/2. Similarly, the angle between the ray Re and the segment BA is at
most (68 2)a +/3 + a (68 1)a +/3 < r/2. Hence the two rays RA and Re cross at
some point P, and D(G) lies in the triangle 54BP with the desired angles. V]

FIG. 6. Planar straight-line drawing ofa triangulated outerplanar graph using the method ofTheorem 5.1.
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G G2 G
FIG. 7. The graphs in the sequence Gn, n 1, 2, 3

Fig. 6 shows a planar straight-line drawing for a triangulated outerplanar graph using
the method of Theorem 5.1.

6. Area versus angular resolution. Given a planar straight-line drawing of a planar
graph in which the vertices of the graph reside at lattice points of a grid, the area of the
drawing is simply the area ofthe smallest rectangle that contains it. The following theorem
shows that, for certain bounded-degree triangulated planar graphs, it is not always possible
to achieve small area and large angular resolution within the same planar straight-line
drawing.

THEOREM 6.1. Let Gn, n 1, 2, 3, be the sequence oftriangulatedplanar graphs
with maximum degree 6, illustrated in Fig. 7. Let c be any constant greater than zero.
Then any planar straight-line drawing ofGn in which all angles have value greater than
c requires area exponential in n.

Proof Let A(n) be the area required by any planar straight-line drawing ofG with
angular resolution greater than c. It follows from the recursive structure of Gn and from
elementary geometry that A(n) (A(n 1)) (where the constant in the f depends on
c). Thus, A(n) is exponential in n. D
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PLANAR SEPARATORS*
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Abstract. The authors give a short proof of a theorem of Lipton and Tarjan, that, for every planar graph
with n > 0 vertices, there is a partition (A, B, C) of its vertex set such that [A[, BI < -n, ICI -< 2(2n) 1/2,
and no vertex in A is adjacent to any vertex in B. Secondly, they apply the same technique more carefully to
deduce that, in fact, such a partition (A, B, C) exists with IAI, BI < n, and IC[ -< (2n) 1/2" this improves
the best previously known result. An analogous result holds when the vertices or edges are weighted.

Key words, separators, k-shields, corner

1. The Lipton-Tarjan theorem. Our first objective is to give a short proof of
the following theorem of Lipton and Tarjan [3] (V(G) denotes the vertex set of the
graph G):

(1.1). Let G be a planar graph with n > 0 vertices. Then there is a partition A, B,
C) of V( G) such that AI, BI < n, CI -< 2VVn, and no vertex in A is adjacent to
any in B.

Proof. We may assume that G has no loops or multiple edges, that n >_ 3, and (by
adding new edges to G) that G is drawn in the plane in such a way that every region is
bounded by a circuit of three edges. (Circuits have no "repeated" vertices.) Let
k 1 2n J. For any circuit C of G, we denote by A (C) and B(C) the sets of vertices
drawn inside C and outside C, respectively; thus (A (C), B(C), V(C)) is a partition of
V(G), and no vertex in A (C) is adjacent to any in B(C). Choose a circuit C of G such
that

(i) v(c)l -< 2k,
(ii) B(C)I <n,
(iii) subject to (i) and (ii), A (C) B(C) is minimum.

(This is possible because the circuit bounding the infinite region satisfies (i) and (ii).)
We suppose, for a contradiction, that A (C) >- n. Let D be the subgraph of G

drawn in the closed disc bounded by C. For u, v e V(C), let c(u, v) (respectively,
d(u, v)) be the number of edges in the shortest path of C (respectively, D) between
u and v.

(1) c(u, v) d(u, v) for all u, v V(C).

For certainly, d(u, v) _< c(u, v), since C is a subgraph of D. If possible, choose a
pair u, v 6 V(C) with d(u, v) minimum such that d(u, v) < c(u, v). Let P be a path
of D between u and v, with d(u, v) edges. Suppose that some internal vertex w of P
belongs to V(C). Then

d(u, w) + d(w, v) d(u, v) < c(u, v) <_ c(u, w) + c(w, v),

and so either d(u, w) < c(u, w) or d(w, v) < c(w, v); either case is contrary to the
choice of u, v. Thus there is no such w. Let C, Cl, C2 be the three circuits of C tO P,
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where A (C1)1 > A (C2)I. Now B(CI )l < n, since

n- n(C,)l IA(C)I + V(CI)I

> 1/2(IA(C,)I + IA(Cz)l + V(P)I- 2)= 1/21A(C)I >1/2n.
However, V(C1)I v(C)l, since E(P)I c(u, v), and so Cl satisfies (i) and (ii).
By (iii), B(C1 B(C), and, in particular, c(u, v) _< 1, which is impossible since
d(u, v) < c(u, v). This proves ).

Suppose that V(C)[ < 2k. Choose e 6 E(C) and let P be the two-edge path of D
such that the union of P and e forms a circuit bounding a region inside of C. Let v be
the middle vertex of P and let P’ be the path C\e. Now P 4: P’, since A(C) 4: , and
so v a V(C) by ). Hence P U P’ is a circuit satisfying (i) and (ii), contrary to (iii).
This proves that V(C)[ 2k.

Let the vertices of C be Vo, vl,..., v2k l, v2k v0, in order. There are k + vertex-
disjoint paths of D between { Vo, Vl, v } and { v, v / l, v2 } for otherwise,
by a well-known form of Menger’s theorem for planar triangulations, there is a path of
D between v0 and vk with _<k vertices, contrary to ).

Let these paths be P0, P1 Pk, where Pi has ends vi, v2-i (0 <_ <_ k).
By(l),

and so

Iv(ei)l min(2i + 1, 2(k- i) + 1),

n= V(G)I >- Z min(2i+ 1,2(k-i)+ 1)> 1/2(k+ 1) 2.
Oi<_k

Yet k + > 2n by the definition of k, a contradiction. Thus our assumption that
[A(C)[ >_ -n was false, and so [A(C)[ < n and (A(C), B(C), V(C)) is a partition
satisfying the theorem. V1

2. Shields. In the remainder ofthe paper, we use the same technique more carefully
to improve (1.1) numerically. A separator in a graph G is a partition (A, B, C) of V(G)
such that AI, B] -< ]V(G)] and no vertex in A is adjacent to any vertex in B; its
order is [C[. Therefore, it is implied by (1.1) that any planar graph with n vertices has
a separator of order _< 81/2n 1/2, and we might try to find the smallest constant X such
that every planar graph with n vertices has a separator of order _< Xn 1/2. The Lipton-
Tarjan result (1.1) asserts that _< 8 /2

_
2.828, and this was improved by Gazit [2 ],

who showed that _< - 2.333. We give a further improvement, showing that X _<. 21/2
_

2.121. Incidentally, the best lower bound known appears to be that of Djidjev
[1], who showed that

X >_ 1/2/47rV - 1.555.

Actually, we prove a slight strengthening, below (and indeed, we prove an extension
when the vertices or edges have weights).

(2.1). Let G be a loopless graph with n vertices, drawn in a sphere 2;. Then there is
a simple closed curve F in Z,, meeting the drawing only in vertices, such that
nl + 1/2n3, n2 + 1/2n3 <_ 2n/3, and n <_ ( 2n) 1/2, where F passes through n vertices and
the two open discs bounded by F contain n and n2 vertices, respectively.

We are concerned with graphs drawn in a disc or sphere 2; and, to simplify notation,
we usually do not distinguish between a vertex of the graph and the point of 2; used in
the drawing to represent the vertex, or between an edge and the open line segment
representing it. A subset of 2; homeomorphic to the closed interval [0, is called
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an I-arc. If G is drawn in 2;, a subset of 2; meeting the drawing only in vertices is
G-normal.

The proof of (2.1) relies on the notion of a "k-shield." Let k > 0. A k-shield (in A)
is a loopless graph G drawn in a closed disc A such that, denoting the boundary of A by
bd( A),

(i) IV(G) fq bd(/X)[ k,
(ii) bd(A) is G-normal, and
(iii) for every G-normal/-arc F

_
A with ends x, y bd(A), there is an/-arc

F’
_
bd(A) with ends x, y such that IV(G) fq F’I < IV(G) Ft.
We can view the proof of (1.1) as consisting of two parts (omitting the reduction to

G being a planar triangulation, which is included only for convenience and can easily
be avoided): Roughly, we show that, for any k, every planar graph either has a separator
of order < k or has a subgraph that is a k-shield; secondly, we show that any k-shield
has at least approximately k2 vertices. Consequently, any planar graph with no separator
of order < k has at least approximately k vertices, and (1.1) follows.

We improve this as follows. First, is the wrong constant; we shall see that any k-
shield has at least k2 vertices. ( might not be the fight constant, either.) Secondly, with
a little care, we can find a k-shield in G that contains at most three-quarters ofthe vertices
of G.

In this section, we prove the fact that any k-shield has at least k2 vertices and some
related lemmas; these are applied to prove (2.1) in the next section.

The proof of the next result is due to A. Schrijver (in a private communication);
our original proof was an application of a currently unpublished theorem of Randby
about graphs drawn in the projective plane [5 ], but Schrijver’s proof is simpler.

(2.2). IfG is a k-shield, then [E(G)[ >_ 1/2k(k 1).
Proof. We may assume that k > 3 and that G has no multiple edges. We may also

assume that G is 2-connected, for, if not, then it includes a smaller k-shield, since one
of the following holds:

(i) there is a closed disc A’ A such that bd(A’) is G-normal,
bd(A’) fq V( G)[ _< 1, and the interior of/’ meets G, but then we may produce a smaller

k-shield by deleting the part of G in the interior of A’;
(ii) there is a G-normal/-arc F

_
A with ends x, y bd(A) V(G) and with

F fq bd(A) { x, y } and F N V(G)I 1, dividing A into two closed discs A, m2 such
that the interiors of both A and A2 meet G, but then (since G is a k-shield, and we may
assume that (i) is false) it follows that bd(Ai) fq V(G)I 2 for some i, say 2, and
hence the restriction of G to A is a smaller k-shield.

Thus, let G be 2-connected. It follows that there is a circuit C of G, bounding a
closed disc in A that includes all the drawing of G. Let the vertices of G in bd(A) be v,

vk, and, for < < k, let li be the open line segment between vi and vi + that is
an arc-wise connected component of bd(A) v vk } (where v + means v ). For
< < k, let ri be the region of G in A including 1;. Then, for < < k, the boundary

of ri consists of li together with a path from C, while every other region of G in A is an
open disc and is bounded by a circuit of G. Let us say that a corner of G is a pair (v, r),
where v V(G) and r is a region of G in A incident with v. For any corner (v, r), there
are precisely two edges of G incident with both v and r unless, r r/. and
v v or v +1 for some i, when there is only one such edge. We call any such edge an
arm of the corner.

We wish to define a new graph G’ drawn in A. For each e 6 E(G), let Xe be a point
of the open line segment representing e in the drawing of G. For < < k, let ai, bi be
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distinct points of li, so that vi, ai, bi, v + occur in order. The vertex set of G’ will be

{ a, bl, a2, b2, ak, bk} t3 ( Xe: ee E( G) ).
The edges of G’ correspond to the corners of G. For each corner (v, r) with two arms e,
f, there is an edge of G’ with ends Xe, xf, drawn within r. For each corner (v, r) with one
arm e, let r r then, if v vi, the corresponding edge of G’ has ends ai, Xe, while, if
v vi +, it has ends bi Xe; in either case, it is drawn within r. This defines G’ and its
drawing. We see that every vertex of G’ has valency 4, except for a, bl ak, b,
which all have valency 1. Moreover, each region of G’ in A either includes a (unique)
vertex of G or is a subset of a region of G in A; every edge of G’ is incident with one
region of each type.

(1). Let F’
_
A be an I-arc with ends s, bd( A ), not passing through any vertex

ofG’; and let F, F2 be the two I-arcs in bd( A with ends s, t. Then the number ofedges
ofG’ crossed by F’ is at least min(I F fq V(G’)I, F2 fq V(G’) I).

For we may assume (by rerouting F’) that F’ fq r is an open line segment or null,
for every region r of G’ in A. As we traverse F’ from s to t, the regions of G’ we pass
through correspond alternately to vertices and regions of G, and there is a G-normal I-
arc F in A, passing through the same sequence of vertices and regions. Moreover,
we may assume that F and F’ have the same ends. Hence, F passes through at least
min([ F fq V(G)[, F2 f"l V(G)I) vertices of G, since G is a k-shield; say F fq V(G)[ >_

F fq V(G) I. If both ends ofF are in V(G), then

IF’ E(G’)[ >_ 21F V(G)I 2 >_ 21 F1 f) V(G)[ 2 [F1 f) V(G’)I,

and a similar computation applies if one or neither end of F is in V(G). This
proves (1).

Let us renumber a, b, a2, b2 a, bas s, s2 sk, tl, t2,..., t, respectively.
From (1) and the result of[4 ], it follows that there are k mutually edge-disjoint paths
P, Pk of G’ joining si and ti < < k), respectively. Since for < < j < k, Pi
and Pj have a common vertex (because they must cross somewhere) and this vertex
belongs to no other of the k paths, we deduce that G’ has at least 1/2k(k vertices of
valency 4. Consequently, E(G)I > 1/2k(k ), as required. [5]

A k-shield G in A is stable if for every/-arc L bd(A) with ends x, y and with
L fq V(G) { x, y }, there is no edge e of G with ends x, y such that L t3 e bounds a
region of G in A.

(2.3). Ilk > 3 and G is a stable k-shieM, then V(G)I > k2 + 1/2k + 1.

Proof. Let G be drawn in A. If some region of G in A is bounded by a two-edge
circuit, we may delete one ofthese two edges. By continuing this process, we may assume
there is no such region.

Let the vertices of G drawn in bd(A) be Vl,..., v in order. Add to G a new vertex
v0, edges with ends Vo, v < < k) and edges with ends vi, v / < < k), where
v+ means v. We obtain a new planar graph G’, with V(G’)I V(G)I / and
E(G’)I E(G)I / 2k. Moreover, G’ can be drawn in a sphere so that no region has

boundary consisting of a one- or two-edge circuit. Since V(G’)I > 3, it follows that
E(G’)I -< 31V(G’)I 6, and hence

E(G)I + 2k < 3(I V(G)I + 1)- 6.

By (2.2), however, E(G)I >- 1/2k(k ), and the result follows. U]

Similarly, for k > 2, any k-shield has >_k2 + k + vertices. We do not know if
the term k2 here is the best possible.
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(2.4). Let G be a graph drawn in a closed disc A, such that [V(G) fq bd(A)l
and bd( A is G-normal. Suppose that, for every G-normal 1-arc F

_
A with ends x,

bd( A and F f3 bd( A { x, y }, there is an 1-arc F’ bd(A) with ends x, y such that
F (q V(G) < F N V G [. Then G is a k-shield.

Proof. For distinct x, y bd( A ), let

d(x, y) min(I F, fq V(G)I, IF2 f) V(G)]),

where F3, F2 are the two /-arcs in bd(A) with ends x, y. We must show that
IF fq V(G)I >- d(x, y) for every G-normal/-arc F

___
/x with ends x, y bd(A). We

may assume that F N bd(A)
_

V(G) to {x, y} and we proceed by induction
on F f) bd(A) x, y ) ]. If this quantity is zero, the result follows from the hypothesis.
Otherwise, there exists z (F- (x, y}) f) bd(A), and z V(G). Let F3, F2 F
be the /-arcs with ends x, z and z, y, respectively. From the inductive hypothesis,
IF3 f-) V(G)I > d(x, z) and F V(G)I >- d(z, y). However,

IFfq V(G)I IF V(G)I + [F2fq V(G)I- 1,

and d(x, y) <_ d(x, z) + d(z, y) (since z V(G)). The result follows. [3

Let us say a strong k-shield is a graph G drawn in a closed disc A with IV(G) N
bd( A)I k and with bd(A) G-normal, such that, for every G-normal/-arc F A with
ends x, y bd() and with F f3 bd(A) { x, y }, either

(i) there is an /-arc F’
_

bd(A) with ends x, y such that IF’ f3 V(G)] <
FV) V(G)I, or

(ii) one of the two closed discs into which F divides A includes all of the drawing
of G.
From (2.4), we see that every strong k-shield is a k-shield.

(2.5). For k > 3, ifG is a strong k-shield, then V(G)I > k2 + k + .
Proof. We may assume that G has no multiple edges. Since k > 3, it follows that

no two vertices in bd(A) are adjacent (if an edge has both ends in bd(A), then we may
choose F to violate conditions (i) and (ii) in the definition of strong k-shield, with the
same ends as e and otherwise disjoint but "next to" e). Let the vertices of G in bd(A)
be v3, vk in order. Let r be the region incident with v3 and vk (it is unique). Since
G is a k-shield, r is not incident with any of v2 v_ 3. Let u 4: vl, vk be incident
with r (this exists since v3, vk are not adjacent). Add a new vertex v+3 to G and an edge
e with ends u, v + 3, forming G’. Draw v + in r bd(A) and draw e within r bd(A).

(1). G’ is a k + )-shield.
For let F

___
A be a G’-normal/-arc with ends x, y bd(A), and with F f) bd(A)

x, y }. Let F3, F2 be the two/-arcs in bd(A) with ends x, y. We claim that

Ff3 V(G’)[ > min([ F f) V(G’)I, ]Fe f) V(G’)[).

If F fq V(G) > F3 fq V(G) I, then our claim holds, since

Ffq V(G’)I >_ Ffq V(G)[ > [F V(G)I + >_ [F V(G’)].

We assume then that IF fq V(G)[ < Fi fq V(G)I for 1, 2. Since G is a strong k-
shield, we may assume that the closed disc in A bounded by F t0 F2 includes the drawing
of G. Hence F3 f) V(G) F f) V(G). If v+3 F, then

IF, fq V(G’)I IF, fq V(G)] _< IF V V(G)] < IF V) V(G’)),

as required. Ifv + 6 F3, then either v + or u belongs to F (since u belongs to the closed
disc bounded by F tO F2). In the first case, vk + x or y, and so

IF, Cq V(G’)I F f3 V(G)I + < FVq V(G)[ + Ffq V(G’)I.



PLANAR SEPARATORS 189

In the second case, u F f3 V(G) and u F f3 V(G), and so

[F f3 V(G’)[ [F, f3 V(G)[ + < [Ff3 V(G)[ < [Vfq V(G’)[.

This proves our claim that

IF fq V(G’)[ > min([ F f3 V(G’)[, IF2 f3 V(G’)[).

Consequently, G’ is a (k + )-shield. This proves (1).
Certainly G’ is a stable (k + )-shield, and so, from Theorem 2.3, we deduce that

]V(G’)[ >_ (k + 1) 2 + 1/2(k + 1) + 1. Since [V(G’)[ IV(G)[ + 1, the result fol-
lows. 1--]

3. The main argument. In we were concerned with the problem of finding a
small cutset, defined by a simple closed curve, so that both sides of it contain about the
same number of vertices. We can also give the vertices or edges weights and ask for a
small cutset, defined by a simple closed curve, so that both sides contain about the same
total weight. This is a little more complicated; for instance, although the analogue of
(1.1) holds (that is, 2(2n)1/2), Gazit’s proof of n 1/2 does not extend, and until now
2(2n) /2 was the best known. However, we show in (3.9) that, for any planar G and for
any constant X > 2, if Xn 1/2 works for the unweighted case, then it also works for the
weighted case. In particular, our result of (2n)1/2 works for the weighted case.

A convenient common generalization of the different ways to assign weights to a
planar graph is via "majorities." Let G be a graph drawn in a sphere 2;. A noose is a G-
normal, simple closed curve F 2;, and its length is ]F f3 V(G)]. A majority oforder
k, where k > 0 is an integer, is a function "big" that assigns to every noose F of
length _< k a closed disc big(F)

_
2; bounded by F satisfying the following two axioms:

Axiom 1. If x, y 2; are distinct, and F, F2, F3 are G-normal/-arcs each between
x and y and otherwise disjoint, and F1 (-J F2, F t_J F3, F2 I,.) F3 all have length _< k, and
big(F t.J F2) includes F3, then big(F tO F2) includes one of big(F F3), big(F2 tO F3).

Axiom 2. If F is a noose with length _< min(2, k), then either big(F) F contains
a vertex of G or big(F) includes at least two edges of G.

This is connected with the weighted separator problem via the next two results. R+
denotes the set of nonnegative real numbers, and if w X - R+ is a function and Y

_
X, we denote 2;(w(x)" x Y) by w(Y).

(3.1). Let G be a graph drawn in a sphere, let w V(G) - R+ be a function, and
let k >_ 0 be an integer. Suppose that there is no noose F oflength <_ k such that

w((D F) f) V(G)) + 1/2w(F f-) V(G)) <_ w(V(G))
for both closed discs D bounded by F. Then G has a majority oforder k.

Proof. For each noose F of length _< k, let big(F) be the (unique) closed disc D
bounded by F such that

w((D F) f) V(G)) + 1/2w(F f-) V(G)) > w(V(G)).
The axioms may easily be verified. [3

If G is drawn in 2; and D 2; is a closed disc with bd(D) G-normal, we denote the
subgraph of G drawn in D by G f3 D.

(3.2). Let G be a graph in a sphere, let w E( G) -- R+ be a function, and let k >
0 be an integer. Suppose that

(i) w(f) < w(E(G))for eachf6 E(G), and
(ii) there is no noose F oflength < k such that w(E(G fq D)) < w(E(G))for both

closed discs D bounded by F.
Then G has a majority oforder k.
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Proof. For each noose F of length _< k, let big(F) be the unique closed disc D
bounded by Fwith w(E(G f3 D)) > w(E(G)). Again, the axioms may easily be veri-
fied. [2]

Let big be a majority of order k in G. A noose F is optimal if
(i) it has length _< k;
(ii) subject to (i), G f3 big(F) is minimal; and
(iii) subject to (i) and (ii), F CI V(G) is maximum.
(3.3). Let G be a loopless graph drawn in a sphere Z,, let big be a majority oforder

k > O, and let F be an optimal noose. Then G big(F) is a strong stable k-shield in
big(F).

Proof. Let IF V(G)I k’. We claim first that G big(F) is a strong k’-shield
in big(F). Let big(F) A, let F

_
A be a G-normal/-arc with ends x, y 6 F and with

F F { x, y), and let F, F2 be the two arcs between x, y in F. Suppose that

F3 CI V(G)I -< [Fl CI V(G)], F2 fl V(G)].

Let Ag c_ A be the closed disc bounded by F,. tO F3 (i 1, 2). We must show that one
of A1, A2 includes G fl zX. For 1, 2, Fi tO F3 is a G-normal noose with length < k,
since

[(F; (A F3)V V(G)[ _< [Ff V(G)I-< k.

From Axiom 1, we may assume that A big(F tO F3). Since F is optimal, it follows
that G f3 A G A; that is, A includes G A, as required. Thus, G big(F) is a
strong k’-shield.

We claim that G big(F) is a stable k’-shield. This is clear if k’ > 3 because every
strong k’-shield with k’ > 3 is stable, but needs proof if k’ < 2. Suppose that e is an edge
of G Yl A with ends x, y bd(A) and that L F is an/-arc with ends x, y such that
e (A L bounds a region of G in A. Let F

_
A be a G-normal/-arc with ends x, y, just

on the other side of e from L, in the natural sense. From Axiom 2, big(F tA L) A,
and so, from Axiom 1, big(F tO (F- L))

_
A, contrary to the optimality of F. Thus,

G A is a stable k’-shield in A.
Finally, we claim that k’ k. Suppose that k’ < k and let r be a region of

G A in A with F r 4: . Suppose that v V(G A) is incident with r, and
v g F. Choose distinct x, y 6 r f3 F and let F be an/-arc with ends x, y and F3 VI F
{x, y} and F r tO {v}, passing through v. Since k > k’ > 0, it follows that
[(F tO F) CI V(G)[ < < k, where F

_
r Fis an /-arc between x, y, and

[(F2 tO F) V) V(G)[ < k’ + < k, where F2
_
F is the other/-arc between x, y. By

Axiom 2, big(F tO F) g A, and so, by Axiom 1, big(F2 tA F3)
_

A, contrary to the
optimality of F.

Hence, every v 6 V(G f A) incident with r belongs to F. Since G f3 A is a k’-shield,
it follows that r f3 F is connected. If F

_
r, then r is incident with no vertex of G A,

and so G f3 A is null, contrary to the second axiom. Hence, r CI F is an open line segment,
with ends x, y V(G). Since G A is a k’-shield, it follows that r is incident with no
vertex of G A except x and y. In particular, x :P y since G is loopless, and there is an
edge of G with ends x and y, incident with r. This is impossible, however, since G Yl A
is a stable k’-shield and r is incident with no vertex except x and y. We deduce that
k’ k, as required.

Consequently, we have the following.
(3.4). Let G be a graph in a sphere Z, and let big be a majority of order

k > O. For any noose F c_ Z, oflength < k, IV(G) VI big(F)] >_ k2 + -k + -.
Proof. From the definition of optimal noose, there is an optimal noose F’ with

G N big(F’)
_
G N big(F). We claim that ]V(G (’1 big(F’))] > k2 + k + 32- If
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k < 2, this follows from the second axiom (together with the first if k 2), while, for
k > 3, it follows from (2.5), since G f) big(F’) is a strong k-shield by (3.3). Since
V(G fq big(F))] > V(G big(F’))l, the result follows. I2

Let us say a noose in G has discrepancy In1 n2[, where it bounds closed discs A1,
A2, and n; IV(G) O Ai (i 1, 2). We have immediately from (3.4) the following.

(3.5). Let G be a graph in a sphere , with n vertices. There is a noose oflength <
6 /2n 1/2 with discrepancy < 1/2 n.

Proof. Let k 6 /2n /2j. If G has a majority of order k then, by (3.4),

IV(G)[ >-k2+k+>_(k+ 1)2>n,

a contradiction. Thus, by (3.1) (with w(v) for all v), there is a noose F of length <
k such that the discs D, Dz bounded by F satisfy

I(Di F) f) V(G)[ + 1/21F V(G)I < 1V(G)[ (i 1, 2),

or, equivalently, that F has discrepancy < 1/2n. F]

Actually, here the 61/2 is irrelevant; all we need from (3.5) is that some noose has
discrepancy < 1/2n.

(3.6). Let G be a graph in a sphere Z, with n vertices. There is a noose oflength <
-32(2n) 1/2 with discrepancy < 1/2n.

Proof. We assume that n > 0. By (3.5), there is a noose with discrep-
ancy < 1/2n. Let us choose such a noose F of minimum order, say k. Let F bound closed
discs/x, A’, with IV(G) f) A > IV(G) /X’l.

(1). G fq A is a k-shield in A.
For let F3

_
A be a G-normal/-arc with ends x, y F and with F 0 bd(A)

{ x, y }, and let F, F2 be the two/-arcs in F with ends x, y. Suppose that

IF3 f) V(G)[ < IF, f) V(G)[, IF2 f) V(G)I.

Since

IV(G) O (A F)I + 1/21V(G) FI > 1/2n
because IV(G) A > IV(G) O A’I, we may assume that

IV(G) fq (A, (F, U F3))I + 1/2l V(G) fq (F U F3)[ > 1/4n
without loss of generality, where /x is the closed disc in A bounded by F U F3. But
then, F U F3 has discrepancy < 1/2 n and has order < k, contrary to the choice of F. This
proves (1), by (2.4).

Now let us choose such F, A with E(G fq A) minimal. It follows that G A is a
stable k-shield, and so, by (2.3),

V(G fq A)I >-- k2 + 1/2k + 1,

(for we may assume that k > (2n)1/2, since otherwise F satisfies the theorem, and
(2n) /2 > 2, since n > 1; so k >_ 3). Hence,

V(G 0 A’) >_ k2 + 1/2k + 1/2n,
since F has discrepancy < 1/2 n; so

n+k= IV(G)I + IV(G) nFI IV(Gn zx)l + IV(Gn zX’)l
>_ 2(- k + 1/2k + 1/2n.

It follows that n > k2 + 2, and so k < (2n) /2, as required. V1
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We deduce the following.
(3.7). Let G be a graph in a sphere , with n vertices and with a majority oforder

k. Then k < 23-(2n) 1/2 1.
Proof. Let big be a majority of order k and suppose that k > l(2n)/21. By (3.6),

there is a noose F of length < k with discrepancy < 1/2n. By (3.4),

IV(G) fq big(F) >_ k2 + k + -;
but

V(G)I + IV(G) f3 El >- 21V(G) fq big(F)l 1/2n,
since F has discrepancy < 1/2 n, and so

-n + k >_ 1/2k2

since IV(G) f3 FI < k. Hence, 1/2(k + 1) 2 + < n, and so k + < (2n) /2, a contra-
diction. Thus k < [(2n) 1/2.], as required.

From (3.7) and (3.1), we deduce our main result, the following weighted version
of(2.1).

(3.8). Let G be a graph in a sphere with n vertices and, for each vertex v, let
w(v) > 0 be a real number. There is a noose F with IF fq V(G)I < (2n) 1/2 such that

w((D F) f’l V(G)) + 1/2w(F f’l V(G)) < w(V(G))
for both closed discs D bounded by F.

Proof. Let k [-(2n)/2/. By (3.7), G has no majority of order k, and the result
follows from (3.1).

Similarly, we can use (3.7) and (3.2) to deduce a (2n)/2-separator result when the
weights are on the edges.

Finally, let us show the following curiosity, which indicates that, for finding "sep-
arating" nooses of length < Xn/ where X > 2, in some sense the unweighted case is the
hardest.

(3.9). Let G be a graph in a sphere with n vertices, let k >_ 2n /2 be an integer,
and suppose that there is a noose F* oflength < k such that

[(D F*) fq V(G)I + 1/2l F* f-) V(G)I -< 1 V(G)[

for both closed discs D bounded by F*. Then
(i) G has no majority oforder k;
(ii) for anyfunction w V( G) -- R+, there is a noose F oflength <_ k such that

w((D F) V(G)) + 1/2w(F fq V(G)) <_ w(V(G))

for both closed discs D bounded by F;
(iii) for any function w’E(G) --, R+ such that w(f) <_ w(E(G)) for every

fe E(G), there is a noose F oflength < k such that w(E(G fq D)) <_ w(E(G))for both
closed discs D bounded by F.

Proof. Suppose that big is a majority of order k. By (3.4),

IV(G) O big(F*)l >_ k2

By the hypothesis,

IV(G) big(F*)] 1/21V(G) fq F*] < n.
Moreover, IV(G) F*[ _< k, and so

k2 + k + - 1/2k < n;
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that is, (k + )2 + 3 < 4n. But k + > 2n l/:z, a contradiction. This proves (i), and (ii)
and (iii) follow from (3.1) and (3.2), respectively.
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1. Introduction. One of the classical identities in combinatorial theory concerns
the Bell numbers and is due to Dobinski. The Bell number Bn counts the number of
partitions ofa set with n elements. Rota (1964) describes many problems ofenumeration
related to the lattice of partitions of a finite set. An explicit formula for Bn, written as a
finite sum in terms of set partitions, is

(1.1) Bn- ] ]
(1!)3’1" "(n!)"(3’, !)""

-rl +
")’ + 2")’2 + + n’tn

The exponential generating function for B, coincides with the moment generating function
of a Poisson random variable with mean 1, i.e.,

X
(1.2) , B,-.. exp {ex- 1}.

n=0

A remarkable formula of Dobinski (1877) expresses B, as a fast converging series,
namely,

m
(1.3) B, e-1 m--1 rn!"

This formula is usually established using generating functions as in, for example, Con-
stantine (1987). A different proof is given in Rota (1964).

Recently, we were led to another proofbased on Poisson processes. In fact, substantial
generalizations of (1.3) arise by interpreting the two sides as moments ofcertain stochastic
processes.

In 2 we introduce the necessary background material on stochastic processes and
derive a general identity. Special cases of the identity appear in 3. A general pair of
inverse relations is established in 4. The last section presents some further results including
convolution identities for Bell numbers.

Since summations over set partitions arise frequently in this work, we denote by
r(,,,) the sum over all indices in

r(r, n) (1 ")" 3’i nonnegative integers, %. r, i n
i=1 i=1
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Thus, for example, (1.1) becomes

Bn= n!
r(r,n) j=

2. A general identity. Our main result involves the notion ofcompound nonhomo-
geneous Poisson processes. Thus we first review some basic definitions. See also Ross
(1983) for a general exposition on stochastic processes.

A stochastic process N {N(t), >_ 0 } is called a counting process if, with probability
l, its sample paths are nonnegative fight-continuous step-functions starting at 0 and only
increasing by jumps of size 1. A stochastic process X {X(t), >_ 0} is said to have
independent increments if, for all n 1, 2,... and every choice 0 _< to < t < < tn,
the random variables X(t) X(to) X(tn) X(t_ 1) are independent. A counting
process having independent increments is called a nonhomogeneous Poisson process.

If N {N(t), >_ 0} is a nonhomogeneous Poisson process, we denote its mean
function E[N(t)] by A(t). If A(t) )t for some X > 0, then N is called a Poisson process with
rate ). In this case, N also has stationary increments, i.e., the distribution of N(t + s)
N(t) is independent of t; moreover, its distribution is Poisson with parameter )s.

We now consider a nonhomogeneous Poisson process N {N(t), >_ 0} with mean
function A(t). In what follows, we always assume that A(t) is a continuousfunction oft.
Clearly, A(t) must also be increasing since N(t) increases. Since the process only increases
by jumps of size l, it is completely characterized by its arrival (or jump) times S1, $2,

We now attach a "cost" Yk to the kth arrival time and denote the corresponding
"cost" process by X {X(t), >_ 0} as follows:

N(t)

(2.1) X(t) Z Yk.
k=l

More precisely, the process X is prescribed by requiting that the random variables Y,
Y2 be conditionally independent, given S, $2, in the sense that, for every n
1, 2, and all Borel sets B, B2, B, of the real line R, we have

(2.2) P{Y, e B,,..., Y, e B, IS,,..., Sn) fi L(Sk; Bk),
k=l

where L(s; B) is a stochastic kernel on [0, oo) R. This means that, for every Borel set
B, L(s; B) is Borel-measurable in s, and, for every fixed s >_ O, L(s; dy) is a probability
measure on the Borel subsets of R.

Such processes were investigated in Chen and Savits (1990), (1993) and were called
compound nonhomogeneous Poisson processes with representation (L, A). In particular,
it was shown that X is an independent increment process with characteristic function

(2.3) (u; t) E[ei"X(’)] exp {fo’ fi(eUy-1)L(s; dy) dA(s)}
Our general Dobinski-like identity results from consideration of the moments of

the above process. Suppose that

fo’ fi [y[nL(s; dy) dA(s) <

for some n and > 0 (and, consequently, for all 0 < m < n and 0 < s < t). Then it can
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be shown (cf. 2 of Chen and Savits (1990)) that X(t) has a finite moment of order n. In
this case, a direct calculation yields

E[Xn(t)] El.\k__
, t=m
m=l

(2.4)
=ZE Z

Otl+ .’.+am=n
Y)’J; Sm <- < Sm+

0ll "Olin j=

e-a(t)
q- -t-

e-A(
m! #j(t),

m al+ +am=n Oll" "Olm

where

#(t) fo fl yL(s; dy) dA(s).

In the above, the second equality follows, since the event N(t) m is equivalent to the
event Sm <- < Tm +, the third equality follows, since the joint distribution of (S,,...,
Sm, Sin+ l) is e-A(Sm+’)dA(sm+ 1)dA(sm)" "dA(sl) on 0 < sl < < Sm < Sm+ l; the last
equality uses the fact that the integrand is permutation invariant.

On the other hand, the nth moment of X(t) can also be calculated from its char-
acteristic function given in (2.3) as

E[X"(t)] i-"
O"

Ou--- 49(u; t) ], o

According to Faa Di Bruno’s formula (e.g., see Constantine (1987) or Comtet (1974))
for computing higher-order derivatives of a composition of functions, we obtain that

(2.5) i-"
Ou"

O(u; t)lu=0 .y !).
z(t).

r(r,n) (1 "’" (n[)"(3’l (’Yn!)

Equating (2.4) and (2.5) yields the main result, below.
THEOREM 2.1. Let A(t) be a continuous increasingfunction on [0, oe) and L(s; dy)

a stochastic kernel on [0, oe) x R and suppose that f fi [y["L(s; dy) dA(s) < c. Then

(2.6)

where ij(t) f fa yJL(s; dy) dA(s).
In particular, if we take L(s; dy) (3{l}(dy) to be the Dirac measure at y and

choose A(s) s, then the process X reduces to the Poisson process with rate X 1. In
this case, Ij(t) for all j, and Dobinski’s formula (1.3) follows from the corollary below
when we set 1.



STOCHASTIC PROCESS INTERPRETATION OF PARTITION IDENTITIES 197

(2.7)

COROLLARY. Let A(s) s and L(s; dy) i5{ l(dy). Then

tmm n!

rZle-t Z m! Z .).m=l r(r,n)( 1! 1...(n!)n(Tl!)..

Remark 2.1. The above can also be written as

lmmne-t
m!m=l r=l

where

(2.8) S
vr,n) (1 (n!)"(

is the Stirling number ofthe second kind; it counts the number of partitions of a set with
n elements into exactly r classes.

If we assume that X(t) has finite moments of all orders, then, by a formal power
series expansion, we obtain

{fot fI } o (iu,n
(2.9) exp (eiuy 1)L(s; dy) dA(s) E[eiuxO] -. E[X(t)].

This can be viewed as a (formal) generating function identity for the moments of X(t).
Of course, under appropriate summability conditions, the formal identity becomes a
true identity. In particular, when L(s; dy) 6{ (dy) and A(s) s, E[X(1)] B, and
so (2.9) yields the following characteristic function version of (1.2):

(2.10)
. (iu)"

exp {e iu 1) :noE ". gn.

3. Examples.
I. For this class of examples, we let L(s; dy) L(dy) be independent of s. This

means that the costs Y, Y2,... in (2.1) are independent and identically distributed
random variables with distribution function L. Let

mj fR yj dL(y)

denote its jth moment. Thus uj.(t) mA(t), and so (2.6) becomes

A(t) k m(3.1) e-A
k + 1--[1k= al + ak= F(r,n) j "YJ \ J] ]

Some special subcases follow, all with A(t) t.
Remark 3.1. When all the odd moments m2j+ are zero, identity (3.1) can be re-

written as

Ak(t)e-A(t)
k!k=l

k

O1 +... Ok=" (_2aj’)! rEi Ar(t) E I 1-- ( m2jl’J
I’(r,n) j=l "Y! k(2J)!]

This form will be used in deriving identities (3.2) and (3.5). An analogous version of
(2.6) will also be used in deriving (3.9).
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(i) Uniform distribution on [-1, ]:

Thus (3.1) becomes

(3.2)

yJ dy= j+m=5
0

ifj is even,

ifj is odd.

e-t __tk + jk.k! (2aj + 1)!
tr

[(2j + 1)!]J(9!)+ ak r(r,n) j

(3.3)

(ii) Exponential distribution:

mj yJe-y dy j!, and thus

e-
k+ n- n

n r(r,n) j= (J)

(3.4)

(iii) Gamma distribution:

fO e-yrnj
P(a)

Y;Y" dy
r(a + j)

r()
for a > O, which yields

e_ F(a+aj)

rE1 E r(1 "+ ffj)r(r,n) j

(iv) Normal distribution:

f yJe_y2/2 j/2),2J/2mJ= fr dy=
0

We then obtain

ifj is even,

ifj is odd.

tk
(3.5) e-y k!n!

n

r(r,n) (J!)VJ(’D!)

This identity is the same as Dobinski’s identity (2.7).
(v) Poisson distribution:

Since

m;= e-’ , = B;,
k=l

we obtain the following identity involving Bell numbers:

k

(3.6) e-t=l--k!
k

al+ "+ ak=
"jI---I1 Etr E H (Bj/j!)v

F(r,n) j= "[J!
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II. For this set of examples, we consider a parametric family of distributions, say
{F(y; /3), /3 e B}. Let b [0, ) -- B be Borel measurable and set L(s; dy) F(dy; b(s)).
Since L now depends on s, identity (3.1) is no longer applicable; instead we use (2.6).

We illustrate with some particular examples for the case where B [0, c) and
b(s) A(s).

(i) F(y; ) uniform on [0,/3]:

O fR fo" fA(s)yJdydA(s)#j(t) yJL(s; dy) dA(s) A- v0 (j + 1)2
Hence, we have the identity

A(t)
(3.7) e-a(t) ’ k!k=l

k

+ 31-11 rEl+ ak
(Olj at- 1)2(aj!) Ar(t)

F(r,n) [(J + 1)2j!]’(q’J !)

(ii) F(y; ) gamma with scale parameter/3 (and shape parameter a):

f0" f0ttj.(t)
A,(s)r(a

yJy"-le-Y/A(s) dy dA(s)

Consequently,

(3.8)

AJ + l(t)r(a + j)

(j + 1)F(a)

e-A" E [r()j -, +=l +... . n**’= P(2+a)
_/k(g) ]r E II IV(o/-- j)/r(2 + j)lv

,--)J F(r,n)j=l r(1 --(iii) F(y; ) normal with variance/3 (and mean zero):

"o fit Je-Y:/2A(s) f J!A(j/2)+ l(t)
tz(t) . y dy dA(s) (j/2)!2(/2)[(j/2) +

0

ifj is even,

ifj is odd.

Thus,

Ak(t)
(3.9) e-(

k=l
fi, 1 A(t

+’’" Otk= ;1"= (O/j + 1)! F(r,n) j= [(J + 1)!]J’YJ

4. A pair of inverse relations. Let f be a complex-valued function defined on
{ 1, 2, n}. It can then be shown that there exists a probability measure L on the
complex plane such that

fc yJL(dy) j!f(j)

for all j 1, 2,..., n. In fact, we can choose Xl, Xn C such that L (1/n) ,7=
6lx,I, i.e., L is the discrete uniform probability on {xl, xn}. It then follows from
(3.1), with A(t) t, that

_t k _iI f j W
(4.1) e-t E k! E -I f(a) tr E

k=l +..-+ak=nj=l r=l r(r,n)
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(4.2)

We now define, for n > and k > 1,
k

S(f k, n) I-[ f aj)
al+ +ak=nj

and

f(j)J
(4.3) T(f k, n) ll

F(k,n) j "J

We also set S(f O, n) T(f 0, n) 0 and note that T(f, k, n) 0 whenever k > n. Thus
(4.1) takes the form

k

(4.4) e-’
k o" S(f k, n) , trT(f r, n).

r=0

The following identities result by equating like powers of t.
THEOREM 4.1. Let f(1) f(n) be n complex numbers and define S(f, k, n),

T(f k, n) as in (4.2), (4.3), respectively. Then
k n

e-t Z S(f k, n) trT(f r, n),
k=l ’I r=0

S(f, k, n) r=O r!T(f r, n),

and

T(f k, n) (-1)k-r E S(f r, n)
r=0

for all k >_ O.

Sleeial eases.
(i) f(j) 1, <_j <_ n:

Then

S(f’k’n)=(n+k-n 1) and T(fk, n)= , 1__
r(k,n) j= "/’J

Thus we obtain the identity

k! E H [j]]--I Z (--1)k-r
F(k,n) 0 /7

which expresses T(1, k, n) in terms of binomial numbers only.
(ii) f(j) 1/j!, < j < n:

k k
s(f, k, n) Z I-i [!]-’ n!

al+ +ak=nj

and

T(f k, n) ] fi [-yj!(j!)J]-’ Sn,
I’(k,n) j
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where S is the Stirling number ofthe second kind (see (2.8)). Hence Theorem 4.1 yields
the well-known identity

k )k-(k.)S, , (- rn,
r=0

which expresses the Stirling numbers in terms of binomial coefficients.
(iii) f(j) j, < j < n:

k

S(f k, n) , H
+ +ak=nj

and so,

T(f k, n) , .]-1 jJ

r(k,n) "YJ!

k k n__n_
e-’G k! a tr G JJ

k al + ak n r(r,n) j J
5. Other results.
I. Transformations. Let X be a compound nonhomogeneous Poisson process with

representation (L, A) as in (2.1) and let [0, ) R R be Borel-measurable. Then
L(s; B) L(s; ;[B]) is also a stochastic kernel on [0, ) R, where we define
s(Y) (s, y). Hence there exists a compound nonhomogeneous Poisson process X
with representation (L% A). Fuhermore,

(5.1) f(t) yLO(s; dy) dA(s) (s, y)L(s; dy) dA(s).

Example. Let (s, y) y2, L(s; dy) L(dy) ()-e-/2dy be the normal dis-
tribution, and A(t) t. Then

and therefore we obtain the identity

k

(5.2) e-t k!k=l

u(t) (2j)!

II. Independent increments. It was noted in (2.3) that, ifXis a compound nonhomo-
geneous Poisson process, then X has independent increments (see {}2 for the definition).
Thus, for all 0 _< s < t, we can write

X(t) X(s) + [X(t) X(s)],

where X(s) and IX(t) X(s)] are independent. Hence

(5.3) E[Xn(t)] Fo E[Xk(s)]E[{X(t) X(s)}-]"

In particular, ifX is a Poisson process with rate X (i.e., L(s; dy) 6lI(dy) and
A(s) s), then the increments are Poisson random variables: X(s) is Poisson with pa-
rameter s and [X(t) X(s)] is Poisson with parameter (t s). Therefore, for s and
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/--2,

E[X"(2)] E[X (1)]E[X" 1)1.

However, E[Xk(1)] Bk, the kth Bell number. Also, from (2.7),

2kkn

E[Xn(2)] e-2 Z Z2s..
k=l r=l

Hence we obtain

(5.4) BB,_k ’ k! 2rsr"
k=l k=l

More generally, writing
q

X(q) [X(I) X(l 1)],
/=1

we obtain the identity

(5.5)
q- + Ol Olq k! r=l

q Sr
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THE SQUARE OF A HAMILTONIAN CYCLE*

GENGHUA FAN AND ROLAND HGGKVIST*

Abstract. Let C be a cycle. The square of C is the graph obtained by joining every pair of vertices of
distance 2 in C. Let G be a graph on n vertices with minimum degree 6(G). This paper proves that, if 6(G) >n, then G contains the square of a Hamiltonian cycle.

Key words, cycles, square of a cycle, Hamiltonian graphs
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1. Introduction. All graphs considered are simple and undirected. We denote by
/(G) the minimum degree of a graph G. A k-chord of a cycle C is an edge joining two
vertices of distance k in C; the kth power of C is the graph obtained from C by joining
every pair of vertices with distance at most k in C. As a natural generalization of Dirac’s
theorem [! ], Seymour conjectured [7] that, if G is a graph on n vertices and (G) >

(k/k + !)n, then G contains the kth power of a Hamiltonian cycle. This problem has
been studied by Faudree et al. [4]. As mentioned by Seymour, the truth of his conjecture
would imply the remarkably difficult Hajnal-Szemer6di theorem [6], which states that,
if a graph G on n vertices has maximum degree less than r, then G is r-colorable such
that the size of the color classes are all n/rJ or n/rJ. It is clear that the case where k
in the conjecture is Dirac’s theorem. In this paper, we are only concerned with the case

where k 2. We use "square" instead of "2nd power." This special case was earlier
conjectured by P6sa (see Erd6s [2]).

CONJECTURE. Let G be a graph on n vertices. If 6(G) > 2n then G contains the
square ofa Hamiltonian cycle.

The above conjecture, if true, is the best possible in the following sense. Let G be
the complete 3-partite graph with one part containing rn vertices and each of the other
two parts containing m + vertices. It is clear that i(G) 2m + -n 1/2, but G does
not contain the square of a Hamiltonian cycle. Jacobson (in a personal communication)
showed that, if 6(G) >_ 65- n, then the conclusion of the conjecture holds. By using a result
in [5], H/iggkvist (unpublished) gave a very simple proof of the cases where 6(G) >_ n +
and n 0 (mod 4). In this paper, we prove the following result.

THEOREM. Let G be a graph on n vertices. If6(G) >_ n, then G contains the square
ofa Hamiltonian cycle.

We need more notation and terminology. Define a k-chord ofa path in a way similar
to that of a cycle. Afeasible path (feasible cycle) of a graph G is a path (cycle) containing
all the 2-chords. A stronglyfeasible path is a feasible path, which, in addition, contains
all the 3-chords. Denote by xy the edge with ends x and y. Two edges are independent if
they have no common end. If P xyQzw is a feasible path in G, where Q is a path (so
is feasible itself), then we say that xy isfeasibly connected to zw by P, or that xy isfeasibly
connected to zw through Q, and we write xy -- zw in G. In the case where Q , we
simply say that xy isfeasiblyjoined to zw. By reversing the order ofthe path, we see that
xy - zw is equivalent to wz -- yx. However, xy -- zw is not the same as yx -- zw.
Here the order of the two ends of the end-edges of a feasible path is significant. This is
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the only case where we distinguish xy from yx for the same edge with ends x and y. In
such a case, to avoid vagueness, we use ordered edges instead ofedges. Let C ulu2" "UmUl
be a cycle. We say that ui and ui / are consecutive on C, _< _< m, where the additions
ofthe indices of ui are taken modulo m. We choose an orientation of C that is consistent
with the increasing order of the indices of ui (1 _< _< m). By ui < uj, we mean that ui 4:
uj., and there is a path of C from ui to uj, determined by the orientation of C. We call
this path the segment ofC from ui to u. We use Km for the complete graph on m vertices.
The vertex set of a graph G is denoted by V(G) and the edge set by E(G). If H is a
subgraph of G, we denote by G H the subgraph obtained by deleting all the vertices
of H together with all the edges, with at least one end in H; for v V(G), N14(v) is the
set, and d(v, H) the number, of vertices in H that are joined to v. We call d(v, H) the
degree of v in H and we define d(F, H) Y,,E v F) d(v, H), for two subgraphs F and H
of G. By definition, d(F, H) d(H, F), and, if V(F) fq V(H) , then d(F, H) is the
number of edges with one end in F and other end in H.

Results on feasible paths and cycles are proved in 2 and 3, respectively. They are
applied to the proof of the main theorem in the last section. The proof of the theorem
is by induction on the number of vertices ofthe graphs. We choose a longest feasible cycle
C with maximum number of 3-chords. Set H G C and define c V(C)[. We first
show that d(x, C) < c for every vertex x in H, and so, by induction, c > n/2. Next, we
prove that d( T, C) < 2c for every triangle T in H, which enables us to establish that
every two independent ordered edges of H are feasibly connected in H. Moreover, we
prove that H contains at least -37n vertices. By these results, we find that the subgraph
G H (induced by V(C)) has such a high density that every two independent edges of
C are connected by a feasible path of at least c 2 vertices in G H, which, together
with a feasible path in H, results in a feasible cycle of vertices more than c. This gives a
contradiction to the choice of C.

2. Results on feasible paths.
LEMMA 2.1. Let P XXe’"Xp be a strongly feasible path in a graph G, where

p >_ 5. Denote by T the triangle induced by Xp-e, xp_ , xp }. Then XlX2 is con-
nected to each ofthe six ordered edges ofT by afeasible path P’ with V(P’)

_
V(P) and

V(P’)I >-p- 1.
Proof Evidently, the path P itself gives the required paths from x x2 to the or-

dered edges x,_ ex,- and Xp_ xp. Since P is strongly feasible and p >_ 5, we have that
Xp-3X, E(G), and so the path XlXe’"xp-3Xp-eXpXp- is feasible, which provides the
required paths from XlXe to xp-exp and xpxp_ . Moreover, since xp-4x,- E(G), both
xxe" .xp_ 3Xp- xp_ e and Xl x2" .Xp_ 3xp- xpx,_ 2 are feasible paths of G. This completes
the proof. [2]

LEMMA 2.2. Let P x xe" .xp be a path in a graph G andab E(G P). Ifneither
ab nor ba is feasibly joined to any ordered edge xx/ E(P), _< _< p l, then
d(ab, P) <_ p + l, and, furthermore, ifd(xp, ab) <_ l, then d(ab, P) <_ p with equality only
ifd(x, ab) >_ 1.

Proof Set N {x V(P) d(x, ab) 2} and N+ {x;+ 6 V(P) Xi U:: N}. By
the given condition, if xi N, then d(xi+, ab) 0. Thus N f3 N+ 5 and d(ab,
N t.) N+) < 2 ]NI. Noting that IN tO N+I >_ 2 NI and since d(x, ab) _< for all
x V(P)\(N N+), we have that d(ab, P) < 2IN] + (p IN tO N+l) < P + 1, as
required. Furthermore, if d(x,, ab) _< 1, then IN t3 N+I 2 NI, and so d(ab, P) <_

p, with equality only if d(x, ab) for all x V(P)\(N t_) N+), which implies, since
x </N+, that d(x, ab) >_ 1.

LEMMA 2.3. Let P Xl xe" .x be a path in a graph G. Suppose that T is a triangle
in G P. If none of the six ordered edges of T is feasibly joined to any ordered edge
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xixi+ 6 E(P), <_ <_ p- 1, then d( T, P) < (p + 1), and, furthermore, ifd(xp, T) <
1, then d( T, P) < p with equality only ifd(x, T) >_ 2.

Proof Apply Lemma 2.2 to each edge of T. 1--1
LEMMA 2.4. Suppose that G is a graph on n vertices in which d( T, G) > ]nfor every

triangle T ofG. Iffis an edge ofG contained in a triangle, then it is contained in a Ks.
Proof Let Tbe a triangle containingf. Since d(T, G) > ]n, there is v 6 G T such

that T t.J {v} induces a K4. Let Q denote such a K4. Applying the given condition to
every triangle of Q, we have that d(Q, G) > 3n. If d(v, Q) < 3 for all v V(H Q),
then d(Q, G) <_ 3(n 4) + 12 3n, a contradiction. Therefore, d(v, Q) 4 for some
v V(G- Q), which gives a K5 containingf

LEMMA 2.5. Let K be a complete subgraph ofG and xy an ordered edge ofK. If
ab E(G K), with that order, and d(ab, K) >_ V(K)[ + 3, then xy -- ab in G.

Proof Since d(ab, K) >_ V(K)I + 3, there are u, v V(K)\{x} such that d(uv,
ab) 4. So xy -- uv -- ab, where we choose u y if y { u, v }.

LEMMA 2.6. Suppose that G is a graph on n vertices in which d( T, G) > nfor every
triangle T ofG. Let xy and zw be any two independent ordered edges. Ifboth xy and zw
are contained in triangles, then xy -- zw in G.

Proof Suppose, to the contrary, that this is not true. By Lemma 2.4, xy is contained
in some K5 in G. This implies that xy is contained in some triangle in G zw. Let K be
a maximal complete subgraph containing xy in G zw. Set k V(K) I. By the maximality
of K, d(K, G K- zw) < k- 1)(n k- 2), and, by Lemma 2.5, d(K, zw) <_ k + 2.
Therefore, d(K, G) < (k- 1)n k + 4. On the other hand, applying the condition that
d( T, G) > n to every triangle of K, we have that d(K, G) > (3k/4)n. So k > 5. Similarly,
there is also a complete subgraph on at least five vertices in G xy, which contains zw.
Therefore, we may let Kfand Kg be two K5 containing xy and zw, respectively, such that
V(Kf) f’) V(Kg)

_
V(G)\{x, y, z, w}. If IV(Kf) f) V(Kg)[ >_ 2, then xyand zware connected

by a feasible path through an edge in Kf fq Kg, contradicting the assumption. Suppose
therefore that V(K) f) V(Kg) < 1.

If V(Kf) fq V(Kg)I 1, say V(Kf) N V(Kg) {u}, we denote by Qf(Qg) the K4
obtained by deleting u from Ky(Kg). If there is an edge e from V( Qf)\{x} to V(Qg)\{w},
then xy and zw are connected by a feasible path through the vertex u with e as a 2-
chord, a contradiction again. This shows that d(Qf, Qg) _< 7. Let R G K Kf. If
d(v, Qf) < 3 for all v V(R), then d(Qy, R) <_ 3(n 9), and so

d(Qf, G) d( Qf, R) + d( Qf, Qe) + d( Qf, u) + d(Qf, Qu) <_ 3(n 9) + 7 + 4 + 12

3n-4.

However, by applying the given condition to every triangle of Qf, we have that
d(Qf, G) > 3n. This contradiction shows that there must be a vertex v V(R) such
that d(v, Qw) 4, and then Qftogether with v induces a K vertex-disjoint with Kg.

From the above discussion, we see that either there is a K5 that contains xy and is
vertex-disjoint with Kg, or V(Ky.) fq V(Kg) . Therefore, we may choose Kf, in the
first place, such that V(Ky.) fq V(Kg) . Now let

Pf-- xyaaz...ap_zap-ap and Pg zwbb_’" .bq_zbq_lbq

be two vertex-disjoint strongly-feasible paths starting at xy and zw such that (i) p > 3
and q > 3, and (ii) subject to (i), p + q is maximum. Such two paths exist from the
existence of Kfand Kg. Let Tf and Tg be the triangles induced by the last three vertices
of PUand Pg, respectively. Set R G Pf- Pg. By the maximality ofp + q, d( TU, v) <
2 for all v 6 V(R), which implies that d( Tf, R) <_ 2(n V(Pw)[ V(Pg) 1). By Lemma
2.1, if there is an ordered edge of Tf (Tg) that is feasibly joined to an ordered edge
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bibi-1 - E(Pg zw) (aiai- - E(Pf xy)), then xy -- zw, and we are done. (Note that
zbz, xa2 E(G).) Suppose that this is not the case. Applying Lemma 2.3 to Tf and
Pg zw (with reversed order on Pg), we have that d( Tf, Pg zw) < (q + 1). Clearly, if
d( Tf, zw) > 5, then xy -- zw. Suppose that d( Tf, zw) < 4. Consequently,

d( Tf, G) < 2(n V(PT)[ V(eg)l) / 3(I v(ef)l 1) / (q + 1) + 4.

Using q V( Pg) 2,

d( Tf, G) < 2n + v(ef)l 1/21 V(eg)l 1/2.
By symmetry,

d( T, G) <_ 2n + V(Pg)I 1/21 v(Pf)l 1/2.
Adding the last two inequalities together and using v(ef)l + ]V(eg)l n, we find
that d( Ty, G) + d(Tg, G) < n 1. However, by the given condition, d(Tf, G) +
d( Tg, G) > n. This contradiction proves the lemma. [3

3. Results on feasible cycles. Throughout this section, G denotes a graph with min-
imum degree 6(G) >_ n, where n is the number ofvertices of G, and C is a longest feasible
cycle of G: C= uu2u3""u_u,.u, where c v(C)l. SetH= G- Candh V(H)I,
where h > 0. Note that 6(G) >_ n implies c >_ 4.

LEMMA 3.1. Ifl)

_
V(H), then nofour consecutive vertices ofC are alljoined to v.

Proof Consider any four consecutive vertices { u, ui + 1, u+ 2, ui + } of C. If v is
joined to all of them, then u ui + vui + ui + is a feasible path, which implies that we can
insert v into C and obtain a longer feasible cycle, contradicting the choice of C. [3

LEMMA 3.2. Let T be a triangle ofH with V(T) {x, y, z}. Ifthere are independent
edges bliUi+ 1, bljblj+ C= E(C),j > i, such that d(uiui+ l, xy) 4 and d(ujuj+ , z) 2, then
either d(uj, xy) 0 orj > + 5.

Proof If uj is joined to x(y), then uiui/ yxzuu+ (uiui/ xyzuu+ ) is a feasible
path, which yields a feasible cycle of length c + 3 (j 2) c + + 5 -j. By the
maximality of C, j > + 5. [3

LEMMA 3.3. Let T be a triangle ofH. For any i, < < c, ifd(ttiui+ , T) >_ 5, then
d(ui + 2 ui + 3, T) < 4 with equality only ifd(ui / 2, T) 1.

Proof If d(ui+2ui+3, T) >_ 5, then d({ui, ui+, ui/2, ui+3}, T) > 10, which implies
that some vertex of T is joined to all ofthe four consecutive vertices ui / , 0 < < 3. This
is impossible by Lemma 3.1. Thus d(ui / 2 u / 3, T) < 4. If the equality holds, then there
is a vertex z V(T) such that d(z, ui/ 2u/ 3) 2. Furthermore, since d(uiui+ , T) >_ 5,
there is an edge xy E(T) such that d(xy, uiu+ ) 4. By Lemma 3.1, z {x, y}. It
follows from Lemma 3.2 that d(ui+ 2, xy) 0, and hence d(ui+ 2, T) 1. [3

Reversing the order of the indices in Lemma 3.3, we have the following result.
LEMMA 3.4. Let T be a triangle ofH. For any i, <_ < c, ifd(uui_ , T) > 5, then

d(ui_ 2 ui- 3, T) _< 4 with equality only ifd(ui_ 2, T) 1.
LEMMA 3.5. Let T be a triangle ofH. Suppose that aba2b2" "abk is a segment

ofC such that d(ab, T) 4 for all i, < < k. Ifd(a, T) 1, then d(bk, T) 3.
Proof If k 1, the assertion is trivially true. We proceed by induction on k. Since

d(a bl, T) d(azb2, T) 4, there are x, y V(T) such that x is joined to both al and
b and y to both a2 and b2. By Lemma 3.1, x 4: y. Since d(a, T) and d(a b, T)
4, we have that d(b, T) 3. If a2x E(G), then abxya2b2 is a feasible path; if azz
E(G), where z is the third vertex of T other than x and y, then aibxzya2b2 is a feasible
path. Both cases lead to a feasible cycle of length at least c + 2. This contradiction shows
that y is the only vertex of Tjoined to a2. That is, d(a2, T) 1. Applying the induction
hypothesis to a2 b2 a3b3""ab completes the proof of the lemma. [3
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LEMMA 3.6. Let T be a triangle ofH. Then d(T, C) <_ 2c.
Proof If c 4, by the maximality of c, d( T, C) _< 7. If c 5, by Lemma 3.1, d(T,

C) _< 9. Suppose that c >_ 6. Let Mbe a perfect matching of E(C) if c is even or a perfect
matching of C u otherwise, where u V(C) chosen so that d(u, T) min {d(v, T)
v e V(C)}. Set M {el, e2,..., em}, where m =/c/2J and ei, el+ are consecutive edges
on C, _< _< m 1. Ifd(ei, T) _< 4 for all i, _< _< m, then d(M, T) <_ 4m, which
gives that d(C, T) 2c, and we are done. Therefore, suppose that the set

D {eirM: d(ei, T) > 5, < < m}
is not empty and divides C into segments. A typical member ofthese segments is of form

S aoboalb’"akbk or S aoboab"’aobquao+b+"’akb,

depending on whether u V(S), where aibi - M, 0 <_ < k with aobo D, but ajbj D
for all j, < j < k; subject to these, k is as large as possible. If DI >- 2, letfM E(S)
be the edge next to akbk on C, and, by the maximality of k, d(f T) > 5. Noting that
d(aobo, T) > 5 and applying Lemma 3.3, we have that k > 1. If DI 1, let f aobo.
Since c > 6, we have that k > 2. By the construction of S,

(3.1) d(ajbj, T)_<4 for all j, l_<j_<k.

We prove that

(3.2) d(S, T) < 21V(S)I

by using

(3.3)
k k

d(S, T) d(aibi, T) or d(S, T) d(aibi, T) + d(u, T).
i=0 i=0

Case (i). u V(S). We first consider the subcase in which d(aobo, T) 5. If all
equalities hold in (3.1), then d(a, T) by Lemma 3.3, and so d(b, T) 3 by Lemma
3.5. However, by Lemma 3.4 with d(f, T) > 5, d(bk, T) 1. This contradiction shows
that there must be a strict inequality in (3.1), and then (3.2) follows from (3.3). Next,
consider the subcase in which d(aobo, T) 6. Since d(f, T) > 5 and by Lemma 3.2, we
have that k > 2. Since d(aobo, T) 6 and by Lemma 3.1, no vertex of T can be joined
to both al and bl, and hence d(albl, T) _< 3. Now, if there is some t, 2 _< _< k, such that
d(abt, T) _< 3, then (3.2) follows easily. Suppose that this is not the case. So d(ab, T)
4 for all j, 2 _<j _< k. Note that d(a2b2, T) 4 implies that there is z e V(T)
such that d(a2b2, z) 2; then, by Lemma 3.2, d(a2, T- z) 0, and so d(a2, T) 1.
Then, by Lemma 3.5, d(b,, T) 3. Again, however, by Lemma 3.4 with d(f T) >_ 5,
d(b,, T) 1. This contradiction proves (3.2). Summing (3.2) over all the segments S
yields d(C, T) <_ 2c and completes the proof of case (i).

Case (ii). u V(S). Note that d(aobo, T) _< 6. If there is a strict inequality in (3.1),
then d(u, T) _< 1, and (3.2) follows from a simple counting. It remains to consider the
subcase that all equalities hold in (3.1). By Lemmas 3.3 and 3.4, either d(al, T) (if
q 4: 0) or d(b, T) (if q 4: k), either of which implies that d(u, T) < 1. If d(aobo,
T) 5, then (3.2) follows. If d(aobo, T) 6, then, since d(a b, T) 4, u must lie
between bo and al, and moreover, by Lemma 3.2, d(al, T) 1. Then, as in (i), we have
the contradiction: d(b,, T) 3 and d(b,, T) 1. This proves (3.2) and the lemma. V1

4. Proof of the theorem. Obviously, the assertion is true for complete graphs. We
may assume that n >_ 7 and proceed by induction on n. Let C be a longest feasible cycle
of G with maximum number of 3-chords: C ul u2 u3" .u_ uul, where c V(C) 1.
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(Note that C has the following additional property: maximum number of 3-chords.) As
before, set H G C and h V(H) I. If h 0, there is nothing to prove. Assume that
h > 0. Since G contains K4, we have c > 4. If c 4, then d(x, C) < 3 for every vertex
in H, and the set I {x V(H) d(x, C) 3} forms an independent set. A simple
counting yields a contradiction to the fact that t(G) > n and n > 7. In what follows, we
assume that c > 5.

Claim 1. d(x, C) < c for every x V(H).
If c 5 or 6, the claim follows directly from Lemma 3.1. Suppose that c > 7. Let

x V(H) and S uiui / 1"’" u; / 6 be any segment of C with seven consecutive vertices.
We show that d(x, S) < 5. If this is not true, by Lemma 3.1, the only possibility is that
ui / ,x E(G) for all k, k 4:3 and 0 < k < 6. Replacing ui/ by x, we obtain a feasible
cycle C’ u... uu+u+ 2Xbli+abli+ 5b/i+6" UcUl ofthe same length as C. Note that uix
and xui / 6 are 3-chords of C’. By the choice of C (containing maximum number of 3-
chords), both lgibli+ 3 and b/i+3/,/i+ 6 are in E(G). So ll’’’Uilti+lbli+3bli+2lli+aXbli+ X
ui / 6"" ucu is a feasible cycle of length c + 1, contradicting the choice of C. Summing
d(x, S) < 5 over all the segments S completes the proof of Claim 1. An immediate
consequence of Claim is that

(4.1) 6(H) >_ 6(G) c >_ h,
which implies, by the induction hypothesis, that H contains the square ofa Hamiltonian
cycle of H. By the choice of C, c >_ h.

Claim 2. If T is a triangle of H, then d(T, H) > ]h in H.
By Lemma 3.6, d(T, H) >_ 36(G) d(T, C) >_ n 2c 2h + n. Since c >_ h, we

have that n >_ 2h, and therefore d(T, H) > 49-h.
Claim 3. h >_ n.
Let K be a maximum complete subgraph ofH and set k IV(K) I. By (4.1), k >_

4, and, by the maximality of K, d(K, v) _< k for all v H K. Thus d(K, H) <_

h(k !). Therefore

(4.2) d(k, C) >_ k6(G) d(k, H) >_ kn h(k- 1).

If d(K, uui +l) -< k + for every edge uu+ E(C), then summing these inequalities
over all i, _< _< c yields that d(K, C) _< ((k + 1)/2)c ((k + 1)/2)(n h). Combining
this with (4.2) and using k >_ 4, we obtain that

3k- 7 3
h >

7(k- 3)
n > n,

as required by the claim. Therefore assume that there is some edge utu +1 E(C) such
that d(K, utu /1) >- k + 2. By relabeling, we may assume that 1. That is, there is
some edge XlX2 E(K) such that d(xx2, u u2) 4. Let

P xx" "Xp_2Xp_ lxp

be a strongly feasible path in H starting at x x2 withp maximum. By Claim 2 and Lemma
2.4, p > 5. Denote by T the triangle induced by {xp_ 2, x,_ , xp}. Let

Q uu4" u+ 2 and Q’ UcUc- 1" Ue- ’+

be the two segments starting at uu4 and uu_ (Q’ takes the reversed orientation of C),
respectively, such that

(i) V(Q) V(Q’) and both k, k’ < p,
(ii) subject to (i), d(u, + 2, T) _< and d(u_,+ , T) <_ 1,
(iii) subject to (i) and (ii), k + k’ is maximum.
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Note that V(Q)I k < p and V(Q’)I k’ < p. Applying Lemma 2.1 to P and
by the maximality of C, no ordered edge of T is feasibly joined to uiui+ E(Q) or
ujuj_ E(Q’). By choice (ii) of Q and Q’, it follows from Lemma 2.3 that

(4.3) d(T, Q) + d(T, Q’) < (k + k’)

with equality only if both d(u3, T) > 2 and d(uc, T) > 2, and from Lemma 2.2 that

(4.4) d(xp_ xp, Q) + d(xp_ xp, Q’) <_ k + k’

with equality only if both d(u3, x_ x) > and d(uc, x,_ xp) > 1. Since no ordered
edge of T is feasibly joined to uiui + (ujuj_ ), we have that either d(ui, T) < or d(u + ,
T) < (either d(u, T) < or d(u_, T) < 1), for any (j) with 3 < _< p + (c
k’ + 2 < j _< c). This implies that we may choose Q and Q’ such that either (i) k + k’ >
2p 2 if c >_ 2p + or (ii) c 3 < k + k’ < c 2 if c _< 2p. We discuss these two cases
separately. For convenience, set R C- Q Q’- u u2.

Case (i). c > 2p + and k + k’ >_ 2p 2. Note that d(T, u u) < 6. By Lemma
3.1, if equality holds in (4.3), then d(T, u u2) -< 5. Therefore

(4.5) d(T, O) + d(T, Q’) + d(T, u u2) < -32(k + k’) + -.
If V(R)I -< 2, then clearly d(T, R) < 21V(R)I / 2 2c 2(k + k’) 2. Adding this
to (4.5) and then using k + k’ > 2p 2, we obtain that

(4.6) d(T, C) < 2c-p + .
Furthermore, by the choice of P, d(T, v) < 2 for all v V(H- P), and therefore
d(T, H) < 2(h p) + 3(p 1) 2h + p 3. Consequently,

(4.7) d(T, G) d(T, C) + d(T, H) < 2n + .
On the other hand, d(T, G) > 36(G) > n. It follows that n < 10. However, c > 2p +
implies that n > 3p + > 16, a contradiction. Suppose now that V(R) >- 3. From the
proof of Lemma 3.6 (see (3.2)), it is not difficult to see that d(T, R) < 21V(R)I / 3
2c 2(k + k’) 1. Adding this to (4.5), instead of (4.6) we have that d(T, C) < 2c
p + -, and, by the same argument used in deriving (4.7), d(T, G) < 2n + , which, to-
gether with d(T, G) > -n, implies that n < 17. However, using k + k’ > 2p 2 and
V(R) >- 3, we have that c k + k’ + 2 + V(R) >- 2p + 3, and so n > 3p + 3 >_ 18,

a contradiction again.
Case (ii). c < 2p and c 3 < k + k’ < c 2. Then V(R)] < 1. Consider the edge

xp_ Xp. Note that d(xp_ Xp, uu2) < 4. If equality holds in (4.4), then d(xp_ xp,
u u2) < 3, for otherwise, either Lemma 3.1 is violated or the edge xp_ xp (or xpxp_ )
can be inserted into C between u and u2 to obtain a feasible cycle of length c + 2. It
follows that

d(xp_ xp, Q) + d(xp_ xp, Q’) + d(xp__ xp, u U2) k / k’ / 3 c- V(R)I / 1.

Using d(xp_ Xp, R) <_ 2[ V(R) I, we derive that d(xp_ xp, C) <_ c + V(R) + _< c +
2. Therefore

d(xp_ Xp, G) d(xp_ xp, C) + d(xp_ xp, H) _< c + 2 + 2(h 1) n + h.

On the other hand, d(xp_ xp, G) > 26(G) > n. It follows that h > n, as required. This
proves Claim 3.

Claim 4. d(u, H) > 1/2h + for every u V(C).
We note that d(u, H) >_ d(u) (c 1) > n c + h + n. From Claim 3,

n _< h, and the claim follows.
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Claim 5. Let ab and uv be any two ordered independent edges with both ends in
C. If there are distinct vertices x, y V(H) such that d(x, ab) 2 and d(y, uv) 2, then
ab is feasibly connected to uv through a path P with V(P) V(H) and IV(P) > 3.

If there are two distinct vertices z, w V(H)\{x, y} such that z is joined to both x,
b and w to both y, u, then ab xz and wy uv. By (4.1), xz is contained in a triangle
in H, and so is wy. It follows from Claim 2 and Lemma 2.6 that xz wy, and so ab --uv through a path Pwith V(P)

_
V(H) and {x, y, z, w}

_
V(P). Suppose that this is not

the case. From (4.1), [N(x) > h > -h. This, together with Claim 4, implies that b is
joined to at least two vertices in Ni-l(X). Similarly, u is joined to at least two vertices in
NI-I(y). To avoid the case we just discussed, it must be that xy E(G) and that there is z

Ni-i(x) fq Nn(y) joined to both b and u such that abxzyuv is a feasible path, which
proves Claim 5 with P xzy. We now return to the proof of our theorem.

Let M be a perfect matching of C if c is even or a perfect matching of C u
otherwise, where u V(C) chosen so that d(u, H) min {d(v, H) v V(C)}. Set M
{e, e2, em}, where rn lc/2J and ei, ei+ are alternatively consecutive edges on C,

_< < rn 1. (Note that, if c is odd, then u lies between em and e .)
First, consider the case where there are two distinct vertices x, y V(H) such that

d(x, e;) 2 and d(y, e) 2 for two distinct edges ei, ej M. Since C is a longest fea-
sible cycle and by Claim 5, we have -Jl > 2, and moreover, d(ei+ l, z) < for all
z V(H- x) and d(e+ , z) _< for all z V(H- y). Furthermore, by Lemma 3.1,
d(ei + l, x) _< and d(e+ , y) < 1. Consequently,

(4.8) d(ei+ , H) < h and d(e+ , H) <_ h.

Now we construct a new graph C* with V(C*) M as follows: Arrange e, e2, em
around a cycle in the same order as they are around C (so etet+l E(C*), <_ < m)
and add edges from ei + or ej. + to et if and only if it is joined to et by four edges in G,
< < m. It is clear that any path of C* gives rise to a feasible path of G with all vertices

in C. Denote by a and/3 the degree of ei+ and e +1 in C*, respectively. From the
construction of C*,

d(ei+ 1, C) < 4a + 3(m a) + d(ei+ 1, C- M) + d(ei+ l, ei+ ).

Using d(ei/ , C M) < 2(c 2m) and d(ei / , ei+ ) 2,

(4.9) d(ei/ , C) < o + 2c- m- 1.

On the other hand, using (4.8),

(4.10) d(ei+ , C) > 26(G) d(ei+ , H) > -n h > c + n.
By Claim 3, c < n, that is, n > 74-c. Substituting this into (4.10) yields that d(e+ , C) >
1/4c. This, together with (4.9), gives that a > rn + 1/4c, but c < 2m + 1, and so

rn 3
(4.11) c>+.
Similarly,/3 > m/2 + . Note that ei and ej. are the predecessors of ei + and ej. + , respec-
tively. By a standard technique, e and e are connected by a Hamiltonian path in C*,
which implies that ei and e are connected in G by a feasible path P with V(P) V(C)
and V(P) > c 1. However, from Claim 5, e; and e (with any order of the ends) are
connected through a feasible path P in H with V(P) >- 3. The combination of these
two paths yields a feasible cycle of G of length at least c + 2, a contradiction. Suppose
therefore that this is not the case. It remains to consider the following two cases.



THE SQUARE OF A HAMILTONIAN CYCLE 211

Case I. There is some vertex x V(H) such that d(x, e’) 2 for some edge e’ e M.
By relabeling, we may suppose that d(x, e 2. Then, to avoid the case we discussed
above, it must be that no vertex in H other than x is joined to both ends of any edge of
M other than e. Therefore

(4.12) d(ei, H) < h + 1, 2 < < m.

Now construct a graph M* in which V(M*) M and ei is joined to ej if and only if ei
and ej. are joined by four edges in G, < i, j < m. Denote by ai the degree of ei in M*,
< < m. Using (4.12) instead of (4.8), we derive, instead of (4.11), that

m
(4.13) ai > 2 < < m.

-2 4’

Since d(x, e) 2, as shown in (4.8), we must have that d(e2, H) < h, and therefore
2 > m/2 + , which implies that m > 4 since c2 < m 1. Note that the segment of C
from em to e2 through e is a feasible path. If necessary, we may add two more edges to
M* from em to e and from e2 to e so that al > 2. This, together with (4.13), implies
that the graph 34* is 2-connected and max {d(u, M* ), d(v, M* )} > m/2 for every pair
of distinct vertices u and v in V(M*). By a result in [3], M* has a Hamiltonian cycle,
which implies a Hamiltonian path ofM* starting at e with the last edge corresponding
to a K4 in G. This gives a feasible path P in G starting at e such that V(P)

_
V(C),

V(P)I >- c 1, and the last four vertices of P induce a K4 in G, say P
aba2b2. "am- bm- ambm, where ab e. Since am- bm E(G), the path P provides
a feasible path containing at least 2m vertices from alb to each of the ordered edges
{bm- am, bm- ibm, ambm }. By Claim 4, there must be y V(H x) joined to both ends
of one of these three ordered edges, and by Claim 5 such an ordered edge is feasibly
connected to e (with any order ofthe ends) through a path in H containing at least three
vertices. Therefore, we have a feasible cycle of G of length at least 2m + 2 > c + 1, a
contradiction.

Case II. d(x, e’) < for every vertex x V(H) and every edge e’ M. Then
d(ei, H) < h for all i, < < m. Let M* be the same graph as defined in Case I. Instead
of (4.13), this time we have that

m 3
(4.14) og > / , < < m.

So m > 4 and M* is Hamiltonian. Let P VlV2" .vp_ Vp be the feasible path of G that
corresponds to a Hamiltonian path of M*. By the construction of M*, V(P)

_
V(C),

p=corc- 1, and

(4.15) VlVa E(G) and v,_ 3vp E(G).

If c is odd, then, by the choice of u, d(u, H) < 1/2h, and so d(u, P) > n 1/2h 1/2c + n.
Again, by Claim 3, n > -c, and thus d(u, P) > c. Therefore, we may insert u into P in
such a way that (4.15) still holds for the new path after the insertion. By this, we may
assume that p c regardless of whether c is even or odd. Let A (vv2, VlV3, v2v3} and
B Vp_ 2vp-, Vp_ 2Vp, Vp_ Vp} be two sets of ordered edges (with those given orders).
Since m > 4, we have V(A) f) V(B) . The path P with property (4.15) implies that
every member of A is connected to every member of B by a feasible path P’ with
V(P’)

_
V(P) and V(P’)I >- V(P)I 2 c 2. By Claim 4, there are distinct vertices

x, y V(H) such that x is joined to both ends ofan ordered edge ofA and y to both ends
of an ordered edge of B. As seen in the proof of Case I, these two ordered edges are
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feasibly connected through a path in H containing at least three vertices, which, together
with P’, give a feasible cycle ofG oflength at least c + 1. This final contradiction completes
our proof.
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AN O(n log n) ALGORITHM FOR BANDWIDTH
OF INTERVAL GRAPHS*

ALAN P. SPRAGUE

Abstract. This paper presents an O(n log n) algorithm for the bandwidth problem on interval graphs.
Given an interval model for an interval graph with n vertices and an integer k, the algorithm constructs a layout
ofbandwidth at most k, if there exists one. Two previous algorithms for this problem have been published. One
of them is flawed; the other is by Kleitman and Vohra and has complexity O(nk).

Key words, interval graphs, bandwidth, graph algorithms
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1. Introduction. An interval graph is a graph whose vertices can be put in one-to-
one correspondence with a family of intervals on the real line, such that two vertices are
adjacent if and only if the corresponding intervals are nondisjoint. Such a family of
intervals is called an interval model for the graph. Interval graphs have many applications
[5], and algorithmic issues involving interval graphs have attracted much interest [3],
[6], [7], [10].

Vertices v and w in a graph are said to be neighbors if v w or v is adjacent to w.
A layout of a graph G on n vertices is a bijection between the vertices of G and the set
{ 1, 2, n}. In particular, we treat { 1, 2 n} as the domain of the function and
the vertices of G as the range. The bandwidth of layout equals max { j[ X(i) is a
neighbor of ,(j)}. The bandwidth of G is the minimum bandwidth of layouts of G.

Given a graph G and an integer k, the problem of determining if the bandwidth of
G is at most k is called the bandwidth problem. The bandwidth problem is NP-complete
on graphs and even on trees ]. It is polynomial on caterpillars with hairlength at most
2[ll.

Kratsch [9] devised the first algorithm for bandwidth on interval graphs, but it is
flawed; a counterexample is provided below. Kleitman and Vohra developed a different
algorithm for this problem and proved it correct [8]. The algorithm of [8] has complexity
O(kn), where n is the number ofvertices ofthe graph and k is the bandwidth being tested.

In this paper, we solve the bandwidth problem in O(n log n) time. The algorithm
is essentially that of Kleitman and Vohra; appropriate data structures enable this
O(n log n) running time, which is an improvement over their O(kn) time for all interval
graphs, except those with very low bandwidth.

We comment on the effect that the form of the input has on the complexity of our
algorithm and other algorithms on interval graphs. In this paper, we assume that an
interval model is given; under this assumption, our algorithm has complexity O(n log n).
In some papers, it is assumed that an interval model is given and, in addition, that
endpoints are already sorted. Under this assumption, we may aspire to O(n) algorithms,
which have been found for various problems, including maximum clique, clique cover,
and maximum independent set [6], while our algorithm retains its O(n log n) complexity.
On other occasions, it is assumed that an interval graph is represented as a consecutive
cliques arrangement [9]. If we interpret this term to mean that, for each vertex, the first
and last clique containing it is given, then, from a consecutive cliques arrangement, we
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may easily obtain an interval model in which endpoints of intervals are integers between
and n inclusive, which may be sorted in O(n) time. Hence, given a consecutive cliques

arrangement, O(n) algorithms are known for various problems on interval graphs. Finally,
it is sometimes assumed that an interval graph is represented in the usual adjacency list
representation for general graphs. Such a representation has size O(m + n), where m is
the number ofedges. The algorithm ofBooth and Lueker [4] constructs an interval model
for such a graph in O(m + n) time, so our algorithm has complexity O(m + n log n),
given an adjacency list representation for the graph.

In 2 we give an algorithm for bandwidth ofinterval graphs. In3 and 4 we develop
data structures that enable the algorithm to be executed in O(n log n) time. The conclusion
states several open problems.

2. Bandwidth. We begin this section by introducing some notation and display an
example for which the algorithm of [9] errs. The bandwidth algorithm that we use is
then stated. Finally, we explain the role that data structures must play for the complexity
of the algorithm to be O(n log n).

We assume that an interval model for the interval graph G is given; for each interval
z, zL is the coordinate of the left end of z, and zn its fight end. There are n intervals. The
arrays L_array and R_array may be filled in O(n log n) time with the left (respectively,
fight) ends of the intervals, in ascending order. (Ties may be broken arbitrarily.) We
often speak of L_array and R_array as sequences of intervals rather than as sequences
of coordinates. Array LR_array may be filled with the 2n ends in ascending order, by
merging the other two. (Where intervals are closed intervals, whenever a left end and a
fight end have the same coordinate, the left end must precede the fight end in LR_array.)

Kratsch [9] developed an approach that is used in [8] and this paper. A layout is
constructed from left to fight. This approach follows a policy of laying out intervals
generally in order of fight ends, but being mindful of constraints imposed by already-
laid-down intervals. However, the first algorithm [9] to use this approach is incorrect. In
particular, it erroneously decides that the interval graph of Fig. has no layout ofband-
width 4. Property 2 of [9, p. 146] is a cause of the failure of this example.

The algorithm presented here may be viewed as the algorithm of Kleitman and
Vohra, supported by new data structures. The following definitions are important in
describing our concepts, data structures, and algorithm. Let Layout(I- n) be the layout
being constructed and suppose that intervals have been assigned to positions 1, 2,
t. The set of intervals assigned to positions 1, 2, is written as Layout(1... t). For
any interval z that is not yet laid down, Deadline(z) min({n} tO { j + k: Layout(j) is
adjacent to z, < j < t}). Thus the deadline of z reflects the constraints on z imposed
by the already-laid-down intervals. For < h < n, let Ih be the set of h intervals
with leftmost left ends. Thus Ih corresponds to L_array(1... h). Deadline(Ih) max
{Deadline(z) z Ih Layout(1...t)}. We define Leeway(Ih) Deadline(Ih) h
Layout(1... t) -/hi; to understand this, note that Layout(1. t) Ihl is the number

bl
a b2 c. e f

FIG. 1. Model ofinterval graph, providing a counterexample to the algorithm of [9].
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ofintervals outside Ih that are already laid down and that Deadline(Ih) h is the number
ofintervals outside Ih that will have been laid down by the time the deadline for Ih occurs;
so Leeway(Ih) is the number of intervals outside Ih that are allowed to be laid down
between now and the time oflaying down the last interval ofIh. However, if all intervals
of Ih are already laid down, we define Leeway(Ih) to be infinite. If Leeway(Ih) 0, we
say that Ih is critical. Because each not-yet-laid-down interval is defined to have a deadline
that is no greater than n, there is always at least one critical set, for In is critical.

Observe that, if Ih is critical, the next interval to be laid down must be from Ih, to
construct a layout of the desired bandwidth. Since the sets Ih are nested (Ih c Ih /1 for
all h), choosing the next interval to be laid down from the smallest critical set assures
that progress will be made on laying down all critical sets.

In the algorithm that follows, we write DeadlineA(Ih), instead of Deadline(Ih). This
is because the algorithm follows a lazy update policy on this variable. In each iteration,
a single deadline is updated (in step 8), instead of many. In the algorithm, leeways and
criticality are to be computed in terms ofthe values ofDeadlineA (), rather than in terms
of Deadline(). Also in the algorithm, an interval is marked if and only if it has been
laid down; all intervals are initially unmarked.

Algorithm for k-layout
1. DeadlineA(L) n for all r.
2. For to n do
3. Let h0 be the minimum h such that Ih is critical.
4. Let z be the unmarked interval in Ih0 with minimum fight coordinate.
5. Layout(i) z; Mark z.
6. Let r be the last index such that z is a neighbor of L_array(r).
7. /* Among unmarked intervals y, y is a neighbor of z if and only if y

L_array(r’) for some r’ _< r. */
8. DeadlineA(Ir) min(i + k, DeadlineA(Ir)).
9. If the leeway of/r is negative, then quit(failure: bandwidth of G exceeds k).

The major difference between this algorithm and the algorithm of [8] is the replace-
ment of the sets S. in [8] by the equivalent notions of deadlines and criticality. If our
algorithm were to update all deadlines in each iteration, it would be clearly equivalent
to the algorithm of [8], and the proof of correctness of [8] would serve also as proof of
correctness of this algorithm. In the next paragraph, we explain why the lazy updating
policy of this algorithm is valid.

That updating a single deadline in each iteration is sufficient is a consequence of
the following considerations. Suppose that r’ < r and that Deadline(/r,)= Deadline(L).
(1) If some interval in L L, is not laid down, then Leeway(/r,) > Leeway(Ir), so the
deadline of/r’ is superfluous. (2) In the contrary case, all intervals in L L’ are laid
down, so Leeway(/r,) Leeway(L); however, the set of not-laid-down intervals in L’
equals the corresponding subset of L. So, if/r’ is the smallest critical set, it does not
matter if the algorithm treats L as the smallest one instead. Where/r’ is the smallest
critical set r >_ r’ and all intervals ofL L, are laid down, we call L a virtually smallest
critical set.

Given arrays LR_array and R_array, step 6 can be computed in O(1) time for the
following reasons. Let r be the last index such that z is a neighbor of L_array(r). Then
r is the number of intervals u satisfying uL -< zR. The number of such intervals equals
the index of zR in LR_array minus the index ofz in R_array.

In the remainder of the paper, we show that this algorithm can be executed in
O(n log n) time. Since step 6 is not a challenge, the only concerns are steps 3, 4, and 9.
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To accomplish this running time, in the next two sections, we design data structures so
that each iteration can be performed in O(log n) time. This necessitates the following:

(A) A data structure to find, in O(log n) time, a virtually smallest critical set Iho
(step 3);

(B) A data structure to find, in O(log n) time, the unmarked interval z in Iho with
minimum fight coordinate (step 4);

(C) A data structure to determine, in O(log n) time, if the leeway of Ir is negative
(step 9).

A data structure for task (B) is described in 3, and a data structure for tasks (A)
and (C) in the following section. Step 8 is accomplished as part of updating the data
structure for tasks (A) and (C); a separate array for deadlines is unnecessary.

For tasks (A) and (C), we must know, in each iteration, the first interval in L_array
that is not yet laid down. This is easily done: In the initialization of the algorithm, set
up a doubly linked list corresponding to L_array and, for each interval z, create a pointer
from z to its node in the linked list. Then, in each iteration, in O(1) time, delete from
the linked list the interval that is being laid down. In each iteration, the first interval that
is not yet laid down can be found, given the header of the linked list, in O(1) time.

3. Selecting the next interval. In this section, we state a computational geometry
problem and develop a data structure and algorithm to solve it. In this problem, we are
given a set S ofpoints and an on-line sequence ofnumbers and we compute a permutation
of S satisfying certain conditions (or determine that no such permutation exists). At the
end of the section, we then show how task (B) from the previous section can be reduced
to the computational geometry problem.

Let S be a set of n points in the real plane. To simplify the exposition, we presume
that no two points have the same x-coordinate or y-coordinate. Let Xl, x,..., x be an
on-line sequence of numberseach x arrives in iteration i. Each x is interpreted as an
x-coordinate. The objective, in each iteration i, is either to select a point from S (to be
called &) or to give an error signal. In particular, call the set of points in S- {s, s_,...,
si-l} that are left of x-coordinate x the candidate set for si. If the candidate set for si is
nonempty, s is chosen as the member ofthe candidate set having minimum y-coordinate.
However, if the candidate set for si is empty, an error signal is returned instead.

Define a balanced binary tree of depth d to be a binary tree of depth d such that,
when all nodes at depth d are removed, a complete binary tree remains.

The algorithm to be developed for this problem uses a data structure based on the
segment tree of Bentley [2], [12, p. 13]. The data structure is a balanced binary tree T
with n leaves. Leaves of T correspond to points of S, in order of x-coordinate: Leaf a is
left of leaf fl if and only if the point corresponding to a is left of the point corresponding
to . Where point si corresponds to leaf/, we sometimes refer to / as leaf s,.. The
y-coordinate of s; is then regarded as the y-coordinate of the leaf. Each node 3’ of T
contains a pointer to the leaf in its subtree that has minimum y-coordinate; we let
min_leaf(3,) be that leaf.

Initializing T is straightforward. Establishing the correspondence between leaves
and points of S takes O(n) time if points in S are already sorted by x-coordinate, and
O(n log n) time otherwise. Computing min_leaf can be done in O(n) time, for it takes
O(1) time to compute min_leaf(3,) if min_leaf is already computed for the children
of,.

In iteration i, we must select & or determine that the candidate set is empty and we
update the data structure to assure that si is never again selected. We discuss updating
the data structure first. To assure that si is not again selected, change its y_coordinate
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to c. This requires recomputing min_leaf() for each node/ in the path from leaf S

to the root. This can be done in O(log n) time.
To select si, we first determine the leftmost leafthat is not left ofxi or (alternatively)

we determine that all leaves are left of xi. This can be done in O(log n) time by a bi-
nary search on leaves. If all points are left of xi, the root points to the point in S-
{&, s2 sg_ 1} having minimum y-coordinate. Suppose instead that a is the leftmost
leaf that is not left of xg and let P be the path from a to the root. Let Q be the set of
nodes/ such that/ is the left child of a node 3’, and 3’ and its fight child are both in P.
Then Q is the set of nodes in Bentley’s segment tree that represent the interval of points
that are left of xi. We can determine Q in O(log n) time and determine si in O(log n)
time by examining the [a[ y-coordinates associated with {min_leaf() e Q}. However,
ifthe point computed for si has its y-coordinate c, then the candidate set for si is empty,
and an error signal should be returned instead of a member of S.

Thus T can be initialized in O(n log n) time, and each iteration can be executed in
O(log n) time. Then initialization plus n iterations take a total of O(n log n) time. (We
note that, where points in S are not initially sorted, this is an optimal algorithm in any
model for which sort is an fZ(n log n) problem, since sort can be reduced to this problem.)

Task (B) of the previous section can be reduced to this problem as follows. Let I be
the set of n intervals. Define S as {(ZL, ZR) Z e I }. In iteration of the algorithm of the
previous section the task is to find the unmarked interval in Iho with minimum fight
coordinate. Now an interval is unmarked if and only if it is not yet laid down, which, in
turn, occurs ifand only if it was not selected in previous iterations. Translated into terms
of the point set S, the objective is to find the point in S that was not selected in previous
iterations and among the leftmost h0 leaves has minimum y-coordinate. This problem
is not harder than the problem we already solved, since, given h0, we can in O(1) time
determine an x-coordinate x0 so that exactly h0 leaves are left of x0. (Actually, it is an
easier problem--the binary search mentioned above can be discarded.) We note that in
task (B) the critical interval Iho is known to contain at least one interval that is not laid
down, so, as applied to task (B), the algorithm of this section will always return a point,
not an error signal.

4. Finding the first critical set. In this section, we describe a data structure that
maintains leeways of the sets Ih. Its principal purpose is to enable us, in O(log n) time,
to find a virtually smallest critical set Ih, without getting misled by those Ih that are
already fully laid down. The data structure also enables us, in step 9 of the algorithm, to
detect if the leeway of a set is negative. States of this data structure are displayed for the
interval model of Fig. 2.

The path from a leaf a to the root is written as P. We define the left cutfrom P to
be the set of arcs a3" of the tree where a is a left child of 3", and P contains 3" but not a.
If the arcs ofthe left cut from P were to be removed from the tree, the leaves that would

a

FIG. 2. Model ofinterval graph, ofbandwidth 4.
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no longer be in the same component with the root would be precisely the leaves properly
to the left of tr.

The data structure is a balanced binary tree, like the segment tree of the previous
section; we additionally require that each nonleaf have two children. (See Fig. 3.) Like
it, leaves represent intervals, in order of the left ends of the intervals: Leaf h of the tree
(counting from the leftmost leaf of the tree) corresponds to the interval whose left end
is at L_array(h). We speak of leaf h as laid down if the interval it represents is laid down.
Leaves play a dual role: In addition to representing a single interval, leafh also represents
the set Ih.

We define weights on the arcs of the tree as follows. Let 3’ be a node, whose left
child is a and fight child is/3. The weight of arc/33" is 0. The weight of arc a3" is the
number of already laid down leaves that are descendents of/3. A result of this definition
is that the number of intervals outside of Ih that are already laid down equals the sum
of weights of the arcs on Ph. Then, for a set Ih that is not fully laid down, Leeway(Ih)
Deadline(Ih) h weight(Ph), where the weight of Ph is computed as the sum ofweights
of its arcs.

Recall from 2 that, iflh is fully laid down, the leeway oflh is infinite. To accomplish
this, weights of some arcs are set to -o, as follows. Suppose that Ih is the largest fully-
laid-down set. Place a weight of- on all arcs of the left cut from Pm, where m h +
1. Now the leeway of each fully laid down set Ih is infinite, and the leeway of each Ih that
is not fully laid down is as described in the previous paragraph.

We define values on nodes of the tree as follows. For the leaf Ih, value(Ih)
DeadlineA(Ih) h. Then, at moments when DeadlineA(Ih) has been updated so that it
equals Deadline(Ih), the value of leaf Ih equals the leeway of Ih, under the optimistic

(a) o

8la 6/f 4d 2

(b) o

8a 6f 4d 2

(c)

_
o

8a 6Nf 4d 0

FIG. 3. Balanced binary tree for the interval graph of Fig. 2. The interval corresponding to each leaf is
indicated. Nonzero weights on arcs are shown, as are values on nodes. (a), (b), and (c) display quantities at the
end ofiterations 1, 2, and 3, respectively.
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assumption that no interval outside of Ih has been laid down. For nonleaf 3" having left
child a and fight child , the value at 3’ is set to min (value(a) weight(a3"), value(/3)).
Then the value at 3" equals the minimum leeway of sets Ih whose leaves are descendents
of 3", under the optimistic assumption that no interval to the fight of this subtree has
been laid down (at moments when DeadlineA(Ih) Deadline(Ih), for the appropriate h).
Also, 3" has a pointer to the child that determined value(3"); in the case ofa tie, the pointer
is to point to a rather than

This tree can be initialized in O(n) time. The weight of each arc is zero. For each
leaf h, DeadlineAh) n, so the value of the leaf is initialized to n h; the value of each
nonleaf may be computed in O(1) time, given the values of its children.

In the remainder of this section we denote by Zh the interval corresponding to
leaf h.

In each iteration of the algorithm, this tree can be updated in O(log n) time. Let
interval Zh be laid down in iteration t. Let r be the last index such that Zh is a neighbor
of L_array(r) (so r is the last leaf that Zh is a neighbor of). Suppose first that Ih does not
become fully laid down in this iteration. To update weights on arcs, we increment the
weight of arcs in the left cut from Ph, which may be done in O(log n) time. To update
the value of leaf r, we execute the assignment value(r) min(value(r), t + k- r) (which
corresponds to Deadlines(r) min(Deadline(r), t + k)). Values of all other leaves are
left unchanged. The only nonleaves whose value must be updated are those on either Ph
or Pr. Next, suppose that Ih becomes fully laid down. To update the tree, first find h’, so
that zh, is the first not-yet-laid-down interval (as described at the end of 2) and make
the weight of all arcs in the left cut from Ph’ be -c. Then update the value of leaf r and
update the values of nodes that are on either Pr or Ph’.

Given this tree, we can detect (in step 9) if/r has negative leeway in O(1) time by
checking if the value at the root is negative. This is because the value at the root is the
minimum leeway of sets Ih, and, if any set has negative leeway,/r does. Where no set
has negative leeway, we can find a virtually smallest critical set by following the
value pointers, starting from the root. Thus tasks (C) and (A) can be accomplished in
O(log n) time.

Figure 3 displays this data structure for the interval graph of Fig. 2. When the
algorithm is executed with k 4, interval a is laid down in iteration 1. Figure 3(a) displays
the data structure at the end of iteration 1: Since the deadline of I4 becomes 5, the value
of the fourth leaf is set to 1. The left cut from P2 contains a single arc, whose value
becomes 1. In iteration 2, b is laid down. Since 12 becomes fully laid down, the value of
arcs on the left cut from P3 are set to - (see Fig. 3(b)). Also, the deadline ofI6 becomes
6, so the value of the sixth leaf is set to 0:16 is critical. In iteration 3, the interval laid
down is d (d is selected by the data structure of the previous section as the remaining
interval in 16 having minimum fight end). (See Fig. 3(c).) The weights of the two arcs in
the left cut from P6 are incremented. Both I4 and 17 become critical (the former because
of the incrementation of the weight of an arc, and the latter because the deadline of 17
becomes 7). In iteration 4, the interval to be laid down is selected from I4. The layout
constructed by the algorithm is a, b, d, f, g, e, c, h, i.

5. Conclusion. The O(n log n) algorithm presented in this paper leads to several
open problems.

Many problems that are NP-complete on graphs in general have O(n) algorithms
on interval graphs, where n is the number of intervals in the interval model. Some such
problems are clique cover, coloring, maximum clique, maximum independent set, and
minimum dominating set of an interval graph [6], [7]. For these algorithms, the ends of
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intervals are assumed presorted. With this paper, bandwidth joins Hamiltonian cycle as
problems for which O(n log n) algorithms are known [10] but no O(n) algorithm. Are
these O(n log n) algorithms optimal when ends of intervals are assumed presorted? Res-
olution of this question seems difficult.

The algorithm of this paper enables the bandwidth of an interval graph to be
computed in O(n log2 n) time. To do this, we perform a binary search on values of
k and, for each such value of k, run the k-bandwidth algorithm. Can this complexity be
brought down?

A proof of correctness of the algorithm is presented in [8]. That proof shows that
there is no minimal graph G for which the algorithm fails. Is there a more direct proof
of correctness of the strategy underlying the algorithmma proof that, given an interval
model and a layout L ofbandwidth k but which differs from the layout produced by this
algorithm, L may be adjusted to a layout L’, also of bandwidth at most k, and which is
"closer" to following the strategy than L is? Such a proof would likely involve choosing
a class of transformations such that the set of all layouts of bandwidth at most k is
connected by those transformations. An analogous result was proved in 13]: The class
ofHamiltonian cycles ofan interval graph is connected under the transformation ofedge
exchange. The method ofsuch a proofmay be strong enough to show that, ifLayout(1. t)
is preassigned, with Layout(I) being the interval with leftmost fight end, there exists an
extension of this partial layout to a full layout of bandwidth k if and only if the strategy
behind this algorithm successfully completes the layout.
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THE LAPLACIAN SPECTRUM OF A GRAPH II*

ROBERT GRONE AND RUSSELL MERRIS

Abstract. Let G be a graph. Denote by D(G) the diagonal matrix of its vertex degrees and by A(G) its
adjacency matrix. Then L(G) D(G) A(G) is the Laplacian matrix of G. The first section of this paper is
devoted to properties of Laplacian integral graphs, those for which the Laplacian spectrum consists entirely of
integers. The second section relates the degree sequence and the Laplacian spectrum through majorization. The
third section introduces the notion of a d-cluster, using it to bound the multiplicity of d in the spectrum
of L(G).

Key words, degree sequence, majorization, Laplacian integral
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1. Laplacian integral graphs. Let G (V, E) be a graph with vertex set V
V(G) {Vl, v_,..., vn and edge set E E(G). Denote the degree of vertex vi by d(vi).
Let D(G) diag (d(v), d(v_),..., d(vn)) be the diagonal matrix of vertex degrees. The
Laplacian matrix is L(G) D(G) A(G), where A(G) is the (0, 1)-adjacency matrix. It
follows from the Gergorin disc theorem that L(G) is positive semidefinite and from the
matrix-tree theorem (or from [3]) that its rank is n w(G), where w(G) is the number
of connected components of G. (More on the Laplacian may be found in [10] or [17].)
Denote the spectrum of L(G) by

S(G) (,,, k2 kn)

where > ,2 > > ,n 0 are the eigenvalues of L(G). If more than one graph is
involved, we may write hi(G) in place of ,i. The multiplicity of X as an eigenvalue of
L(G) will be denoted rna(X).

The central theme ofthis article is the occurrence ofintegers in S(G). Ifthe spectrum
consists entirely of integers, we say G is Laplacian integral. The study of graphs whee
adjacency spectra consist entirely of integers was begun in ]. Cvetkovi4 [4] proved
that the set of connected, r-regular, adjacency integral graphs is finite. When r 2, there
are three such graphs, namely, C3, C4, and C6. (When r 3, there are 13 such graphs
[2], t21].) If G is r-regular, then , is an eigenvalue of L(G) if and only if r , is an
eigenvalue of A(G). Thus, the theory of Laplacian integral graphs coincides with its ad-
jacency counterpart on regular graphs. Elsewhere, there can be remarkable differences.
Consider, for example, the 112 connected graphs on six vertices. Six ofthem are adjacency
integral. Of these six, five are regular: C6 and its complement, K6, K3.3, and the cocktail
party graph. The sixth is the tree obtained by joining the centers oftwo copies ofP3 with
a new edge. As we have observed, the first five of these are also Laplacian integral; the
sixth is not. On the other hand, there are a total of 37 connected Laplacian integral
graphs on six vertices [18].

One general difference between the two theories concerns complements. Let Jn be
the n-by-n matrix, each of whose entries is 1. Then, for any graph G on n vertices,
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L(G) + L(GO nI J,,. It follows that the eigenvalues of L(Gc) are

(1) ,i(Gc) n ),,_ i(G), <_ < n, and 0.

In particular, G is Laplacian integral if and only if G is Laplacian integral, and 1 (G)
n, with m(n) w(Gc) 1. Another difference involves trees. While some interesting
work has been done on adjacency integral trees [11 ], [22], a complete description seems
unlikely in the near future. On the other hand, T is Laplacian integral if and only if
T Kl,n-1 [7], [15, Cor. 2].

Let G (V, E) be a graph with n vertices and m edges. If e { u, v} E and w
V, then e is said to be subdivided when it is replaced by { u, w} and { w, v}. Of course,
replacing the edge replaces the graph; the new graph has n + vertices and m + edges.

Example 1. Denote by Gn the graph obtained from Kn_ , n > 2, by subdividing
one edge; then G, is Laplacian integral. This is because the complement of G, is a graph
with two connected components, one isomorphic to K2 and the other to Kl,n-3. The
same result does not hold for the adjacency matrix; A(Gs) has three irrational eigenvalues.
Iftwo edges ofK3 are subdivided, the result is C5, which is neither adjacency nor Laplacian
integral.

If every edge of G is subdivided, the resulting graph s(G) has n + m vertices and
2m edges. It is called the subdivision of G. (Note. S(G) is an n-tuple; s(G) is a graph.)

THEOREM 1. Let G be a connected, r-regular, Laplacian integral graph on n vertices.
Then s(G) is Laplacian integral ifand only ifG K,.

Proof The result is trivial for r < 2. If r 2, then (as we have seen .bove) G C3,
C4, or C6, Of these, s(C3) C6 is Laplacian integral, whereas s(C4) C8 and s(C.,)
Cl2 are not. Thus, we may assume that r > 3 (so n > 4). Let m denote the number of
edges in G. It was shown in [13] (see [17]) that

det (xlm+n L(s(G))) (-1)"(x- 2)m-n det (x(r + 2 X)In L(G)).

Therefore, c is an eigenvalue of L(s(G)) if and only if c 2 or c(r -- 2 c0 is an
eigenvalue of L(G). If G Kn, then r n 1, and the eigenvalues of L(s(G)) satisfy
m)(0) 1, ms)(1) n 1, ms)(2) n(n 3)/2, m)(n) n 1, and m)(n +
)=.

Conversely, the eigenvalues of L(G) are all of the form ) c(r + 2 c). Since r +
is the minimum value taken by this product when both factors are constrained to be

positive integers, we deduce that 3,_ (G) >_ r + 1. Thus, the trace of L(G) is at least
(n 1)(r + 1). However, trace L(G) rn. Combining these, we conclude that r >
n-1. [2]

It is proved in [11, Cor. 6] that the line graph of a regular adjacency integral graph
is adjacency integral. Since the line graph of a regular graph is regular, this result carries
over to the Laplacian case. So, for example, the Petersen graph is Laplacian integral since
it is the complement of the line graph of Ks. Recall that a graph is (r, s)-semiregular if
it is bipartite with a bipartition (V, V2) in which each vertex of V has degree r and each
vertex of V2 has degree s. The next result was proved by Mohar [17, Thm. 3.9].

PROPOSITION 1. Let G be a connected, (r, s)-semiregular, Laplacian integral graph.
Then its line graph is Laplacian integral.

COROLLARY 1. The line graph ofthe subdivision ofK is Laplacian integral.
Ultimately, we would like to "explain" all the integral graphs (whether Laplacian

or adjacency). Harary and Schwenk [11] identified various families of adjacency integral
graphs. Inevitably, they found graphs that belong to none of them. One such graph is
the line graph of the subdivision of K4. It is clear from Corollary that this graph does,
in fact, belong to a natural family. However, because the characteristic polynomial of
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A(s(K4)) is X2(X2 2)3(X2 6), this fact is not immediately evident from the adjacency
perspective.

Let G and H be graphs on disjoint sets of vertices. Their union G + H is the graph
with vertex set V(G + H) V(G) U V(H) and edge set E(G + H) E(G) tO E(H). The
join of G and H may be defined by G V H (Gc + HC) c. It is the graph obtained from
G + H by adding new edges from each vertex of G to every vertex of H. Clearly, the
union and join of Laplacian integral graphs are Laplacian integral.

The product ofgraphs G and H is the graph G H, whose vertex set is the Cartesian
product V(G) V(H). Suppose that v, v2 V(G) and u, U2 V(H). Then (v, u) and
@2, u2) are adjacent in G H if and only if one of the following conditions is satisfied:
(i) v v2 and {u, u2} E(H) or (ii) {v, v2} E(G) and u u2. For example, the line
graph ofKp,q is Kp Kq. IfG andHare Laplacian integral graphs, then G His Laplacian
integral [17, Thm. 3.5]. Let G2 G G. The subgraph ofG2 induced on W {(vi, vj):
< j} C V(G) is called G [2] [8]. Since both (x2 7x + 8)2 and (x2 10x + 20) are

factors of the characteristic polynomial of L(Ct621), G [21 does not generally propagate
Laplacian integrality. Still, this construction is the source ofnumerous Laplacian integral
graphs.

2. Majorization and the degree sequence. Recall that a nonincreasing sequence
(d) (d, d2, dn) of positive integers is said to be graphic if there exists a (simple)
graph having degree sequence (d). The theory of graphic sequences has a rich tradition
nicely summarized in [19]. Another perspective on the discussion of 1 would be to
approach nonincreasing sequences ()‘) (),l,),2, )‘n) of nonnegative real numbers
in a similar way; i.e., what are necessary and/or sufficient conditions for ()‘) to be the
spectrum of the Laplacian matrix of a (simple) graph, and what special conditions arise
if we require ()‘) to be an integer sequence? One condition follows immediately from a
theorem of Schur. It involves the property of majorization. Suppose that (a) and (b) are
finite nonincreasing sequences of real numbers. Then (a) is said to majorize (b) if

al >-- bl,

a + a2 >-- bl + b2,

a + a2 + a3 >-bl + b2 + b3,

and so on, with equality at the end; that is, the sum of all the a’s is equal to the sum of
all the b’s.

In the introductory paragraph, we defined D(G) to be the diagonal matrix of vertex
degrees. We abuse that language now by letting D(G) also denote the sequence of vertex
degrees in nonincreasing order, i.e., D(G) (dl, d2, d). (We do not assume that

di d(vi).) Since the spectrum of any symmetric, positive semidefinite matrix majorizes
its main diagonal [20], [14, p. 218], the following is immediate from the definitions.

PROPOSITION 2. Let G be a graph. Then S(G) majorizes D(G).
The most immediate consequence of Proposition 2 is the inequality )‘l >- d. In fact,

this inequality is subject to some improvement, as we now show.
THEOREM 2. Suppose that G V, E) is a connected a graph with n > 2 vertices.

IfS { u, u2, uk} C V, let G[S] (S, E[S]) be the subgraph ofG induced on S.
Suppose that E[S] consists ofr pairwise disjoint edges. Then

)‘1 "]- - )‘k >- d(Ul) -{- -[- d(Uk) -J1- k- r.

(Recall that d(ui) need not equal di.)

Unfortunately, 19] contains several annoying misprints.
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The inequality in Theorem 2 suggests it might be useful to define

Zk (G) max d(ui): {u,..., Uk} independent in G

Curiously enough, the analogous quantity

ak(G) min ( d(u): {ul’ uk} independent in

is useful in the study of Hamiltonian cycles [9].
COROLLARY 2. IfG has an edge, then

(2) X>d+ 1.

Proof If d 1, then every connected component of G is either an isolated vertex
or a copy of K2. In this case, X 2 and d 1. Ifd > 1, let w be a vertex of G of degree
d. Let C be a connected component of G containing w. Then we may apply Theorem
2 to the subgraph C with k and u w. Since L(C) is a direct summand of L(G),
X(G) > X(C).

Corollary 2 improves the earlier result [7, Thm. 3.7] X > d + d/(n 1). (It can
be shown that inequality in (2) is strict whenever d < n 1.)

COROLLARY 3. Let G be a connected graph on n > 2 vertices. Then X + X2 >
d + d2 + 1. If there are two nonadjacent vertices in G having degrees d and d2,
then X + X2 > d + d2 + 2.

Proof The proof is immediate from Theorem 2. Either r or r 0.
Example 2. Let G be the graph shown in Fig. 1. Then S(G) (5.1, 3.8, 1.5, 1, 0.6,

0) andX+2<d +d_+2.
CONJECTURE 1. Let G be a graph with m > edges. Then S(G) majorizes the

sequence (d + 1, d2, d3 dn-, dn- 1).
Proofof Theorem 2. Order the m edges in E arbitrarily. For each edge e { v, w},

designate one of v, w to be the "positive end" of e and the other to be the "negative
end." Thus, G is given a fixed but arbitrary orientation. If e E and v 6 V, define
s(v, e) + if v is the positive end of e, -1 if it is the negative end, and 0 otherwise.
The vertex-edge incidence matrix afforded by the orientation is the n-by-m matrix Q
Q(G) whose (v, e)-entry is s(v, e). It turns out that L(G) QQt, independently of the
orientation. The matrix K(G) QtQ depends on the orientation for the signs of its off-
diagonal entries. In any event, K(G) and L(G) share the same nonzero eigenvalues.

Suppose that x is some real m-tuple. It is convenient to think of its components as
indexed by E, so the "vth" component" of Qx is, s(v, e)Xe.

eEE

Therefore,

(3) xtK(G)x vv s(19, e)Xe

Suppose that E[S] {e, e. er}. Without loss of generality, we may assume
ei {ui, Uk-i+ } and d(ui) < d(u-i+ 1), < _< r. Choose an orientation of E(G) so
that ui is the positive end of each of the d(ui) edges incident with it, _< < k r. In
addition, we may prescribe that ui is the positive end of each of the d(ui) > 0 edges,
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0 0 0

FIG.

other than ek-i+ 1, incident with it, k r < < k. For each u e S, define a real m-tuple
x(u) as follows: x(u)e, the coordinate of x(u) corresponding to the edge e E, is if u is
the positive end of e, and 0 otherwise. Then {x(u): u e S} is an orthogonal set of vectors.
Moreover, IIx(u)ll 2 d(u) if < k r and d(ui) if > k r. Let y(u) x(u)/llx(u)ll,
ueS. Then, forl <i<k-r,

and, for > k- r,

So, from (3),

d(ui) /2 if I)

eES(1),e)y(bli)e--I--d(bli)-’/2 if{v, ui}E,

(0 otherwise,

d(ui) 1)/2 if v ui,

Z S(V, e)y(Ui)e 1-(d(ui) 1)-1/2 if {v, ui} E\E[S],
eE

l0 otherwise.

d(ui) "+" 1, < k- r,
y(ui)tg(a)y(bli)--"

ld(ui), i> k- r.

Since {y(ui): < <_ k} is an orthonormal set of vectors,

k k

Xi > y(ui)tg(G)y(bli)
i=1 i=1

k

E d(ui)-]- k- r.
i=1

Nonincreasing integer sequences are frequently pictured by means of so-called Fer-
rers-Sylvester diagrams. The diagram for (d) (5, 5, 5, 4, 4, 4, 3) is pictured on the left
in Fig. 2. Its transpose is the diagram pictured on the fight corresponding to the conjugate
partition (d) (7, 7, 7, 6, 3). In general, the conjugate ofa nonincreasing integer sequence

(a) (a, a2,..., ap)

(a)t= (a], at2,..., aq),

where q a and a is the number of elements in the set {j" aj _> i}.
PROPOSITION 3. Let (d) be a graphic sequence. Then (d) majorizes (d).
Proof Suppose that di > i, <_ < k, and dk +1 < k + 1. (In Fig. 2, k 4.) Define

ri di + 1, < < k and ri di, k < < n. Ryser’s necessary and sufficient condition
for (d) to be graphic is that (r) majorize (r) (see [1, 11.5]). Note that ri di, <_ < k
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FIG. 2. Ferrers-Sylvester diagrams.

and r d + ci, > k, where the i are nonnegative integers that add up to k. So, for
<j<k,

d r>_ ri (di+ 1)=j+ di> di.
i=1 i=1 i=1 i=1 i=1 i=1

For j > k, let xj. c + c2 + + cj._ k. Then
J J J J

i=1 i=1 i=1 i=1

So, since xj < k,
J J J
d}>_(k-xj)+

_
di >_ di.

i=1 i=1 i=1

Propositions 2 and 3 raise the natural question of whether S(G) and D(G) are
majorization comparable. (An infinite family of "maximal" graphs for which D(G)
S(G) is discussed in 16].)

CONJECTURE 2. Let G be a connected graph. Then D(G) majorizes S(G).
If Conjecture 2 is true, then

(4) kn- > d_;

i.e., the number of vertices ofG ofdegree n is bounded above by Xn_ , the "algebraic
connectivity" of G [7]. To verify (4), suppose that G is a graph with k vertices of degree
n 1. If k n, then G Kn and Xn_ n. Otherwise, G has at least k + components,
the largest of which has at most n k vertices. So, X(Gc) < n k. Thus, ,_ (G)
n (GC) > k.

If D(G) majorizes S(G) for connected graphs, then D(G) majorizes S(G) for all
graphs as can easily be seen, e.g., by the condition of Hardy, Littlewood, and Polya [14,
p. 22]. So, we may as well restrict our attention to connected graphs, where the number
of vertices of G having degree at least is d] n. The inequality n > is clear from
(1). Indeed, if G is a connected r-regular graph, then D(G) (r, r, r) and D(G)
(n, n, n) majorizes S(G).

A second step toward proving Conjecture 2 would be to show

(5) d] + d >_ )k - k2

We are not able to establish (5) in all cases. However, some partial results along these
lines will emerge from the following result.

THEOREM 3. Let G be a connected graph and suppose that w is a cut vertex of G.
Ifthe largest component ofG w contains r vertices, then r + > X2(G).

Proof Denote by L(w) the (n 1)-by-(n 1) principal submatrix ofL(G) obtained
by striking out the row and column corresponding to w. Let a be the largest eigenvalue
of L(w). By the Cauchy interlacing inequalities, > c > X2.
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If C1, C2, Ck are the connected components of G w, let Si be the union of
{ w} and the vertices of Ci, < < k. Let Gi G[Si] be the subgraph of G induced by
Si and write Li L(Gi), < < k. Then L(w) is the direct sum ofLi(w), <_ < k, where
Zi(w) is the principal submatrix of Li obtained by striking out the row and column
corresponding to w. It follows that a is the largest eigenvalue of Li(w) for some i. By
another application of the Cauchy inequalities, we conclude that a < XI(Gi) for some i.
By (1) and the hypotheses, r + > kl(Gi) for all i.

A pendant neighbor is a vertex adjacent to a vertex of degree 1.
COROLLARY 4. Let G be a connected graph with n > 2 vertices. Suppose that w is

a pendant neighbor ofG adjacent to k pendant vertices. Then n k > 2.
Proof If G Kl.n-1, then n k ,2. Otherwise, the largest component of

G w contains at most n k vertices, so the result is immediate from Theo-
rem 3.

We now return to (5). Since n d > 1, it would suffice to show that d > X2.
Now d is the number of vertices of G having degree at least 2. That is, d n p,
where p is the number of pendant vertices. However, as we now see, it is not generally
true, even for trees, that n p > 2.

Example 3. Let T be the tree on six vertices obtained by joining the centers of two
copies of P3 by a new edge. Then D(T) (3, 3, 1, 1, 1, 1) and D(T) (6, 2, 2). To one
decimal place, S(T) (4.6, 3, 1, 1, 0.4, 0). (Recall that T is the only adjacency integral
graph on six vertices that is not Laplacian integral.) Here n 6, p 4, and n p
2<3= 2(T).

COROLLARY 5. Let G be a connected, Laplacian integral graph with n vertices, p
ofwhich are pendants. Then n p > 2.

Proof. Suppose that G has a total of q pendant neighbors altogether. It is proved in
10, Thm. 3.11 that the number of eigenvalues ofL(G), multiplicities included, lying in

the open interval [0, 1) is at least q. Since we are assuming that G is connected,
me(0) 1. Thus, q > contradicts the hypothesis that G is Laplacian integral. We con-
clude that all p pendants of G share the same neighbor, so the result follows from Corol-
lary 4.

3. Eigenvalues and graph structure. In a natural way, the majorization questions
of 2 have led to the relationship between the Laplacian spectrum and graph structure.
We proceed to develop more results along these lines, beginning with a relative of Corol-
lary 5.

PROPOSITION 4. Let G be a graph with n > 2 vertices, p of which are pendants. If
1 n, then all p ofthe pendants are adjacent to the same neighbor w, d(w) n 1, and
k2 n p. (In particular, if T is a tree, then XI(T) n ifand only if T KI,n-1.)

Proof From (1), 1 (G) n if and only if G is disconnected. If G had two distinct
pendant neighbors, then G would be connected. So, there is a unique pendant neighbor
w. We conclude from Corollary 4 that k2 n p. If d(w) were less than n then,
again, G would be connected. U]

PROPOSITION 5. Let G be a connected graph. Let P {Vl, v2, vk} be a set of
pendant vertices of G, all of which are adjacent to the same neighbor w. Suppose that

4: 1. If (the multiplicity) me(k) > 1, then ma-e(k) > O. (In particular, k < n k.)
Moreover, ifma_e(k) > 1, then ma() > O.

Proof Let w vk / 1. If is a multiple eigenvalue of L(G), it has an eigenvector x
whose (k + 1)st component is 0. Then L(G)x L,c forces xl x2 Xk 0. It
follows that y (0, Xk / 2 Xn) is an eigenvector of L(G P), affording ,. Because
G P has n k vertices, , < n k. To obtain the final assertion, let w be the first vertex
of G P. If is a multiple eigenvalue ofL(G P), then it is afforded by an eigenvector
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y whose first component is O. Let x be the vector obtained from y be inserting k zeros at
the beginning. Then x is an eigenvector of L(G), affording

PROPOSITION 6. Let G be a graph with n vertices and k > spanning trees. If is
a positive integer eigenvalue ofL(G), then kink. IfG is Laplacian integral, then t]nk,
where ma(k), the multiplicity of as an eigenvalue ofL(G).

Proof Let p(x) be the characteristic polynomial ofL(G). Since G is connected, L(G)
has rank n 1, so we may factor p(x) as xf(x). (The polynomialf(x) has been called the
"T-polynomial" of G [5], [12].) Asf(0) is the coefficient ofx in p(x), it is the sum of the
determinants of the (n 1)-by-(n 1) principal submatrices ofL(G). By the matrix-tree
theorem, each of these n determinants has the value k. Thus, f(0) nk. Since f(x) is a
monic polynomial with integer coefficients, f(k) 0 if and only if f(0). On the other
hand, f(0) is the (n 1)th elementary symmetric function of the eigenvalues of L(G),
i.e., f(0) is the product of the nonzero eigenvalues of L(G). So, if G is Laplacian inte-
gral, , f(0).

DEFINITION. Let G be a graph. A cluster ofG is an independent set oftwo or more
vertices ofG, each ofwhich has the same set ofneighbors. (The set ofneighbors ofvertex
v is { u V: { u, v} E}.) The degree of a cluster is the cardinality of its shared set of
neighbors, i.e., the common degree ofeach vertex in the cluster. A d-cluster is a cluster
ofdegree d. The number ofvertices in a d-cluster is its order. A collection oftwo or more
d-clusters is independent if the sets of vertices comprising the d-clusters are pairwise
disjoint. (The neighbor sets ofindependent d-clusters need not be disjoint.)

The next result extends the work of Faria on the "star degree" of a graph [6].
THEOREM 4. Let G be a graph with k independent d-clusters oforders r, r

r. Then ma(d) > r + r2 + + r- k.
Example 4. The graphs G and G2 in Fig. 3 are the smallest pair of nonisomorphic,

connected, Laplacian integral, Laplacian cospectral graphs. They share the spectrum
S(G) S(G2) (7, 6, 6, 4, 4, 3, 0). Both pictures are drawn so that the top row of
vertices is a 4-cluster: G contains a 4-cluster of order 2, while G2 contains one of order
3. With d 4 and k 1, Theorem 4 asserts that ma(4) > for G G and ma(4) > 2
for G G2; the bound is sharp for G2 but not for G. On the other hand, an examination
of the spectrum shows there is no point in looking for a 5-cluster in either graph.

Proof of Theorem 4. The independent d-clusters correspond to k nonoverlapping
principal submatrices of L(G). Each submatrix is d-times an rrby-r identity matrix,
1, 2,..., k. Suppose that one of these principal submatrices includes rows and columns
numbered s and in L(G), s < t. (That is, suppose that Vs and vt belong to the same d-
cluster in G.) Let x be the column vector with x if s, if t, and 0, otherwise.
Because v and vt belong to the same d-cluster, they have the same neighbors. Hence,
L(G)x dx. A d-cluster of order r affords r; linearly independent eigenvectors of
this type, and eigenvectors of this type arising from independent clusters are linearly
independent.

G1 G2

FIG. 3
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COROLLARY 6. Let G be a graph with an r-clique, r > 2. Suppose that every vertex
ofthe clique has the same set ofneighbors outside the clique. Let the degree ofeach vertex

ofthe clique be d, so d- r + is the number of vertices not belonging to the clique but
adjacent to every member ofthe clique. Then m6(d + 1) > (r- 1).

Proof The clique becomes an (n d- 1)-cluster of G of order r. [

Example 5. Let G be the graph G2 of Fig. 3. The three vertices of G of degree 5 are
a 3-clique satisfying the hypotheses of Corollary 6. Hence m6(6) > 2, and, again, we find
that G2 affords a sharp bound.

Note added in proof. Theorem 4 was first proved by Isabel Faria, who communicated
it to Merris long before the present paper was contemplated. Unfortunately, Merris filed
it away and forgot about it. Fortunately, the result will appear under Faria’s name in the
article, "Multiplicity of Integer Roots of Polynomials of Graphs," to be published by
Linear Algebra Appl.
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A 2d- 1 LOWER BOUND FOR TWO-LAYER
KNOCK-KNEE CHANNEL ROUTING*

TOM LEIGHTON*

Abstract. This paper describes a two-point net channel routing problem with density d that requires channel
width 2d in the two-layer knock-knee channel routing model. This means that the (2d 1)-track algorithms
ofRivest, Baratz, and Miller [1981 CMU Conference on VLSI Systems and Computations, Oct. 1981, pp. 153-
159], Bolognesi and Brown [unpublished manuscript, Coordinated Science Laboratory, University of Illinois
at Urbanna-Champaign, 1982], Frank [Combinatorica, 2 (1982), pp. 361-371], Mehlhorn, Preparata, and Sar-
rafzadeh [University of Saarbrucken Tech. Rep., Saarbrucken, Germany, Nov. 1984], and Berger et al. [J.
Assoc. Comput. Mach., 1994, to appear], are, in some cases, optimal. Thus, any improvement ofthese algorithms
must rely on problem features other than density (such as flux [Advances in Computing Research 2 (VLSI
Theory), F. P. Preparata, ed., JAI Press, Greenwich, CT, 1984, pp. 205-229]) or must make fundamental
changes in the wiring model (such as increasing the number of layers [IEEE Trans. Comput., C-33 (1984), pp.
427-437] or allowing wires to overlap [see Berger et al., above], [Algorithmica, (1986), pp. 223-232]).

Key words, channel routing, VLSI, lower bounds

AMS subject classifications. 68Q25, 68Q35, 68R99

1. Introduction. Channel routing plays a central role in the development of auto-
mated layout systems for integrated circuits. Many layout systems first place modules
on a chip or circuit board and then wire together terminals on different modules that
should be electrically connected. This wiring problem is often solved by heuristically
partitioning the given space into rectangular channels and then assigning to each such
channel a set of wires that are to pass through it. This solution reduces a "global" wiring
problem to a set of disjoint (and hopefully easier) "local" channel routing problems. For
this reason, channel routing problems have been intensively studied for over a decade,
and numerous heuristics and approximation algorithms have been proposed.

In most channel routing problems, the channel consists ofa rectilinear grid of tracks
(or rows) and columns. Along the top and bottom tracks are terminals, and terminals
with the same label form a net. A net with r terminals is called an r-point net. The smallest
net is a two-point net. If r > 2, we have a multipoint net. The channel routing problem
is to connect all the terminals in each net using horizontal and vertical wires that are
routed along the underlying rectilinear grid. The goal is to complete the wiring using the
minimum number of tracks, i.e., to minimize the width of the channel. Often, no con-
straint is placed on the number of columns used at either end of the channel.

Wire segments are physically located on one ofthe one or more layers. Wire segments
in different layers can be connected with contact cuts, which can be thought of as very
short wire segments running through grid points perpendicular to the routing surface.
No two wires can change layers in the same space without being connected.

A variety of models have been proposed for channel routing, with differences de-
pending on the number of layers allowed and on the ways in which wires are allowed to
interact. One of the most popular models is the knock-knee model proposed by Rivest,
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LOWER BOUNDS FOR CHANNEL ROUTING 231

Baratz, and Miller [8] and Thompson [9]. In the knock-knee model, wires are allowed
to cross or share corners (i.e., knock-knees) but are not allowed to overlap for any distance.
In this paper, we focus on two-layer knock-knee channel routing problems with only
two-point top-to-bottom nets. More formally, we define a net Ni (Pi, qi) to be an
ordered pair of integers specifying an entry column Pi (at the top of the channel) and an
exit column qi (at the bottom of the channel). A net is said to be rising if qi < Pi, falling
if Pi < q;, and trivial if Pi qi. A channel routing problem is a collection of n nets such
that no two nets have a common entry column or a common exit column. A solution
to a channel routing problem consists of an integer and a collection of n wires W,...,
W, such that Wg enters the grid in the pith column of the zeroth row and exits the grid
in the qth column of the (t + 1)th row. Routing is allowed in rows through of the
grid and in any number of columns. Although wires may alternate layers (via contact
cuts), they cannot overlap except at crossover or jog points. The width of a solution is t,
the number of horizontal tracks used to route the wires. The optimal width of a channel
routing problem is simply the smallest value of for which there is a solution.

Many algorithms have been discovered for solving two-layer knock-knee channel
routing problems with width 2d 1, where d is the density ofthe channel routing problem.
(For example, see [2], [3], [4], [6], and [8].) The density of a channel routing problem is
the maximum over allx ofthe number ofnets crossing the vertical cut ofthe channel
at x. A net N; (p;, q) is said to cross the cut of the channel at x if Pi < x < qi or qi <
x < Pi. For example, the channel routing problem displayed in Fig. has density 3.

It is easy to see that the density of a problem is a lower bound on the channel width
needed for its solution. Hence, the (2d- 1)-width algorithms of [2], [3], [4], [6], [8] are
within a factor oftwo times optimal for any problem. As many practical channel routing
problems have solutions with width very close to d, however, it was hoped that the
(2d- 1)-width algorithms could be improved (e.g., to produce 3d/2-width solutions for
problems with density d).

In this paper, we show that such an improvement is not possible. In particular, we
construct a two-point net channel routing problem with density d (for any d) that requires
channel width 2d- 1. Hence, the (2d- 1)-width algorithms are optimal in the worst
case and cannot be improved by density considerations alone.

It is worth pointing out that improvements in the performance of the algorithms
can be achieved if additional parameters are considered or if different models are used.
For example, Baker, Bhatt, and Leighton [1 showed that any two-point net channel
routing problem with density d and flux fcan be solved using d + O(f) tracks, even if

Rows
Ct=3)

Columns

2 :3 4 ,5 6

NI N2 N3"0

Crossover point

2 dog point / L I_ ---_..."El

4 Contlc CUtl---
N3 N N2

Nets:

Layer

Layer 2

NI =(2,4)

N2_=(3,5)
N3= (4, 3

FIG. 1. A solution to a channel routing problem using the knock-knee model.
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knock-knees are not allowed. (The definition offlux is somewhat technical, but roughly
corresponds to a horizontal measure of density. In the worst case,f Vn, butfis often
a small constant in practical problems.) Alternatively, Preparata and Lipski [7] showed
that d tracks are sufficient if three layers of wiring are allowed, thus achieving the lower
bound for every problem. More recently, Berger et al. [2] showed that d + O(fd) tracks
are sufficient using two layers if unit.length vertical wire segments are allowed to overlap
other vertical wire segments. (For a more complete listing ofother bounds and algorithms
for channel routing, refer to [2].)

The paper is divided into sections as follows. In 2 we construct the density-d lower
bound example and in 3 we prove that it requires 2d- tracks. We conclude with
some remarks.

2. The lower bound construction. Although it may seem somewhat complicated at
first, our lower bound construction is quite simple. The problem consists primarily of
trivial nets along with a few falling nets arranged as widely spaced 1-shifts. For example,
an informal illustration of the construction for d 2 is shown in Fig. 2.

More formally, our hard density-d channel routing problem Ra.,, is composed of
nets N, N2,..., Nn, where Ni (i, qi), and

Ii + 4Ss!2 if 4 mod 4Ss!2 for some s < d,
qi

otherwise

for < < n. In what follows, we use n d24a+ d!2, although Ra, can be defined for
any n such that n 0 mod 4ad!2.

We first show that Ra,, is a well-defined channel routing problem. To do this, we
must show that q is well defined and that no pair of nets share an entry or exit column.
Assume for the purposes of contradiction that qi is not well defined for some i. Then
there are two integers s > r such that 4 mod 4Ss!2 and 4 mod 4rr!2. The
first congruence implies that 4 divides and thus that 4 divides (since s > r).
The latter fact clearly contradicts the second congruence. Thus, qi is well defined for
each i.

By definition, it is clear that no two nets have the same entry column. In what
follows, we show that no two nets have the same exit column. If two nets were to share
the same exit column, then there would be two integers < j such that q; qj.. Suppose
(for the purposes of contradiction) that this is the case. Then, since q >_ j, it is clear that
q; > and thus that qi + 4s!2, where 4 mod 4s! for some s. Thus q9 q
4s- mod 4s!2. Ifj qg, thenj 4 mod 4s!, and q j + 4ss!, which is a contradiction.

NI N2 N:3 N4 N5 N6 N7

FIG. 2. An infirmal drawing of the lower bound construction for d 2. The problem consists mostly of
trivial nets (which are not shown), along with a widely spaced 1-shift sequence of nets (Nl, N2, N3 and
another even more widely spaced 1-shift sequence ofnets (N’, N’ ).
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This means that q- > j and thus that qj j + 4rr!2, where j 4 mad 4rr! for some r.
Thus qj 4 mad 4rr!2. Since qi qj, we can conclude by the arguments ofthe previous
paragraph that r s and thus that j, a contradiction.

It is also easy to show that Rd,, has density d. This is due to the fact that the nontrivial
nets of Rd,, can be partitioned into blocks B1 Bd, where

Bs {(4 1, 4 + 4Ss!2), (4’-1 + 4Ss!2, 4s- + 2.4Ss!2)

(4 + n 4Ss!2, 4 -t- n)}
for _< s _< d. Each vertical cut of the channel is crossed by at most one net from each
block, and thus the density of Ra, is at most d. In fact, the density is precisely d, since
any cut in the range 4- < X < F/ -- is crossed by a net from every block.

Note that the nets in any block B correspond to a 1-shift that is spread out across
the channel. Hence, our lower bound construction consists only of a collection of inter-
laced 1-shifts and trivial nets.

3. Proof of the lower bound. The proof that Ra, requires channel width 2d-
proceeds in two parts. In Part 1, 3.1, we show that wires passing through a large region
of the channel must be routed in a highly restricted manner and that there is such a
region that contains the solution to a subproblem of Ra,,, which is isomorphic to Ra,f(a),
wheref(d) 4ad!-. In Part 2, 3.2, we show by induction on d that any solution ofRa,f(a)
in such a region has width at least 2d- 1.

3.1. Part 1. Assume for the purposes of contradiction that Ra,, has a solution with
width t, where < 2d 1. Given any integer y such that 0 _< y _< t, let Pr be the path
that travels between columns n and n + past rows 0 through y, then between rows y
and y + past columns n through 1, and finally between columns and 0 past rows
y + to + 1. For example, see Fig. 3.

Precisely n nets must cross Py at least once for any y. In what follows, we are concerned
primarily with the initial crossing of each wire on its route from the ith column of row
0 to the q;th column of row + 1. Since at most wires can cross the vertical portions
of Py, at least n wires must initially cross Pr on its horizontal portion. (Note that
wires at such points are travelling in a downward direction across P.) Since n columns
of the grid cross the horizontal portion of Py, at most of them can fail to contain an
initial crossing of Py. Summing over all paths Py, we find that at most t(t + 1) <_ 4d-6d + 2 < 4d2 unit segments of columns through n (those between row y and row
y + for some y) fail to contain a wire that is travelling in a downward direction.

o

t+l

-I 0 2 n-I 9n_+l n+2

Wire traveling in
downward direction

Wire traveling in

(initial crossing)’-l PY ,./upward direction

-"t

.’
FIG. 3. The path Py.
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Partition columns n into 4d2 groups, each with (n/4d2) 4ad!2 consecutive
columns. By the previous argument, we know that, in at least one of these groups (say
the mth group), every column segment contains a wire travelling in the downward di-
rection. In other words, there is an m (1 _< m < 4d2) such that every segment in columns
(m 1)4ad!2 + through m4ad!2 contains a wire travelling in the downward direction.
Henceforth, we refer to these columns as the restricted region of the channel.

Note that the ith column of the restricted region is the same as column
(m 1)4dd!2 + of the original problem. Since 4ad!2 0 mod 4Ss!2 for all s < d, we
know that, for all s < d,

4 mod 4Ss!2 iff (m 1)4ddl2 + 4 mod 4Ssl2.

Hence, the columns in the restricted region contain a subproblem that is isomorphic
to Ra,fa), where we define f(d) 4ad!.

3.2. Part 2. We now show that any solution to Rd,f(d) in a restricted region (i.e., a
region in which every vertical segment ofthe firstf(d) columns contains a wire travelling
in the downward direction) requires 2d- tracks. The proof is by induction on d. This
hypothesis is certainly true for d 1. In what follows, we assume the hypothesis is true
for d- to verify it for d. First, however, we must establish some useful facts concerning
routings in restricted regions. For instance, each row in such a region is either full (i.e.,
each unit segment of the row contains a wire) or empty (none of the unit segments
contains a wire). This simple but powerful observation follows from the fact that every
column in a restricted region is full. Thus a row that is neither full nor empty must
contain a point that is incident to two-column wire segments and one-row wire segment.
This is clearly impossible.

It is natural to group the rows together into (alternating) blocks of full rows and
empty rows. Such blocks are said to be full or empty, respectively. Note that a wire can
change layers only in an empty block and can change columns only in a full block. For
example, see Fig. 4.

Only a restricted set of column changes is possible in a full block of rows. For
example, consider a full block that contains a long horizontal wire segment. Since we
are routing in a restricted region, the columns crossing the wire must contain wires as
in Fig. 5(a). Since all of the crossing wires are moving in a downward direction, no two
can be connected by a unit horizontal wire, and thus the rows above and below the long
horizontal wire also contain long horizontal wires (provided that they are not empty, of
course). For example, see Fig. 5(b). By repeating this argument for the remaining rows,
we can deduce that all the rows of the full block contain long horizontal wires. For
example, see Fig. 5(c).

Full block

Empty block

Full block

FIG. 4. Wiring in a restricted region.
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Long horizontal wire

(a)

Neighboring
horizontal wires

(b)

Region sponned by
long horizonlol wires

Empty row

Full block

Empty row

(c)

FIG. 5. Impact ofa long horizontal wire on a full block.

We are now ready to prove that any routing of Ra,f(a) in a restricted region requires
2d- tracks. For the purposes of contradiction, assume otherwise and consider the net

Ni (i, qi), where 4a- and q; 4a- + 4ad!2. Because we are in a restricted region,
the corresponding wire in the solution must eventually travel from column 4d- to column
4ad!2 (at least) in a downward (or level) fashion. This means that some row ofthe solution
contains a horizontal wire segment of length at least (4ad!2 4a- 1)/t. Thus, the block
containing this row resembles that in Fig. 5(c). In particular, there is a subregion consisting
of at least

4ad!2 4a- 4ad!2 4a-
2(t- l)> 2(2d- 3)

2d- 2

consecutive columns that is spanned by continuous horizontal wires in every row of
the block.

Partition thef(d) columns of the restricted region intof(d)/f(d- 1) 4d2 groups,
each consisting off(d- 1) 4d- (d- 1)!2 contiguous columns. By the analysis at the
end of 3.1, we can show that each of these groups of columns (except the first) contains
a routing problem that is isomorphic to Ra-,f(a-1). This is because the ith column in
the mth group (1 < m < 4d2) is column (m 1)4a- (d 1)!2 + in the restricted region,
and

4 mod 4Ss!2 iff (m 1)4a- (d- 1)!2 -I- 4 mod 4Ss!2
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for s < d 1. We must be careful with columns for which

(m 1)4d- (d 1)!2 + 4d- mod 4dd!2

(since then qi + 4d- instead of qi i, as we would want for Rd-,f(d-)), but this
only happens for m and 4d- (since (m 1)4d- l(d 1)!2 + < 4dd!2), which is
why the first group does not contain a routing problem isomorphic to Rd- ,f(d- 1).

For d > 1,

4dd!2 4d-
2(2d- 3) > (2d + 2)4a- l(d- 1)!2,

2d- 2

and thus the wires of at least 2d subproblems isomorphic to Ra-l,fa-l) enter and exit
in the columns through which all of the long horizontal wire segments pass. (Note that
this rules out both the first and last groups off(d- 1) columns.) Of these, at most <

2d- 2 subproblems can have a wire that passes outside those columns (since it must
also re-enter on some other row). Thus all the wires of at least one of the subproblems
isomorphic to Rd-,J(d- 1) are totally contained within the columns spanned by the long
horizontal wires. As the wires for this subproblem must pass straight through (downward)
the block containing the long wires, the horizontal rows of the block can be removed
without affecting the wires for this solution of Rd-l,f(d-1). In other words, this means
that there is a (t 1)-track solution to Rd-1,f(d-1) in a restricted region.

In addition, we can also remove an empty track from the region without affecting
the solution to Ra-,j(a-. To see why, first consider the case when the full block with
long horizontal wires is preceded and followed by empty blocks. When the full block is
removed, we will then have an empty block with at least two rows (one from each of the
neighboring blocks). Empty blocks of rows can always be replaced by a single empty
row, since wires can only change layers in empty blocks and they only need one row to
do so. Hence, we can remove an empty row from the layout without affecting the wiring
of Ra- l,f(a- 1).

If the full block with long horizontal wires is not preceded and followed by empty
blocks, then it must be adjacent to the top or bottom track of the channel. In this case,
when the full block is removed, we can also remove the single adjacent empty block.
This is because we never need an empty block adjacent to the top or bottom of the
channel, since we can simply start or end each wire in the desired layer when it enters
or exits the channel.

Combining the previous arguments, we find that we can always remove at least one
full track and one empty track without affecting the solution to Ra-1,f(d- 1). This means
that there is a solution to Ra-,f(a- in a restricted region that uses at most 2 <
2d- 3 tracks. This contradicts the inductive hypothesis, and thus we know that the
solution to Ra,f(a must have used >_ 2d- tracks. This concludes the proof.

4. Remarks. It is interesting to note that the construction consists mostly of trivial
nets and does not contain any rising nets whatsoever. A priori, such a channel routing
problem might have been considered to be easier than one that corresponds to a per-
mutation (i.e., one in which every entry column is also an exit column). As we have seen,
however, this is not the case. As we might expect, it is not difficult to modify the con-
struction to prove an identical lower bound for channel routing problems that are per-
mutations.

The term "trivial net" is a misnomer. For example, adding trivial nets to some
channel routing problems (such as a 2-shift) increases their optimal channel width. In
addition, the optimal routing of a trivial net can be quite complicated. For example, the
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obvious routing of a trivial net Ni (Pi, Pi) is to run a wire down the pith column from
row 0 to row + 1. Even if layer changes are allowed for such wires, it is possible
to construct examples of O(d2)-net channel routing problems with optimal width
d + O(log d) for which any such solution requires 2d- horizontal tracks.

Whether the number of wires in our lower bound example can be significantly
decreased is an interesting open question. Although the size of our construction was
artificially increased to simplify the proof, we do not know of any n-net channel routing
problem with density d and optimal width 2d- for which n < o(d!). Thus, it is still
possible that a channel routing algorithm could be found that produces solutions with
width d + log n.

A closer examination of our lower bound proof reveals that the restricted region of
the routing contains at least d full rows and at least d- empty rows. This coincides
exactly with the behavior of the (2d 1)-track algorithms. Those algorithms use d tracks
for routing and d- tracks for layer changes. Hence, the need for layer changes is a
crucial factor in determining the channel width ofproblems in the two-layer knock-knee
model, and it cannot be ignored.

Acknowledgments. I am grateful to Gary Miller for mentioning this problem to us
and for his assistance with this work. also thank Ron Rivest and the referees for their
helpful comments.
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THE DIVISORS OF x2" + x OF CONSTANT DERIVATIVES
AND DEGREE 2m-2*

CLAUDE CARLET

Abstract. This paper provides a new proof ofthe fact that the polynomials of degree 2 over the Galois
field GF(2m) (m >_ 2), which are fully reducible and admit no multiple factor (i.e., which divide x2’ + x) and
whose derivatives are constant are affine polynomials. The author determines explicitly these polynomials,
which are related to a problem in coding theory that is recounted.

Key words, finite field, polynomial, reducible, error correcting code
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1. Introduction. Let m be a positive integer, m > 2 and G the Galois field of order
2m. Let F GF(2) {0, } its prime subfield. G may be viewed as an m-dimensional
vector space over F.

Little is known about the developed expressions of those polynomials over G that
divide xam x (that is, x2m + x, since the characteristic is 2). For instance, the question
ofdetermining such polynomials ofa given degree and ofa certain type is not answerable,
except in a few cases (cf. [3] in the case of lacunary polynomials). One of these cases is
that of those polynomials of degree 2m- 2 whose derivatives are constant. A subcase
(which is, in fact, equivalent) is when the constant term of the polynomial is zero. It is
related to a problem in algebraic coding theory (that we recount in 2): the characterization
ofthose elements of the narrow-sense BCH code of length 2 and designed distance
2 2 whose weight is equal to that designed distance. Augot, Charpin and Sendrier

have recently given a characterization of these elements. Their main result may be
stated as follows: Any polynomial of degree 2 2, whose derivative is a constant, which
divides x2m + x and whose constant term is zero is a linearized polynomial. The proof,
which uses Newton identities, is very satisfactory but does not point out significant prop-
erties that would explain what leads to such a remarkable result. The purpose of this
paper is to exhibit such properties and to deduce a new proof of the result.

We introduce (3) a property about the divisibility ofpolynomials over Galois fields
ofcharacteristic 2 and deduce (4) a new proofofthe fact that these polynomials (without
the condition on the constant term) are all affine (i.e., are sums oflinearized polynomials
over G and constants). We then determine explicitly the expressions ofthese polynomials
(not done in ]).

Let us recall that any function from G to G admits a representation as a polynomial
over G of degree at most 2m 1. We call it the polynomial expression of the function.

If P(x) is a polynomial over G of any degree, we denote by P(x) mod (x2m + x) the
unique polynomial of degree at most 2 1, which is congruent with P(x) modulo
X2m "]- X.

We denote tr as the trace function from G to F: tr (x) Zim= x2’. A polynomial
f(x) of degree at most 2m is the polynomial expression of a Boolean function (i.e.,
of a function from G to F) if and only if there exists a polynomial g(x) such that f(x)
tr (g(x)) mod (x2m + x). The condition is sufficient since tr is a mapping from G to F,
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and it is necessary since, iffis a Boolean function and a is any element of G such that
tr (a) 1, then we have, for any element u in G, tr (af(u)) f(u) tr (a) f(u); therefore,
according to the unicity of the polynomial expression off

tr (af(x)) mod (x2m + x) f(x).

2. Presentation of the problem on BCH codes (eL [1], [2 Chaps. 7 and 9]). Let n be
a positive odd integer, m the multiplicative order of 2 modulo n (we assume that m >_ 3),
and G the Galois field of order 2m. Let c be a primitive nth root of unity in G and d a
positive integer. The binary (narrow sense) BCH code oflength n and designed distance
d is the set of all those elements of the quotient algebra F[x]/(x + 1), which admit c,

cd- as roots. We say that the BCH code of designed distance d is a "true" BCH
code if it contains an element that does not admit cd as root (i.e., if it is different from
the BCH code of designed distance d + 1).

If n is equal to 2 1, then the BCH code is called primitive.
A well-known result in algebraic coding theory is the BCH bound, which we briefly

recount as follows: Let B(x) be an element ofF[x]/(x + 1) andf(x) its Fourier transform
(also called Mattson-Solomon polynomial)

We have the inverse formula

f(x) ., B(ol )x i.
i=1

n-1

B(x)-- E f(oi)xi"
i=0

So, f(x) has values 0 and on the set of nth roots of unity and also on zero, since f(0)
is equal to B(I). If n 2m 1, then fis Boolean and has an even weight (i.e., has a
support of an even size). The weight of B(x) is the number of its nonzero terms. It is
equal to the number of those nth roots of unity whose images by fare equal to 1. B(x)
belongs to the binary BCH code of designed distance d if and only iff(x) has no term
whose exponent is equal to n d + 1, n 1, that is, if and only if d(f(x)) <

n d. Then f(x) admits at most n d roots, and the weight of B(x) is at least d. This
bound is called the BCH bound.

A difficult problem is the characterization of the elements of weight d of this BCH
code. Note that the existence of such an element implies that the BCH code is a "true"
BCH code. The converse is false, in general.

This problem is related to a problem on the divisibility of polynomials: Let us
associate with any element B(x) il xi (where I is a subset of {0, n }) of the
algebra F[x]/(x + 1) the following polynomial over G:

I-I (1 " ol.ixi).
iI

This polynomial is called the locator polynomial of B(x). We have the following result.
PROPOSITION (see [2, p. 260]). Any polynomial a(x) Z}Lo aix over G is the

locator polynomial ofa codeword ofthe BCH code ofdesigned distance d ifand only if
(l) (o)= ,
(2) a(x) divides x" + 1,
(3) (i 6 [1, d- 1], odd) implies (ai 0).
So a(x) is the locator polynomial of a codeword of weight d of the BCH code of

designed distance d if and only if it satisfies conditions (1)-(3) and has degree d.
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We are interested in the case where d 2 2 1. The main result in says that,
if a is the locator polynomial of an element of weight 2 2 of the BCH code of
designed distance 2m-2 1, then the polynomial xZm-2a(x-) is linearized. So we first
rephrase the conditions of Proposition by means of this polynomial.

COROLLARY 1. Any polynomial a(x) Y}=0 aix is the locator polynomial of a
codeword ofweight 2 2 ofthe BCH code ofdesigned distance 2 2 ifand only
ifxZ"-2a(x-) is a polynomial that

(1) is monic and has degree 2 2,
(2) divides x2m + x,
(3) has constant nonzero derivative,
(4) has zero as a constant term.

Proof a(x) has degree 2m-2 if and only ifxZm-Za(x-) is a polynomial that has
constant term zero and in which the coefficient of x is nonzero, a(0) is equal to if and
only if x2m-a(x-) is monic and has degree 2m-2. This condition being satisfied, a(x)
divides x + if and only if XZm-a(X-) divides x2m + x. Condition (3) of Proposition
1, "(i e [1, 2m-2 2], odd) implies (0" 0)," is equivalent to the fact that XZm-2ff(X-1)
has constant derivative.

We determine explicitly these polynomials in 4. The next section is devoted to the
introduction of the necessary mathematical tools.

3. The valuation-representation of polynomials, the separableness. A usual way
to express polynomials over a finite field GF(q) is the component representation
(cf. [3, p. 38])

p-1

E x(P(x)),
j=0

where p is the characteristic of the field.
Here, the characteristic being 2, this representation reduces to (P0(x))2 + x(P(x))2.

It results only in a separation between the odd and even exponents in the polynomial.
We use a more precise version based on the 2-valuations of the exponents (recall that
the 2-valuation of an integer k is the greatest integer j such that 2y divides k). This
representation is obtained by gathering in a same polynomial (for any integerj) all those
terms whose exponents are divisible by 2 and not by 2+ (j ranging over N). For any
j, the corresponding polynomial is equal to the product ofx2 with a polynomial whose
exponents are divisible by 2J / 1, so it has the form (xP](x))2(

DEFINITION 1. We call valuation-representation of a polynomial P(x) over G the
expansion P(x) P(O) + o (xP](x))2, where Po, P, are polynomials over G.

Example. Let P(x) be the following polynomial over G: 7I=0x (for convenience,
all its coefficients are equal to 1). Then Po(x) is equal to + x + x2 + x + x4 + xS;
Pl(X) is equal to + x + x2; P2(x) is equal to 1; and P3(x) is equal to 1. So

+ xe)(x) + (xp2(x))2 + (xp2(x))4 -I- (xe(x)) P(x).

Let us recall that the binary expansion of any positive integer n is

k

n ei2i, where k is an integer and the coefficients ei are equal to 0 or 1.
i=O

It is written ekek- l" "eeo.
DEFINITION 2. A polynomial over G is called separable if the exponents of all its

nonzero terms admit a binary expansion where thefirst "1" (at the right hand) is separated
from the others (ifthey exist) by some zeros (at least one).
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Examples. x is not separable, since 3 1--]-; x is separable, since 5 101.
More generally, the monomials x2i(i N), x2i+ 2J(i, j N; j > + 1) are separable,

and the monomials x2+ 2i+1(i N) are not separable.
Using the valuation-representation, we have the following result.
PROPOSITION 2. A polynomial over G: P(x) P(O) + jo (xP(x))2 is separable

ifand only ifall the polynomials Pj(x) are even (i.e., admit even exponents only).
The following property will be useful when studying the divisibility of polynomials.
PROPOSITION 3. Let Q(x) S(x)R(x), where S(x) and Q(x) are separable polyno-

mials, and a positive integer. Then, if
(1) R(x) is the 2ith power ofa polynomial (i.e., all the exponents in R(x) admit 2-

valuations at least equal to i),
(2) Si-l(X) 0 (where S l(X) is the polynomial of index of the valuation-

representation ofS(x)),
then R(x) is the 2; + th power ofa polynomial.

Proof Let R(x) mZi(x) and S(x) S(O) + o (xS(x))2, we have

S(x)(x) Z (xM-’-S(x)) + M’(x) S(0) + (xS(x))
j=0 ji

The polynomial (SR)i_ (x) of the valuation-representation of S(x)R(x) is therefore
equal to Si-(x)M(x).

From S(x)R(x) Q(x), we deduce that

Si- (x)M(x) Qi- (x).

S(x) and Q(x) being separable, Si-(x) and Qi-(x) are even, and, Si-(x) being
different from 0, M(x) is then even. So R(x) is the 2 + th power of a polynomial.

COROLLARY 2. Let Q(x) S(x)R(x), where S(x) and Q(x) are separable. Then, if
(1) R(x) is even,
(2) For all N*, Si- (x) 0 Ri(x) O,

then R(x) is a constant.

Proof Let us prove by induction that, for any integer i, R(x) is the 2ith power of a
polynomial; that will prove that R(x) is a constant.

Since R(x) is even, the assertion is true when equals 1.
Suppose it is true for >_ 1, then we have the following:
(i) If S;_ (x) 4: 0, then, according to Proposition 3, R(x) is the 2; + th power of a

polynomial;
(ii) Otherwise, according to hypothesis (2) of the above corollary, Ri(x) 0, and

the same conclusion holds.
The derivative Z iaixi- Z od aix

i- of a separable polynomial Z aix is not
necessarily separable. We now introduce a stronger property, which is respected by the
derivative.

DEFINITION 3. A polynomial P(x) possesses property (P) ifall the exponents in P(x)
admit a binary expansion io el2i, where, for any > O, either ei or ei +1 is zero.

Clearly, property (P) implies separableness, and differentiation respects it.
PROPOSITION 4. Letf(x) tr(g(x)) mod (x2m + x) be the polynomial expression of

a Boolean function. Ifdf(x) < 2 + 2 2, then f(x) possesses property (P).
Proof Let k be the exponent of any nonzero term off(x). The elements

2ik mod (2 1) (i > 1)

of the cyclotomic class of k modulo (2 1) are also the exponents of some nonzero
terms off(x). Let 7]7’ ei2; be the binary expansion of k. The binary expansions of the
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elements of the cyclotomic class of k are obtained from that of k by applying the cyclic
permutations on the coefficients ei. Suppose that two consecutive $i are equal to 1. Then
the cyclotomic class ofk modulo (2 1) would contain elements at least equal to 2
q_ 2 2, and f(x) would not have degree smaller than 2 -k- 2m- 2. So f(x) possesses
property (P).

24. The divisors of x + x of constant derivatives and degree 2 2. If m 2, then
2 - 1. Any polynomial ofdegree over GF(4) divides x4 + x. We henceforth assume
that m > 3.

Clearly, if a polynomial admits the zero function as derivative (i.e., if it is an even
polynomial), then it cannot divide x: + x: all its roots are multiple.

So any divisor of x:m + x of constant derivative is equal, up to the multiplication
by an appropriate nonzero element of G, to a polynomial of the form P:(x) + x.

We relate the characterization of such polynomials of degree 2m- :, which divide
x:m + x to the resolution of a class of differential equations.

PROPOSITION 5. Let P(x) be a polynomial ofdegree 2 (m > 3). The polynomial
p2(x) + x divides x2m+ X ifand only ifP(x) is a solution ofone ofthe differential equations

(1) ay4 + y2y, + y + xy’ x2"- + ax2, (a G, a 0).
2Proof If P2(x) + x divides x2m + x, then it divides x + x + P2(x) + x

(x2m- + P(x))2. Since it is fully reducible and admits no multiple factors, it divides
x2m- + P(x). So there exists a polynomial Q(x) of degree 2 2 such that

2(2) x + P(x) Q(x)(PZ(x) + x).

By differentiating that equality, we obtain

(3) P’(x) Q’(x)(PZ(x) + x) + Q(x).

We have d(P’(x)) < 2 and N(PZ(x) + x) d(Q(x)) 2 :. Therefore, Q’(x)
must be a constant different from zero, say Q’(x) a va O. Equality (3) gives Q(x)
a(P(x) + x) + P’(x), and, replacing Q(x) by this value in (2), we obtain x2-’ + P(x)
(aPZ(x) + ax + P’(x))(PZ(x) + x). So P(x) satisfies

ap4(x) + PZ(x)P’(x) + P(x) 4- xP’(x) x"-t + aN2.

P(x) is a solution of (1).
Conversely, if P(x) satisfies (1), then PZ(x) q- X divides x2m-’ + P(x) and therefore

divides X2m .ql.. X, []

PROPOSITION 6. Let a be any nonzero element ofG GF(2m) (m > 3). The solutions
ofthe differential equation over G,

(4) ay4 + yZy, + y + xy, x2m- + ax2,

are all affine polynomials (i.e., are the sums oflinearized polynomials and constants).
Proof Let P(x) be a solution of (4). If P’(x) 0, then P(x) satisfies the relation

apa(x) + P(x) x2m- + ax2 and is therefore an affine polynomial. We henceforth
assume that P’(x) 4 O.

We first prove that P(x) is separable. Set h(x) P’(x) + ap2(x) + ax. We have

(e2(x) + x)h(x) (p2(x) + x)(P’(x) + ap2(x) + ax)

ap4(x) + p2(x)P’(x) + xP’(x) + ax2

P(x) + x2m-’

(according to (4)). Let g(x) P(x)h(x) and f(x) g(x) + xm-’h(x) (P(x) +
x2m-’)h(x).
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According to the preceding equality, f(x) is equal to (p2(x) + x)h2(x) g2(x) +
xh2(x), andf(x) + fZ(x) is therefore equal to

g2(x) + xhZ(x) + (g(x) + x2m-’h(x))2 (x2m + x)h2(x).

f(x) + f2(x) is divisible by x2m + x, so f(x) is the polynomial expression of a Boolean
function. Its degree is 2m- + 2"-2.

The number 2 + 2m- 2 being the greatest element of the cyclotomic class of 3,
there exists an element of G such that f(x) tr (Xx3) mod (x2m + x) + fl(x), where
jq(x) is the polynomial expression of a Boolean function of degree smaller than 2 +

1+2m-2 2).2m-2 ()k is such that the coefficient ofx2m- inf(x) is ),2m- According to Proposition
4, )q(x) and f’(x) h2(x) + Xx2 + (Xx)-m-’ (and therefore h(x)) possess property (P). We
deduce that P(x) has property (P), since, if it was not the case, then, by considering the
greatest exponent in P(x) whose binary expansion has two consecutive l’s, we would
deduce that h(x) does not possess (P) and arrive at a contradiction.

So, P(x) is separable. We now prove that P’(x) is a constant. If rn 3, then it is
obvious. So, we may assume that rn > 3.

P(x) being a solution of (4), we have

(5) PZ(x)P’(x) ap4(x) + P(x) + xP’(x) + x2m-’ + ax2.

Let us prove that the polynomials S(x) PZ(x), R(x) P’(x), and Q(x) ap4(x) +
P(x) + xP’(x) + x2m- + ax2 satisfy the hypothesis of Corollary 2.

P(x) being separable, S(x) and Q(x) are separable.
R(x) is even.
Suppose that, for a positive integer i, the polynomial Si-

is the zero polynomial; then we must prove that Ri 0.
Since dP(x) is 2 3, we may write P(x) tx2m- + T(x), where dT < 2

Equality (5) gives a/.t
4 and

[uZx2m-2 + T2(x)]T’(x) aT4(x) + T(x) + xT’(x) + ax2 + ux2m-3.

Therefore, since T’(x) P’(x) 4: O, dT4(x) is equal to 2m-2 q- dT’(x) and 4dT(x) <
2m-2 + dT(x); dT(x) < 2m-2/3. Thus dT2(x)T’(x) < 2m-2. Therefore, since the
degree of T(x) + xT’(x) + ax2 + tx2m-3 is smaller than 2m-2, the polynomial
t2x2-2T’(x) is equal to the sum of the terms of degrees at least 2m-2 of the polyno-
mial aT4(x).

If > rn 2, then, since R(x) has degree smaller than 2"- 3, Ri(x) 0. So we may
assume that < rn 2. Since, by hypothesis Pi_ 2 is zero, P(x) has no exponent of 2-
valuation 2, T4(X) has no exponent of 2-valuation i, and so 2XZm- T’(X) has no
exponent of 2-valuation i. Thus Ri(x) 0 (since < rn 2).

We have proved that P’(x) is a constant.
Let P’(x) b. P(x) is then a solution of the polynomial equation

(6) ap4(x) + bPZ(x) + P(x) x2m-’ + ax2 4c- bx

and is therefore affine.
We now give the explicit expressions ofthose polynomials that satisfy the conditions

stated in the title of the paper.
THEOREM. Let rn >_ 2 and G the Galois field oforder 2m. Those polynomials over

G that divide x2m + x, whose derivatives are constant, and whose degree is 2 2 are all
the polynomials ofthe type

k(u tr (/)2x) - /)tr (u2x) + eu + nv),
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where u and v are two linearly independent elements ofthe F-space G, k is any nonzero
element ofG, and e, {0, ).

Proof Clearly, any polynomial of this form divides x2 + x since
(i) It has degree 2 2; indeed, the coefficient of x2-’ is equal to k(uv + vu) O,

and the coefficient ofx2m-2 is equal to k(blv2m-I -- vu2m-1) k(uv(u + l)))2m-1 =}/= 0 (since
u and v are linearly independent);

(ii) Its roots are all the elements of the (m 2)-dimensional flat

{x G/tr (v2x) e and tr (uax) }.
Conversely, if m 2, then it is a simple matter to check that any polynomial of

degree over G admits such a representation. So we may restrict ourselves to m >_ 3.
Let M(x) be a polynomial of degree 2 2 which admits a constant derivative and

divides X2m -}- X. We have seen that we may write M(x) k(PZ(x) + x) (k G, k 4 0).
Propositions 5 and 6 prove that P(x) is affine. So M(x) is affine. We may restrict

ourselves to the case where M(x) is a linearized polynomial (ifM(x) is an affine polynomial
that divides x2 + x, then, for any root a ofM(x), the polynomial M(x + a) is linearized,
and the set of polynomials of the form k(u tr (vZx) + v tr (u2x) + eu + nv) is invariant
under any translation).

M(x) is now a linearized polynomial whose roots are the elements of an (m 2)-
dimensional subspace E of G. There exists u and v, linearly independent, such that E is
equal to {x 6 G/tr (vax) 0 and tr (uZx) 0 }. The polynomial k(u tr (v2x) q-- /) tr (U2X))
admits E as a set of roots and has degree 2 2. Thus, by unicity ofthe (monic) linearized
polynomial that admits Eas a set ofroots, M(x) is equal to k(utr(vZx) + vtr(uZx)). [-q

As stated in the Introduction, we deduce a result equivalent to that ofAugot, Charpin,
and Sendrier [1].

COROLLARY 3. Let rn > 3 and n 2m 1. Let G GF(2m). Let B(x) be any
element ofthe algebra F[x]/(x + 1). Then B(x) belongs to the BCH code oflength n and
designed distance 2 2 and has weight 2 2 ifand only ifits locator polynomial
(x) satisfies

2X -20"(x--l) (U tr 0)2x) -- 1) tr (UzX)),
b/l)2m- -}- l)b/2m-

where u and v are two linearly independent elements ofG.
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THE k-EDGE-CONNECTED SPANNING SUBGRAPH POLYHEDRON*
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Abstract. This paper studies the polyhedron Pk(G) defined by the convex hull of k-edge-connected spanning
subgraphs of a given graph G where multiple copies of an edge are allowed. A complete inequality description
of Pk(G) when k is odd and G is an outer planar graph is given. A family of facet-defining inequalities of Pk(G)
that have the same support graph but coefficients that depend on k e {4r 2, 4r 1, 4r + 1,
r e 1, 2 is described.
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1. Introduction. In the design of communication or transportation networks, it is
frequently important to produce networks of low "cost" that are "survivable." Several
definitions ofsurvivability are discussed in Grrtschel and Monma 10]. Stoer 14] studied
these problems for the case when no more than one copy of an edge may be used. She
describes various decompositions for sparse input graphs. She also gives several valid
and facet-defining inequalities for the associated polyhedra. The problem where multiple
edges are not allowed was also studied by Christofides and Whitlock [4], Monma, Munson,
and Pulleyblank [12], and Bienstock, Brickell, and Monma [1 ]. In this paper, we only
examine the case where the survivability requirements are given in terms of edge-con-
nectivity and where multiple copies of an edge are allowed. If edge-connectivity is the
survivability criterion used, allowing multiple copies of an edge often results in a lower-
cost solution than the case when multiple copies are not allowed. Thus the study of this
problem is important. The instance where multiple copies of an edge are allowed is a
relaxation of the case in which at most one copy is used. Thus all valid inequalities
identified by us are also valid for the case when at most one copy of an edge may
be used.

A graph G F, E) is called k-edge-connected if the removal ofany (k 1) or fewer
edges leaves G connected. Note that we allow multiple copies of a given edge. A family
of edges of E is a collection F of elements of E. Several copies of the same edge may
appear in F. For each edge e e F, the multiplicity of e in F is the number of times e
appears in F. An element of a vector x indexed by the edge set E is referred to as Xe or
x(e). With every family F of edges of G, we associate a unique incidence vector xF e RE

F Fby setting xe equal to the multiplicity of e in F. Clearly, if e F, then Xe 0. By G[F],
we denote the multigraph obtained by replicating each edge e e F as many times as its
multiplicity in F. Given edge weights Ce, e E, the weight of a family F is given by c(F),
where

c(F) Z CeXFe
eE

In this paper, we consider the k-edge-connected spanning subgraph problem (k-ECSSP):
Given a graph G (V, E) with nonnegative edge weights Ce R+, find a family F of
edges of minimum weight such that G[F] spans G and is k-edge-connected. For k > 2,
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this problem is NP-hard (see Garey and Johnson [7]). For k 1, the problem reduces
to that of finding a minimum-weight spanning tree that can be solved in polyno-
mial time.

Given a connected graph G (V, E), define the k-edge-connected spanning subgraph
polyhedron Pk(G), where

Pk(G) =conv {xF[ G[F] spans G and is k-edge-connected}.

Note that Pk(G) is a polyhedron and contains the nonnegative orthant as its recession
cone. k-ECSSP can be solved as min {cT"xlx Pk(G)}. We study the polyhedron Pk(G)
for k > 2. In 2 we give an integer linear programming formulation of the problem.
Cornurjols, Fonlupt, and Naddef [5] showed that the corresponding LP-relaxation defines
Pk(G) for k even and G a series-parallel graph. We show that, for k odd, the LP-relaxation
has fractional extreme points even if G is a triangle. For k odd, we introduce the class of
outerplanar partition inequalities and show them to be facet-defining for Pk(G). In 3 we
show that, for k odd, the LP-relaxation, along with the outerplanar partition inequalities,
defines P(G) if G is outerplanar. In 4 we introduce other facet-defining inequalities for
Pk(G). Finally, we show how facet-defining inequalities for Pk(G) can be used to obtain
facet-defining inequalities for high edge-connectivity network design problems. For basic
definitions and results in polyhedral combinatorics, refer to Pulleyblank 13].

2. Formulation and outerplanar partition inequalities. For each edge e E, we in-
troduce a variable Xe, referring to the multiplicity of e in the solution. An edge e with
end nodes and j may also be referred to as (i, j). Given V

_
V, define the cut

For < VI -< VI 1, the cut-inequality

(2.1) ., ye " k
6(17")

is valid for Pk(G). k-ECSSP can be formulated as the following integer linear program:

min { c rxlx satisfies (2.1) for all I7
___

V,

Define the polyhedron LPk(G), where

LPk(G) {x Re+Ix satisfies (2.1) for all I?
_

V, < I?l < vI }.
Since P(G) contains the nonnegative orthant as its recession cone, it is clearly full-
dimensional. Using standard polyhedral techniques, we can show the following result.

PROPOSITION 2.1. Let G V, E) be any connectedgraph. Then (i) the cut-inequality
(2.1) isfacet-definingfor Pg(G) ifand only ifboth Vand V- Vinduce connected subgraphs
ofG; (ii) the inequality Xe > 0 isfacet-definingfor Pg(G) ifand only ifthere does not exist
Y
_
V such that
This formulation was considered by Goemans [8] and Goemans and Bertsimas [9].

They gave a worst-case bound of the ratio between the optimal solution to the LP-
relaxation and the integer optimum. Goemans in [8] also provided a probabilistic analysis
of this ratio in the case where the nodes of the graph are uniformly distributed in the
unit cube. This ratio was shown to have a limit that can be bounded away from one.
This emphasizes the need for additional inequalities to strengthen the formulation.

Another way to check the strength of the cut-inequalities is to characterize the class
of graphs for which Pk(G) LP(G). Cornu6jols, Fonlupt, and Naddef [5] showed the
following result.
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THEOREM 2.1. For k even, ifG is a series-parallel graph, then Pk(G) LPk(G) and
Xe {0, k/2, k} for all e E, where x is a vertex ofP(G).

The above result does not hold for k odd. As an example, consider a triangle induced
by edges e, e2, e3. The solution Xe k/2 for ee {e, e2, e3} is a fractional vertex ofLP(G).
However, the following result follows from Theorem 2.1.

PROPOSITION 2.2. IfX is a vertex ofLP(G) for k odd and G is a series-parallel
graph, then X . {O, k/2, k} for all e E.

This may lead us to believe that, for G series-parallel, P(G) has extreme points that
can only take on a limited number (not all integers between 0 and k) of integer values
for k odd. This proves to be false. Given any integer 0 < r < k, we can construct a series-
parallel graph for which P(G) has an extreme point x with Xe r for some edge e.
For outerplanar graphs, we can show that, if x is an extreme point of Pk(G), then Xe
{0, 1, Lk/2], [k/2], k 1, k} for all e E.

For the remainder ofthis section and the next section, we assume that k is odd and
k >_ 3. We define two basic operations of contraction and deletion. Given a graph G
(V, E) and an edge e (u, v), contracting the edge e consists of identifying the nodes u
and v into the node u and deleting edge e to get G (Vc, E). All edges that were incident
to either u or v in G are now incident to the combined node u. The reverse operation is
called expansion. Deleting edge e results in the graph Ga Va, Ea), where Va V and
Ea E { e}. The reverse operation is called extension. We obtain a minor G’ of G by
a sequence of contractions and deletions. We give basic lifting theorems associated with
expansion and extension. They are stated here without proof. Let Gc (V, E) be the
graph obtained from G (V, E) by contracting edge .

THEOREM 2.2. Ifthe inequality eeE- {’} aeXe >-- ao isfacet-defining (valid)for P(Gc),
then eE aeXe >--- ao is facet-defining (valid)for P(G), where a() O.

In the case of extension, lifting is more complex (can be as difficult to solve as the
original problem). However, there is one interesting instance where lifting is easy. Let
G (V, E) be a graph with two parallel edges el and e2. Ga is obtained from G by de-
leting e2.

THEOREM 2.3. If the inequality ZeF-{e2} aeXe >-- ao is facet-defining (valid)for
P(Ga), then esE aeXe >-- ao is facet-defining (valid)for P(G), where a(e2) a(el).

The above results can be used to prove the following more general lifting theorem.
Consider any partition r (Vi, r) of the node set V. Assume that each of the
subsets V,- induces a connected subgraph Gi (Vi, Ei) of G. Let G (V, E) be the
graph obtained by shrinking each subset Vi into a single node vi. Let Ti be a spanning
tree of the graph Gi, 1, r. G is obtained from G by contracting the edges in T;,

1,..., r and deleting the edges Ei Ti, 1,..., r. G is referred to as a contraction
minor of G. Repeated applications of Theorems 2.2 and 2.3 prove the following result.

THEOREM 2.4. Ifthe inequality eeE aeXe >-- ao isfacet-defining (valid)for P(G),
then ZeF aeXe >-- ao is facet-defining (valid)for Pk(G), where ae O for e E E.

We now turn to the fractional extreme point of P(G), where G is a triangle. This
extreme point is cut off by the facet-defining inequality

x(e) + x(e2) + x(e3) >- 3rk/21 1.

We generalize this inequality to outerplanar graphs. A graph G (V, E) is said to be
outerplanar if it is planar and can be embedded on the plane so that all nodes lie on the
outermost face. A well-known property of outerplanar graphs is as follows (see, for in-
stance, Gan and Johnson [6]).

PROPOSITION 2.3. Any connected outerplanar graph G (V, E) with VI >- 2
contains one ofthe configurations in Fig. 2.1.
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(a) (b) (c) (d)

FIG. 2.1

Let G (V, E) be any outerplanar graph. The outerplanar partition inequality (OP-
inequality) is given by

(2.2) , Xe > Vl[k/2] 1.
eE

LEMMA 2.1. The OP-inequality (2.2) is validfor Pk(G).
Proof The proof is by induction on G (i.e., EII V I). Inequality (2.2) is clearly

valid if G is an edge. Assume that inequality (2.2) is valid for all minors G’ of G. If G
contains Fig. 2. l(a), then x() > k for all x Pk(G). Contract the edge to obtain G’
(V’, E’). Let x’ be the restriction of x to E’. By induction,

Xe >-- (I V 1)[k/2] 1.
eE- {}

Since Xe >- k, it follows that x satisfies (2.2). IfFig. 2.1 (a) is not present, then, by Proposition
2.3, G either contains parallel edges el and e2 or a node u with degree (u) 2. If G
contains parallel edges el and e2, delete e2 to obtain G’. By the induction hypothesis,

Xe >- VIFk/2q 1.
eE- {e2}

Since x(e2) > 0, the validity of (2.2) follows.
If G contains a node u of degree 2, let el and e2 be the two edges incident to u.

Contract el to obtain G’, and e2 to obtain G. Each defines an OP-inequality. By the
induction hypothesis, we have

(2.3) Xe >-- (I V[ 1)[k/23 1.
eeE-{e}

(2.4) Z xe>_ (1 V[- 1)[k/23- 1.
eeE- {e2}

From the cut-inequalities, we have

(2.5) x(e) + x(e2) >- k.

Adding (2.3)-(2.5) and dividing by 2 gives

(2.6) xe > (1 V[ 1)[k/2] + (k/2) 1.
eE

On rounding the right side of (2.6), we obtain (2.2). This proves the result. [3

Define a graph G to be 2-connected if the removal of any node and all incident
edges leaves G connected.

THEOREM 2.5. The OP-inequality (2.2) is facet-definingfor Pk(G) ifand only ifG
is 2-connected.

Proof If G (V, E) is not 2-connected, there is a node v that is a cut-node for G,
as shown in Fig. 2.2.
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FIG. 2.2

Assume that Gi (Vi, Ei), 1, 2. Each of G and G2 is outerplanar and gives rise
to OP-inequalities

Xe >--- vlrk/21 for 1, 2
e_ E

that are valid for P,(G) by Theorem 2.4. Since VI Vl + V=l 1, adding the OP-
inequalities defined by G and G2 gives

Z Xe -- (I Vl + Vl)rk/21 2 (I v + 1)rk/2q 2,
eE

which has a larger fight side than (2.2), since k > 3. Thus (2.2) cannot be facet-defining
in this case.

Now consider the case where G is 2-connected. The nodes in Vcan be ordered from
to V such that the nodes i, + are adjacent on the outermost face of G. Define the

edge e; (i, + 1) for 1, Vl 1, with ely (I VI, 1) (if there are several
parallel edges (i, + any one may be considered to be ei). Consider any valid inequality
cx >_ c0 such that

{x Pk(G) Ix satisfies (2.2) with equality}
_

{xl cx Co}.
Given < < Iv I, consider the vector x i, where

Lk/2J for e ei,

Jrk/2] fore= ej, je {1, IV[} {i},Xe
I
l0 otherwise.

x
_
P,(G) and satisfies (2.2) with equality for e { 1, vl }. This shows that

a(ei) a(e.i) b for i, j e {1,..., IVI), 4:j.

Now consider an edge (r, s) E, where s { r I, r + }, indices calculated modulo
VI. Define the vector , where

Lk/2j for e es,

x%=t for e E {es, },
for e .

Y Pk(G) and satisfies (2.2) with equality. Comparing Y and Xr, we have

o() o(es)= b.

Since is an arbitrary edge from E { e’, 6 { V }, this shows that O/e b for
all e E. Thus x > c0 is a multiple of(2.2), and the result follows by standard polyhedral
theory.
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We now describe a procedure for lifting OP-inequalities. This procedure was suggested
by Stoer. Let G (V, E) be any outerplanar graph and let G (V, E) be the graph
obtained on adding edges E- E {e et }. Let inequality (2.2) be the OP-inequality
that is facet-defining for Pk(G). The lifted outerplanarpartition inequality (LOP-inequality)
for Pk(G) is given by

(2.7) , Xe qt_ Z a(ej)x(ej)> Vl[k/2]- 1,
eE j=

where a(ej) is the number of edges in the shortest path in G linking the end nodes of e.
The LOP-inequality (2.7) is clearly valid for P(G). However, it is not, in general, facet-
defining.

A necessary condition for (2.7) to be facet-defining was provided by Stoer. It is
described in the following. First, we need a definition and a result on outerplanar graphs.
G is a maximal outerplanar graph (MOP-graph) if the addition of any nonparallel edge
would make the graph not outerplanar. Let G (V, E) be a MOP-graph and let
{ u, v}

__
V be two nodes such that (u, v) is not an edge in G. The nodes u and v divide

the outer face of G into two paths P; (V,., Ei), linking u to v. Here V f) V2 { u, v}
and P1 (P2) is a path from u to v.

LEMMA 2.2. IfG, u, v, P, and P2 are as defined above and the shortest path from
u to v in G contains >_ 2 edges, then there exist edges (ui, vi), { 1,..., l }
such that

(a) ui Vl {u, v} and vi 6 V2 {l/l, v} for 6 {1, ...,l- 1},
(b) ui(vi) 4: u(v)for 4: j.
Proof The proof is by induction on l. Consider the case where 2. Let w V2 be

the intermediate node on this path with two edges. The path Pl must have at least two
edges. Since (u, v) E and G is a MOP-graph, (w, z) must be an edge for some z V2
{ u, v }. Thus the result holds in this case.

Assume that the result holds for 2,..., r for r > 3. Consider the case where
l r. Let Ps (Vs, Es) be the shortest path in G from u to v. Note that EsI r. Without
loss of generality, assume that (w, v) is the last edge in Ps and w V2. Ps (V { v},
Es {(w, v)}) is the shortest path in G from u to w and has length r > 2. By the
induction hypotheses, there exist r- 2 edges (u;, vi), 1, r- 2 such that

uie V {u} and vie V2- {u, V2[w, v]}; ui(vi) 4: uj(vg) fori:/:j.

Here Vz[w, v] are the set of nodes in P2 in the segment between w and v (including v
and w).

First, we show that Ur-2 4: v. TO the contrary, assume that v Ur-2. Thus (v, vr-2)
is an edge in G. Since G is an outerplanar graph, each path in G from u to w must pass
through either v or Vr-2. The shortest path Ps does not pass through v. Thus it must pass
through Vr- 2. Then, however, G has a path from u to v of length less than r if we follow
Ps to I) 2 and then use the edge (v, /)r-2). This contradiction shows that b/r- 2 5/= /)- The
nodes u, v, w (ui, vi, 1, r 2) are as shown in Fig. 2.3. The nodes in V have a
natural ordering as they appear in P. Given {s, t}

_
V, let V[s, t] correspond to the

nodes in V on the segment in P from s to (including s and t). Since (v, Vr-) E and
G is a MOP-graph, there exists an edge (w, s), where s V[Ur-2, V] {V}. If S Ur-2,

then (w, s) and the edges (ui, vi), { 1, r 2} give the r edges required. Thus
we need only consider the case where (w, ur_ 2) e E and where w is not linked to any
node in V[ur-_, v] { u-2, v} by an edge in E. Since G is a MOP-graph, (v, Ur-2) E.
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U
1 V 1

u ,
r-2 )vr-2

FIG. 2.3

Using the same argument with I) 2 (instead of w) shows that we either have the
required r- edges or {(Vr-2, Ur-3), (Ur-2, Ur-3)} C__ E. Continuing in this manner,
we are able to show that either we have the required r edges or {(Vr-j, Vr-j-1),
(Ur-, Ur--1)} -- E forj {2 r 2}. Thus there is a path from Ul to v of length
r 2. This implies that (u, ul) E, and there exists at least one node in V[u, u
{u, Ul }. Since G is a MOP-graph and (u, ul) E, there exists an edge (Vl, t) e E for
e Vl[U g/l] {/,/, Ul }. Then the edges (/)1, t), {(g/i, 1)i+1), 1, 2, r- 3},

(/’/r-2, W) give the required r- edges. The result thus follows. []

We are now able to prove the following result suggested by Stoer.
THEOREM 2.6. Let G V, E) be a MOP-graph and let G V, E) contain G as

a subgraph with E E {el,..., et }. Then the LOP-inequality (2.7) is facet-defining
for Pk(G).

Proof Consider any valid inequality ax > a0 such that

{x Pk(G)Ix satisfies (2.7) with equality} _c {xl ax a0}.
Using the same argument as in the proof of Theorem 2.5, we can show that

(2.8) O/e b Ve E.

Consider any edge E E, where (u, v). Let r > 2 be the length of the shortest
path from u to v in G. By Lemma 2.3, we have edges ei (ui, I)i) E for 1,
r satisfying conditions (a) and (b) in Lemma 2.3. The paths P1 and P2 are as defined
in Lemma 2.3. For {s, t}

_
Vi, 1, 2, ei[s, t] (Vi[s, t], Ei[s, t]) corresponds to the

segment of path Pi between s and (Vi[s, t] includes both s and t). Let u u0 v0 and
v Ur Vr for ease of notation. Define the solution x, where

fore=ei, i= 1,...,r- 1,

[k/21 for exactly one edge in E2[li, l)i+ 1], for {0 r },
Fk/2] for all other edges in El U E2,

0 otherwise.
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x satisfies (2.7) with equality. Define Y, where

., Lk/2j

fore e-,
for exactly one edge ( in E [ui, u+ ],

otherwise.

for i6 {0,..., r- 1},

also satisfies (2.7) with equality. Comparing x and Y, we have

r-1

( , ( rb.
i=0

Thus cx >_ c0 is a multiple of (2.7), and the result follows. []

As an example, let G (V, E) be the complete graph on four nodes with E
{ei, 1,..., 6}. Let G (V, E), where E- E {e6}. G is an outerplanar graph, and
the OP-inequality

x(ei)>--. 4Fk/2]-
i=1

is facet-defining for Pk(G). On lifting, we obtain the LOP-inequality

x(ei) + 2x(e6) > 4Fk/2]
i=1

that is facet-defining for Pk(G).

3. The lolyhedron Pt,(G) of an outerlflanar graph for k odd. Let G (V, E) be any
outerplanar graph. Each partition r (Vi, 1, r), where V induces a connected
subgraph of G for r, defines a contraction minor G (V, E) of G. G is
outerplanar and defines an OP-inequality

(3.1) Z Xe >-- v= lrk/2]
e E,

that is facet-defining for P(G) ifG is 2-connected. OP-inequalities (3.1) include the cut-
inequalities for which G is a set of parallel edges. Define the polyhedron P(G), where

(3.2) /5(G) {x R+lx satisfies the OP-inequalities (3.1) for all partitions

The main result of this section is the following.
THEOREM 3.1. IfG is an outerplanar graph, then Pk(G) Pk(G).
Since each inequality defining Pk(G) is valid for Pg(G), it follows that Pk(G) P(G).

Furthermore, each integer vertex of P(G) is also a vertex of P(G). Thus, if P(G) 4:
Pk(G), then P(G) must contain a fractional vertex.

Let G be an outerplanar graph, minimal with respect to the property that P(G) has
a fractional vertex; i.e., for every minor G’ of G, we have P(G’) Pg(G’). Let x be a
fractional vertex of Pk(G). The proof of Theorem 3.1 uses a sequence of propositions
regarding the structure ofx and G. These are stated and proved in the following.

PROPOSITION 3.1. Ifx and G are as described above, x(e) > 0for all e E.
Proof To the contrary, assume that x() 0. Define G’ (V, E }). Let x’ be

the restriction of x to E {}. x’ is a fractional vertex of Pg(G’), contradicting the
minimality of G.

PROPOSITION 3.2. The graph G is 2-connected.
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Proof To the contrary, assume that G is not 2-connected. Let G (V, E) be any
maximal 2-connected component of G such that there exists e E with x() fractional.
Let be the restriction of x to E. is a fractional vertex of Pk(G), since each k-edge-
connected subgraph of G is the restriction of a k-edge-connected subgraph of G to E.
This contradicts the minimality of G.

PROPOSITION 3.3. Assume that degree (u) 2 for some node u V. Let el (u, v)
and e2 (u, w) be the two edges incident to u. Assume that x(e > x(e2). Then x(el
[k/2] and x(e2) {k/2], [k/21}.

Proof. There are two possible cases: one where the edge e3 (I), w) is present and
the other where it is absent. Our reduction in the first case contracts el and deletes e2
and, in the second case, contracts el (or e2) to get a minor of G. To shorten the proof,
we assume the edge e3 (I), w) to be present. If this is not the case, we set x(e3) 0. The
reduction we use is to contract el and delete e2, obtaining a minor of the original graph.
The artifact of adding e3 with x(e3) 0, if it is missing, allows us to resolve both cases
simultaneously.

We first show that x(e < k/2q. To the contrary, assume that x(e > k/2q. We
claim that there can be no OP-inequality (3.1), with I1/[ > 3 and el E, satisfied with
equality by x. To the contrary, assume that there exists a contraction minor G
(V, E) of G with I1/ > 3 and el E such that, x(e) V Ik/2q 1.

e E,

Let G (V, E) be the graph obtained from G by contracting el and deleting all
edges parallel to el. Since x(e > k/2], we have, x(e) < IVy, I{k/2]- 1.

e

Thus x violates the OP-inequality defined by G, contradicting the assumption that
x Pk(G).

Contract the edge el and delete e2 to get the graph G’ (V’, E’). Define x’, where

fx(e) for e E E { e3 },
x’(e) /

I.x(e2) + x(e3) for e e3.

If x’ is a vertex of P,(G’), we contradict the minimality of G. Thus x’ is not a vertex of
P,(G’). This implies that there exist x’ andx in P,(G’) such that x’ (x’ + x’2)/2. Given
e > 0, we can choose x, x2 such that Ix(e) x’(e)l -< e for all e e E’, 1, 2. There
are two possible cases: (i) x(e_) < x(e) and (ii) x(e2) x(e). First, consider the case
where x(e2) < x(e ). Define x, 1, 2, where

x(el) {xf(e3) x’(e3)} for e el,

x(e2) + {x(e3) x’(e3)} for e e2,
xi(e)

x(e3) for e e3,

xf(e) for e E {el, e2, e3 }.
Note that 0 < x(e2) < x(e) and that no OP-inequality (3.1) with VI > 3 and el E
is satisfied with equality by x. Thus the only OP-inequality with el in its support, satisfied
with equality by x, is x(e + x(e2) > k. Thus, for e > 0 and small enough, x, x2 P(G).
Since x (x + x2)/2, this contradicts the assumption that x is a vertex of Pk(G). This
rules out x(e2) < x(e ).



254 SUNIL CHOPRA

If x(e2) x(e ), define x and X2, where

x(e) + {x(e3) x’(e3)} for e e {el, e },
xi(e) x(e3) for e e3,

x(e) for e e E {e, e2, e3 }.
Since x(e x(e2) > [k/2], no OP-inequality satisfied with equality by x has support in
both e and e2. Thus, for e > 0 and small enough, x, x2 Pk(G). Since x (x + x)/
2, this contradicts the assumption that x is a vertex ofP(G). This also rules out x(e2)
x(e ). Thus we have proved that x(e < [k/2-1.

Now we show that x(e [k/2]. To the contrary, assume that x(el < [k/2-1. Thus
x(e) < [k/2]. We now show that there exists no OP-inequality defined by G (V, E),
where e e E, e 4 E, and

Xe V=lFk/Zq- 1.
e

To the contrary, assume that such an inequality exists. Consider the graph G
(V, E ), obtained by expanding the edge e. G is also a contraction minor of G and
defines an OP-inequality. V V t,J {u} and E E t.J {e }. Since x(e) < [k/2-1
and Vll V + 1, we have

Xe < v:, rk/zq 1.
e E,

This contradicts the assumption that x P(G). Thus there can be no OP-inequality
satisfied with equality by x where e2 E,, e 4 E. A similar argument shows that
there can be no OP-inequality satisfied with equality by x where el e E, e2 4 E.
The two statements together contradict the assumption that x is a vertex of Pg(G). Thus
x(e) rk/2].

This implies that [k/23 _< x(ez) < Pk/2]. We now show that x(ez) (Pk/2], Ik/2_l).
To the contrary, assume that lk/23 < x(e2) < Pk/2], yielding x(e + x(e2) > k. Contract
e and delete e2 to get G’ (V’, E’). Define x, where

fx(e2) + x(e3) for e e3,
x

I,x(e) for e E’ {e3 ).

If x’ is a vertex of P(G’), we contradict the minimality of G. Thus x’ is not a vertex of
P(G’). This implies that there exist x’, x in P(G) such that x’ (x’ + x’2)/2. Given
e > 0, we can choose x’ and x such that Ix(e) x’(e)l < e for all e E. Define xi
for 1, 2, where

x(el) for e e,

x(ez) + {x(e3) x’(e3)} for e e,
xi(e)

x(e3) for e e3,

x(e) for e E- {e, e2, e3 }.
For e small enough, xi(e) + xi(ez) > k, 1, 2. Thus x, x2 . Pk(G). Since x
(x + x2)/2, this contradicts the assumption that x is a vertex of P(G). Thus x(e2)
{rk/2, k/2}. r3

ProofofTheorem 3.1. By Proposition 3.1, G cannot contain Fig. 2.1 (a). Now consider
the case where G contains Fig. 2.1(b). Since x is a vertex of P(G), either
x(ei) 0 or x(e2) 0, since, in each OP-inequality, x(e) and x(e2) have the same
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coefficient. This contradicts Proposition 3.2. Thus we can assume that G is a 2-connected
outerplanar graph with no parallel edges.

Order the nodes of V as { 1,..., V I} along the outer face. An edge of the form
(i, j), where j { 1, + 1}, is called a chord. First, consider the case where G does
not contain any chord. Thus each node e Vhas degree 2. From Proposition 3.3, x(e)
[k]21 for e e E {7} and x(7) Lk]2J for some edge e E. Thus Pk(G) has only integer
vertices, contradicting our assumption that x is a fractional vertex of Pk(G).

Thus G must contain a chord (i, j). Since G is outerplanar, we can choose a
chord (i, j), where j > and degree(s) 2 for s e {i + 1, j 1}. Define {es
(s,s+ 1),s= IVI)andtheedgesetE= {es, s=i,i+ ,j- 1}.Fromour
previous results, x(e) [k/2] for e e/ {} and x() e {lk/2J, [k/2]} for some edge
e/. Form the graph G’ (V’, E’) by contracting the edges/ {} and deleting .

Define x’, where

Ix(8) + x(8)

[.x(e)

Clearly, x’ P,(G’). If x’ is a vertex of Pk(G’), we contradict the minimality of G. Thus
x’ is not a vertex of Pk(G’). This implies that there exist x’ and x in Pk(G’) such that
x’ (x’ + x’2)/2. Given e > 0, we can choose x’ and x such that Ix’(e) x’(e)l -< e

for all e e E, 1, 2.
Define xi, 1, 2, where

x(e) for e

xi(e) x() + x() x’() for e

x(e) for e E’ {}.
By Proposition 3.1, x() > 0. Thus, for e small enough, x, X2 Pk(G) and x (x +
x2)/2. This contradicts the assumption that x is a vertex of P:(G). This shows that Pg(G)
does not contain any fractional vertex. The result thus follows. []

IfP(G) is described using only OP-inequalities as in (3.2), then P(G) 4 Pk(G), even
if G is the complete graph on four nodes (K4), as shown in Fig. 3.1. x(ei) 1.5, 1,
2, 5, 6; x(e4) 0; x(e3) 0.5 is a fractional vertex of P3(G). This shows that Theorem
3.1 cannot be extended to graphs with a K4 minor. This fractional vertex is cut off by
the LOP-inequality

x(e) + x(e2) + x(e3) + x(e5) + x(er) + 2x(e4) > 7.

However, we do not know of any series-parallel graphs (graphs with no K4 minor) for
which P(G) 4 Pk(G). Thus we make the following conjecture.

6

FIG. 3.1
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CONJECTURE 3.1. Pk(G) Pk(G) ifk is odd and G is a series-parallel graph.
It would also be interesting to characterize those graphs for which Pk(G) is completely

defined by LOP-inequalities. Results in 4 give examples of graphs for which this is not
the case.

4. Odd-wheel inequalities. In this section, we describe a family of facet-defining
inequalities for P(G). Given an odd integer s > 3 and integers ni > 2, { s},
define the odd-wheel configuration Ws (Vs, Es), where

Vs {u} U {vj[j. {1 ,F/i} i {1, s}}.

Define v u for { 1, s}. The edge set E is given by

Es {(v v+,)lj{O, ni- 1} i{i, s}}U{(v,,,v )1i{1 s}}hi+

For s 3 and ni 2, 6 { 1, 2, 3}, W3 is shown in Fig. 4.1. The precise inequality we
define on Ws depends upon the value of k. There are three distinct sets of values of k we
consider: k 6 {4r 2, 4r 1, 4r + 1, r 6 { 1, 2,... ) }. We give proofs only for the case
where k 4r + 1. For the other two cases, we simply state the inequality. Detailed proofs
are contained in Chopra [3].

Consider the odd-wheel configuration Ws (Vs, Es), where k 4r + and ni > 2,
{ 1, s}. Define the edges eij (v, vj+ 1) for 6 1, s} and j 6 {0,

vi i+1n } and ei , v,,/ for { 1,..., s}. The odd-wheel inequality is given by

(4.1) _, a(e)x e) > ao,
eEs

wherea(e)= for alleEsanda0 s(r- 1)+(2r+ 1) Zsi= tli + fS/2].
LEMMA 4.1. The odd-wheel inequality (4.1) is validfor Pk(Ws), k 4r + 1.

Proof For m { 1, s}, consider the OP-inequalities

(4.2) Z
j {0 nm

X(emj) + X(em-) + X(em) >-- (nm + 1)(2r + 1)

and

(4.3) Z
j {0

X(emj) > nm(2r + 1) 1.

1I
v21

2 2

FIG. 4.1

v
2



THE k-EDGE-CONNECTED SPANNING SUBGRAPH 257

Adding (4.2) and (4.3) for all rn { 1,..., s} and dividing by 2 gives

(4.4) , x(e) >_ s(r- 1) / (2r / 1) ni + (s/2).
eE i=

On rounding (4.4), we obtain (4.1). [S]

THEOREM 4.1. The odd-wheel inequality is facet-definingfor Pk(Ws), k 4r + 1.

Proof Let ax >_ Co be any valid inequality for Pk(Ws) such that

{x
_
Pk(W) Ix satisfies (4.1) with equality}

_
{x[ ax ao}.

Given m { s} and li {0, ni- for 1, s, define Xm, where

Xm(e)

2r for e e0,

2r+ fore=eij,

r + for e ei,

r fore= ei,

i{1 s}, j= li,

i6{1 ,s}, j4: li,

ie{m,m+2,...,m+s- 1},

i{m+ 1, m+3 m+s-2}.

Define XZm, where

2r + for e em + 1,j, j lm +
XZm(e) r for e em,

Xm(e) otherwise.

Xm and Xm2 satisfy (4.2) at equality for rn { 1,.. s} and li {0,.. ni }. Comparing
for li j and li k givesXm

(4.5) ot(eij) a(eik)= bi for ie {1 s}, j 4: k {0,..., ni- 1}.
Comparing Xm and X2m, we have

(4.6) ot(em) bm+ for m e { s}.
Comparing xm and Xm + 2, we have

(4.7) ot(em) ot(em + 1) for m e { s).
From (4.5)-(4.7), we have c(e) b for e e E. This shows that cx >_ a0 is a multiple of
(4.1). The result thus follows.

In the case where k 4r- 1, the odd-wheel inequality is given by (4.1), where

Ill(hi-- 1) fore= eij, i {1, ...,s),j {O,...,ni-- 1),
+ 1/(ni-- 1)+ 1/(ni+-- 1) fore=ei, ie{1,...,s)

and a0 (3r 1)s + Is + (4r 1) Z= (1/(ni 1)).
In the case where k 4r 2, we restrict ni 2 for { s} in Ws. The odd-

wheel inequality is once again given by (4.1), where

a(e)= fore=(v,v+), j{0, 1},
fore=(v/,v+l), ie{1 ,s}

and a0 s(3r- 2) + [s/2-1.
For the case where k 2, a similar inequality was considered by Mahjoub 11 and

generalized by Stoer [14] and Boyd and Hao [2].
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4.1. High edge-connectivity network design. In this section, we relate facet-defining
inequalities ofPk(G) to facet-defining inequalities ofpolyhedra associated with high edge-
connectivity networks. The problem of designing networks with high edge-connectivity
was first introduced by Gr6tschel and Monma 10] and was studied in detail from a
polyhedral point of view by Stoer 14]. Both restrict attention to the case where an edge
can be used at most once. In the following description, we use the terminology ofGr6tschel
and Monma [10]. Consider an undirected graph G (V, E) with nonnegative edge-
weights We. For each node v V, a nonnegative integer rv is specified. For each pair of
nodes u, v in V, define ruv min { ru, ro }. A family of edges F is said to satisfy the edge-
connectivity requirements ifbetween every pair of nodes u, v in V, G[F] contains at least
ru edge disjoint paths. The problem is to find a minimum-weight family F that satisfies
the edge-connectivity requirements.

Define the associated polyhedron

PCON(G, r) =conv {x(F) IF satisfies edge-connectivity requirements}.

Given U
_

V, define r(U) max {rvlv U}. Consider a partition r (Vi, 1,
k) of the node set V, where each subset Vi induces a connected subgraph. As de-

scribed earlier, G (V, E), the graph obtained by shrinking each subset V/into a sin-
gle node, is a contraction minor of G. Assume that k max r(Vi), 1, } and
r(Vz) k. Further assume that r(Vi) k for 1, 1. We can relate facet-
defining inequalities ofPk(G) and PCON (G, r) by the following result. The prooffollows
from Theorem 2.4.

THEOREM 4.2. Ifthe inequality eE aeXe >-- ao isfacet-defining (valid)for P(G,),
then eE aeXe > ao is facet-defining (valid)for PCON (G, r), where ae 0 for e

5. Some open problems. In this paper, we introduce the OP-inequalities and show
that these completely describe Pk(G) for k odd if G is outerplanar. One open problem is
to see if the same result holds when G is series-parallel. Another open problem is to
characterize those graphs G for which P(G) is completely described by the cut-inequalities
where k 2 r, r 2, 3,.... This would generalize the result of Cornujols, Fonlupt, and
Naddef [5], who characterized the case where r 1.

Acknowledgments. I thank Bruce Gamble for several valuable discussions in the
course of this work. I also thank the referees for a very careful reading of the paper
and several valuable suggestions. Mechthild Stoer suggested inequality (2.7) and Theo-
rem 2.6.
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CONSTRUCTING SMALL SAMPLE SPACES
SATISFYING GIVEN CONSTRAINTS*

DAPHNE KOLLER* AND NIMROD MEGIDDO*

Abstract. The subject of this paper is finding small sample spaces for joint distributions of n discrete
random variables. Such distributions are often only required to obey a certain limited set of constraints of the
form Pr (Event) r. It is shown that the problem of deciding whether there exists any distribution satisfying
a given set of constraints is NP-hard. However, if the constraints are consistent, then there exists a distribution
satisfying them, which is supported by a "small" sample space (one whose cardinality is equal to the number
of constraints). For the important case of independence constraints, where the constraints have a certain form
and are consistent with a joint distribution of independent random variables, a small sample space can be
constructed in polynomial time. This last result can be used to derandomize algorithms; this is demonstrated
by an application to the problem of finding large independent sets in sparse hypergraphs.

Key words, discrete probability distribution, linear programming, algorithm, sample space, derandomization,
hypergraph, independent set, probabilistic constraint satisfaction, independent random variables
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1. Introduction. The probabilistic method of proving existence of combinatorial
objects has been very successful (see, for example, Raghavan 15] and Spencer 17]). The
underlying idea is as follows. Consider a finite set ft whose elements are classified as
"good" and "bad." Suppose that we wish to prove existence of at least one "good"
element within ft. The proof proceeds by constructing a probability distribution fover
ft and showing that the probability of picking a good element is positive. Probabilistic
proofs often yield randomized algorithms for constructing a good element. In particular,
many randomized algorithms are a special case of this technique, where the "good"
elements are those sequences of random bits leading to a good answer.

It is often desirable to replace the probabilistic construction by a deterministic one,
or to derandomize an algorithm. Obviously, this can be done by completely enumerating
the sample space ft until a good element is found, Unfortunately, the sample space is
typically exponential in the size of the problem; for example, the sample space of n
independent random bits2 contains 2 points.

Let X Xn be discrete random variables with a finite range. For simplicity, we
assume that X,..., X all have the same range {0 r } (although not necessarily
the same distribution). Our constructions can easily be extended to variables with different
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0026 and by Air Force Office of Scientific Research contract F49620-91-C-0080. The U.S. Government is
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IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, and School of Mathematical
Sciences, Tel Aviv University, Tel Aviv, Israel (megiddo@almaden.ibm.com).

This can be done if we assume that good elements are easy to recognize. In decision problems, this is
usually the case. In optimization problems, we may be able to prove that a random element is optimal or close
to optimal with a certain probability. In those cases, although we may not be able to tell by looking at an element
if it is "good," we can often compare elements and decide which is "better." We can therefore derandomize
such an algorithm by enumerating the sample space and choosing the "best" element in it. The techniques of
this paper also .apply to problems of this type.

We use the term random bits to denote binary-valued, uniformly distributed random variables.

260
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ranges. The probability space associated with these variables is f {0 r }n. A
distribution is a map f: f -- [0, 1] such that Zxuf(x) 1. We define the set S(f)
{x ft f(x) > 0} to be the sample space off

Given a distribution f involved in a probabilistic proof, only the points in S(f)
must be considered in our search for a good point in f. Moreover, it suffices to search
any subset of S(f) that is guaranteed to contain a good point for each possible input.
Adleman shows that, for any distribution fused in an algorithm in RP, there exists
a space S’

_
S(f) ofpolynomial size that contains a good point for every possible input.

The proof of this fact is not constructive and therefore cannot be used to derandomize
algorithms.

A common technique for constructing a feasible search-space is to find a different
distribution with a "small" (polynomial) sample space that can be searched exhaustively,
as outlined above. The new distribution must agree with the original one sufficiently so
that the correctness proof of the algorithm remains valid. The correctness proof often
relies on certain assumptions about the distribution; that is, the distribution is assumed
to satisfy certain constraints. A constraint is an equality of the form

Pr(Q) ] f(x)
xQ

where Q
_
2 is an event and 0 < 7r < 1. If the randomness requirements ofan algorithm

are completely describable as a set of constraints and if the new distribution satisfies all
ofthem, then the algorithm remains correct under the new distribution; no new analysis
is needed. In other cases, the new distribution may only approximately satisfy the con-
straints, and it is necessary to verify that the analysis still holds.

The original distribution is almost always constructed based on independent random
variables X, Xn. Thus, all the constraints are satisfied by such a distribution. In
many cases, however, full independence is not necessary. In particular, quite often the
constraints are satisfied by a d-wise independent distributionma distribution where each
neighborhood of d variables behaves as if it were independent. That is, it suffices for the
distribution to satisfy the independence constraints which state that every event defined
over a neighborhood ofsize d has the same probability as ifthe variables were independent.
Most of the previous work has focused on constructing approximations to such distri-
butions.

Joffe [10] first demonstrated a construction of a joint distribution of n d-wise in-
dependent, uniformly distributed random variables with a sample space of cardinality
O((2n)a). Luby [12] and Alon, Babai, and Itai [3] show how Joffe’s construction can be
generalized to allow for nonuniform distributions using sample spaces of essentially the
same cardinality. In many cases, the resulting distributions only approximately satisfy
the required constraints; that is, the distributions are d-wise independent, but the prob-
abilities Pr (Xi b) may differ from the corresponding probabilities in the original dis-
tribution.3 These constructions result in sample spaces of polynomial size for any fixed
d. Chor et al. [8] showed that any sample space of n d-wise independent random bits has
cardinality ft(nta/21). Thus, these constructions are close to optimal in this case. Moreover,
sample spaces of polynomial size exist for d-wise independent distributions only if d
is fixed.

Naor and Naor 14] showed how to circumvent this lower bound by observing that
-independent (or nearly independent) distributions often suffice. In other words, it suffices

In fact, these distributions all have a sample space of cardinality O(pd) for some prime p > n. The
approximation is better for larger p’s.
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that the independence constraints for the neighborhoods of size d be satisfied to within
e. We point out that this is also a form of approximation, as defined above. Naor and
Naor demonstrated a construction of sample spaces for e-independent distributions over
random bits, whose size is polynomial in n and in 1/e. These constructions are polynomial
for e 1/poly(n); for such values of e, the e-independence constraints are meaningful4

for neighborhoods of size up to O(log n). Therefore, we obtain a polynomial-size sample
space that is nearly d-wise independent for d O(log n) (as compared to the lower bound
of f(ngn) for truly d-wise independent sample spaces). Simplified constructions with
similar properties were provided by Alon et al. [4]. Azar, Motwani, and Naor [5] later
generalized these techniques to uniform distributions over nonbinary random variables.
Finally, Even et al. [9] presented constructions for nearly independent distributions over
nonuniform nonbinary random variables.

A different type of technique was introduced by Berger and Rompel [7] and by
Motwani, Naor, and Naor 13]. This technique can be used to derandomize certain RNC
algorithms, where d, the degree of independence required, is polylogarithmic in n. The
technique works, however, only for certain types of problems and does not seem to
generalize to larger degrees of independence.

Schulman 16] took a different approach toward the construction of sample spaces
that require O(log n)-wise independence. He observed that, in many cases, only certain
d-neighborhoods (sets of d variables) must be independent. Schulman constructs sample
spaces satisfying this property, whose size is 2 d times the grestest number ofneighborhoods
to which any variable belongs. In particular, for polynomially many neighborhoods, each
of size O(log n), this construction results in a polynomial-size sample space. His con-
struction works only for random bits and is polynomial for a maximum neighborhood
size O(log n).

To improve on these results, we view the problem from a somewhat different per-
spective. Rather than placing upper bounds on the degree of independence required by
the algorithm, we examine the set ofprecise constraints that are required for the algorithm
to work. We then construct a distribution satisfying these constraints exactly. In many
cases, this approach will yield a much smaller sample space.

We begin by showing a connection between the number of constraints and the size
of the resulting sample space. We show in 2 that, for any set cg of such constraints, if

is consistent, i.e., is satisfied by some distribution f, then there exists a distribution
f’ also satisfying such that S(f’) -< 1; that is, there exists a distribution for which
the cardinality of the sample space is not more than the number of constraints. Note
thatf’ precisely satisfies the constraints in c, so that, if represents all the assumptions
aboutfmade by a proof, the proofwill also hold forf’. The proofofthe existence theorem
includes an algorithm for constructingf’; however, the algorithm takes exponential time
and is thus not useful. We justify this exponential behavior by showing that, even for a
set ofvery simple constraints, the problem ofrecognizing whether there exists a distribution
satisfying them is NP-complete.

We can, however, define a type of constraint for which a small sample space can
be constructed directly from the constraints in polynomial time. As we observed, the
distributions that are most often used in probabilistic proofs are those where X,..., Xn
are independent random variables. Such a distribution is determined entirely by the

Consider a distribution over random bits and some neighborhood of size k. The "correct" probability of
any event prescribing values to all the variables in this neighborhood is 1/2k. For k log (1/e) O(log n), this
probability is _< e. For larger k, all such constraints are therefore subsumed by constraints corresponding to
smaller neighborhoods.
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probabilities {Pib Pr (Xi b): 1,..., n; b 0 r }. In the course of such
a probabilistic proof, the distribution is assumed to satisfy various constraints. Above,
we observed that, in many cases, and in particular in all cases for which existing con-
structions work, these constraints are independence constraints. More formally, an in-
dependence constraint is one that forces the probability ofa certain assignment of values
to some subset of the variables to be as if the variables are independent. That is, for a
fixed set ofPib’S, a sequence of indices i ik in { n}, and b,..., bk {0,
r }, the constraint

Pr ({X, b X b}) p

is the independence constraint I(Q) corresponding to the event Q {Xil b
Xik b }. Obviously, if X, Xo are independent random variables, then their joint
distribution satisfies all the independence constraints. Note that d-wise independence
can easily be represented in terms of constraints of this type: The variables X,..., X,
are d-wise independent if and only if all the independence constraints I({X, bl,

Xid bd}) are satisfied, where il, id E {1 n} and bl bd - {0

Let c be a set of independence constraints defined using a fixed set ofPib’S as above.
In 3 we present the main result of this paper, which shows how to construct in strongly
polynomial time a distribution satisfying cg with a sample space of cardinality qql. We
note that the distribution fproduced by our technique is typically not the uniform dis-
tribution over S(f). Therefore, we cannot in general use our construction to reduce the
number of random bits required to generate the desired distribution.

Our construction has a number of advantages. First, the distributions generated
always satisfy the constraints precisely. Thus, the correctness proof ofthe algorithm need
not be modified. Moreover, the size of the sample space in all the nearly independent
constructions [4], [5], [9], [14] depends polynomially on 1/e (where e is the approximation
factor). Our precise construction does not have this term. Previously, precise distributions
were unavailable for many interesting distributions. In particular, our approach can con-
struct sample spaces of cardinality O((rn) d) for any set of n r-valued, d-wise independent
random variables (not necessarily uniformly distributed). For fixed d, this construction
requires polynomial time. It has been argued by Even et al. [9] that probability distributions
over nonuniform nonbinary random variables are important. To our knowledge, this is
the first technique that allows the construction ofexact distributions ofd-wise independent
variables with arbitrary Pib’S.

The main advantage ofour construction is that the size ofthe sample space depends
only on the number of constraints actually used. Except for Schulman’s approach [16],
all other sample spaces are limited by requiting that all neighborhoods of a particular
size be independent (or nearly independent). As Schulman points out, in many cases
only certain neighborhoods are ever relevant, thus enabling a further reduction in the
size of the sample space. However, Schulman’s approach still requires the sample space
to satisfy all the independence constraints associated with the relevant neighborhoods.6

This restricts his construction to neighborhoods of maximal size O(log n). With our
construction, we can deal with neighborhoods of any size, as long as the number of
relevant constraints is limited.

Throughout this paper, we assume without loss of generality that i < iz < < ik and regard this
notation as a shorthand for the event {(x x,): x, b xk bk }.

Moreover, as we have observed, Schulman’s construction works only for random bits.
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For example, an algorithm may randomly choose edges in a graph by associating a
binary random variable with each edge. An event whose probability may be relevant to
the analysis ofthis algorithm is "no edge adjacent to a node v is chosen." Using the other
approaches (even Schulman’s), the neighborhood size would be the maximum degree A
of a node in the graph; the relevant sample space would then grow as 2. Using our
approach, there is only one event per node, resulting in a sample space of size n (the
number of nodes in the graph).

In this example, the constraints depend on the edge structure of the input graph. In
general, our construction depends on the specific constraints derived from the particular
input. Therefore, unlike most sample space constructions, our construction cannot be
prepared in advance. This property, combined with the fact that our algorithm is se-
quential, means that it cannot be used to derandomize parallel (RNC) algorithms.

In 4 we show an example ofhow our technique can be applied to derandomization
of algorithms. We discuss the problem of finding a large independent set in a d-uniform
hypergraph. The underlying randomized algorithm, described by Alon, Babai, and Itai
[3], was derandomized in the same paper for fixed values of d. It was later derandomized
also for d O(polylog n) by Berger and Rompel [7] and by Motwani, Naor, and Naor
13]. We show how this algorithm can be derandomized for any d. A sequential deter-

ministic polynomial time solution for the large independent set problem in hypergraphs
exists [2]. However, the derandomization of this algorithm using our technique serves
to demonstrate its unique power.

2. Existence of small sample spaces. Let {[Pr (Qk) 7rk] k 1, c} be
a set ofconstraints such that [Pr (ft) cg. Henceforth, the term "polynomial" means
polynomial in terms of n, r, Il, and the bit lengths of the 7r’s.

DEFINITION 2.1. A set c ofconstraints is consistent ifthere exists some distribution
fsatisfying all the members of cg.

DEFINITION 2.2. A distribution f that satisfies is said to be manageable if
IS(f)l-< c- I1.

THEOREM 2.3. If is consistent, then c is satisfied by a manageable distribution.
Proof. Let q be as above and recall that c I1. We describe a distribution f

satisfying c as a nonnegative solution to a set of linear equations. Let r c denote the
vector (r)_- c. Recall that f {0 r } n, let m I1 r, and let x,
Xm denote the points of f. The variable v represents the probability f(x). Let v be the
vector (vt)_-1 m- A constraint Pr (Q) 7r can be represented as the linear equation

where

m

akll)l k,
l=1

ifx e Q,

otherwise.

Thus, the constraints in can be represented by a system ,,iv r of linear equations
(where A is the matrix (akZ)). Since c is assumed to be consistent, there is a distribution
f satisfying q. Therefore, for vt f(x), the vector v is a nonnegative solution to this
system. A classical theorem in linear programming asserts that, under these conditions,
there exists a basic solution to this system. That is, there exists a vector v’ > 0 such that
Av’ r and the columns A.j such that v) > 0 are linearly independent. Let f’ be the
distribution corresponding to this solution vector v’. Since the number of rows in the
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matrix is c, the number of linearly independent columns is also at most c. Therefore, the
number of positive indices in v’, which is precisely S(f’)l, is at most c I1.

Algorithm 1. Reduction to basic solutions.
While {A,. :j S(v)} are linearly dependent:

1. Find a nonzero vector u m such that:
uj 0 for every j S(v), and
Au O.

2. Find some e such that:
v + tu > O, and
vj + tu 0 for some j S(v).

3. Replace v - v + u.

This theorem can be proved constructively, based on the standard algorithm outlined
above. This algorithm begins with a distribution vector v and removes points from the
sample space one at a time. The removal is done while keeping all variables nonnegative,
so that the truth ofthe equations is maintained. This results in a manageable distribution
vector v’. Throughout the algorithm, S(v) denotes the set of indices { j: v > 0}. Intuitively,
these indices represent points in the sample space of the distribution represented by v.

Algorithm is described in full detail by Beling and Megiddo [6]. They show that
it requires O(IS(f)l" ca) arithmetic operations, assuming that f is represented sparsely
(so that points not in S(f) need not be considered at all).7 However, Beling and Megiddo
also present a faster algorithm for the same problem, based on fast matrix multiplication.
Given a matrix multiplication algorithm that multiplies two k k matrices using O(k2 / )
arithmetic operations, the algorithm of Beling and Megiddo finds a basic solution in
O(C(3 i5)/(2 ) S(f) I) arithmetic operations. Using the best algorithm known for matrix
multiplication, their algorithm allows us to prove the following result.

THEOREM 2.4. Given a distributionfin sparse representation that satisfies the con-
straints in cg, it is possible to construct a manageable distribution f’ satisfying the same
constraints using O( S(f c1"62) arithmetic operations.

Unfortunately, the complexity of this approach is linear in S(f) I, which can be as
large as rn r". The algorithm is therefore exponential in n in the worst case.8

The exponential behavior of these algorithms can be justified by considering the
problem of deciding whether a given set of constraints cg is consistent; that is, does there
exist a distribution fsatisfying the constraints in ? For arbitrary constraints, the rep-
resentation of the events can be very long, causing the input size to be unreasonably
large. We therefore restrict attention to simple constraints.

DEFINITION 2.5. We say that a constraint Pr (Q) ?r is k-simple ifthere exist i,
i e {1 n} and bl, bk {0 r- 1} such that Q {xi b

X b}. A constraint is simple if it is k-simplefor some k.
Note that the natural representation of the event as a simple constraint requires

space that is at most linear in n, whereas the number of points in the event is often
exponential in n (for example, a 1-simple constraint contains r points). We assume
throughout that simple constraints are represented compactly (in linear space). Under
this assumption, we can show that the consistency problem is NP-hard, even when re-
stricted to 2-simple constraints over binary-valued random variables.

Iffis not represented sparsely, it obviously requires exponential time simply to read it in.
The manageable distribution can also be computed directly from the constraints using a linear programming

algorithm that computes basic solutions. The running time of such an algorithm will also be exponential in n.
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PROPOSITION 2.6. The problem of recognizing whether a set of 2-simple con-
straints is consistent is NP-hard, even ifthe variables constrained by q; are binary-valued.

Proof The proof uses a reduction from the 3-colorability problem: Given a graph
G (V, E), decide if there exists a legal coloring 3": V - { 1, 2, 3 }. Let G be a graph,
and assume that V v l, vn }. We define a set of3n binary-valued variables {Xi,,
Xi,_, Xi,3 1,..., n}. Intuitively, we would like it to be the case that 3"(v;) c if and
only ifXi, and Xi,b 0 for b # c; for example, 3"(vi) 2 if and only ifXi, Xi,3
0 and X,2 1. We construct so that the constraints enforce this relationship. The set

contains constraints of two types.
For each n and b # c { 1, 2, 3 }, contains the constraints

Pr ({X,a 0, X,c 0}) -,
Pr {Xi a O, Xi 1})=’
Pr ({Xi, a 1, Xi, 0}) .

Intuitively, these disallow illegal colorings, where the same node gets two colors.
For each (v, vj) e E and each b ( l, 2, 3 }, contains the constraints

Pr ({Xi,b 0, X,b 0) -,
Pr ({Xi, a 0, Xj.,a 1}) ,
Pr ({X;,a 1, X,a 0}) -.

Intuitively, these disallow colorings where two adjacent nodes get the same color.
All the constraints in cg are clearly 2-simple. We now prove that cg is consistent if and
only if G is 3-colorable.

Assume that cg is consistent, and let fbe some distribution satisfying cg. Consider
the probability

f({Xi, 1,Xi,2 O, Xi,3 0}) f({Xi, 1,Xi,2 0})--f({Xi, 1,Xi,2 O, Xi,3 }).
The latter probability is at most f({X;,1 1, X,3 }), which by the constraints of the
first type is 0. Therefore,

f({Xi, 1, X;,z O, Xi,3 0)) f({X,l 1, X,2 0)) 1/2.
Similar reasoning allows us to conclude thatf({Xi, O, Xi,2 1, Xi,3 0}) f({Si,
O, Xi,2 O, Xi,3 }) , so that f({X;,l 0, Xi,2 0, X;,3 0}) 0. Now, pick some
arbitrary point x S(f), and define 3’(v) to be b if and only if xi, a 1. Due to the
reasoning above, there is a unique such b for every i, so that this defines a coloring of
the graph. Now, consider any edge (vi, vj) E, and assume by contradiction that
3"(De) 3"(1)j) b. Then, xi, a Xj,b 1, so thatf({Xi,b 1, Xj,b }) >_f(x) > 0, violating
a constraint of the second type. Therefore, 3’ is a well-defined legal coloring.

Now, assume that there exists a legal coloring 3" of G. Let 7r l, 71.6 be the six
permutations of { 1, 2, 3 }. We define fto be the uniform distribution over six points x

x6: for k 6, n, and b 2, 3, we define x i, a if and only
if r6(3"(vi)) b. It is simple to verify, by straightforward symmetry considerations, that
the resulting distribution fsatisfies all the constraints in

To prove a matching upper bound, we must again make a simple assumption about
the representation of the input.

DEFINITION 2.7. An event Q is said to be polynomially checkable ifmembership of
any point x in Q can be checked in polynomial time.
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PROPOSITION 2.8. If all the constraints in cg pertain to polynomially checkable
events, then the consistency of qg can be decided in nondeterministic polynomial time.

Proof The algorithm guesses a subset T
_

fl of cardinality ]l. It then constructs
in polynomial time a system ofequations corresponding to the constraints in restricted
to the variables in T (the other variables are set to 0). Given the initial guess, this system
can be constructed in polynomial time, since, for each constraint and each point in T,
it takes polynomial time to check whether the point appears in the constraint. The al-
gorithm then attempts to find a nonnegative solution to this system. Such a solution
exists ifand only ifthere exists a manageable distribution whose sample space is (contained
in) T. By Theorem 2.3, we know that a set of constraints is consistent if and only if it is
satisfied by a manageable distribution, that is, a distribution over some sample space T
of cardinality not greater than [cg[. Therefore, c is consistent if and only if one ofthese
subsystems has a nonnegative solution.

Since simple constraints are always polynomially checkable (using the appropriate
representation), we obtain the following corollary.

COROLLARY 2.9. For an arbitrary set c ofsimple constraints, the problem of rec-
ognizing the consistency of c is NP-complete.

3. Independence constraints. An important special case was already discussed in
the Introduction. Suppose that all the members of are independence constraints arising
from a known9 fixed set of values

{Pib" n; b 0,..., r- 1},
where Pib represents Pr (Xi b), and therefore Z-_- Pib for all i, and Pib > 0 for all
i, b. In this case, we can construct in strongly polynomial time a manageable distribution
satisfying . We note that the distribution we construct does not necessarily satisfy the
additional constraints that Pr ({Xi b}) Pib. If it is necessary that these constraints be
satisfied, they must be put explicitly into c.

We first define the concept of a projected event. Consider an event

Q {Yi hi, Xi bk }.
Let l(1 < _< n) be an integer and denote by q q(l) the maximal index such that iq
l. The l-projection of Q is defined as

rl(Q) {xi, b, x bq}.

Intuitively, the/-projection of a constraint is its restriction to the variables X,
For example, if Q is {X, 0, X4 1, X7 1}, then n3(Q) {x 0} and
II4(Q) {X 0, X4 }. Analogously, we call/(1-It(Q)) the/-projection ofthe constraint
I(Q). Finally, for a set ofindependence constraints c, IIt() is the set ofthe/-projections
of the constraints in .

We now recursively define a sequence of distributions J, f,..., f, such that, for
each (l 0,..., n), the following conditions hold:

(i) f is a distribution on {0, r } l,
(ii) f satisfies II(
(iii) IS(f) -< c.

The distribution fn is clearly the desired one.
We begin by definingj, which is a distribution on {0,..., r 1} {( )} (the

singleton set containing the empty sequence). The only possible definition is J(( ))
1. This clearly satisfies all the requirements.

The assumption that the pib’s are known is a necessary one; see Theorem 3.3.
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Now assume that f_ (for l > 1) satisfies the above requirements and define an
intermediate distribution gt by

gl(Xl, Xl-1, b) f_ (x Xl- 1)"Plb

for b 0 r- 1.
LEMMA 3.1. Iff_ satisfies IIl_ (q7), then g1 satisfies II(
Proof We prove that g satisfies every constraint in II(cg). Let I(Q) be an arbitrary

constraint in g and suppose that Q {Xi, b Xg bk }. For simplicity, we denote
Q IIg(Q) (j 1, n). Let r be the maximal index such that ir --< 1. By the
assumption,

J- I(QI- 1) fi Pijbj.
j=l

We distinguish two cases.
Case I. Q mentions the variable Xl. In this case, ir + l, and

QI {Xi, b,, Xir br, Xi,+, br+ }

{(Xl Xl-1, br+ 1)" (Xl,..., Xl-1) E Ql-1}.
Therefore,

gl(Ql) Z gl(Xl, Xl- 1, br+ 1)
(x xt- 1) Qt-

J-l(Xl,...,Xl-1)’Plbr+l
(Xl Xl- QI-

f_ l(Ql-1)’pbr+,
r+l

Pijbj Plbr+ U Pijbj"
j=l j=l

Thus, gl satisfies the constraint I(Ql).
Case II. Q does not mention the variable Xl. In this case,

Ql= {Xi, b,,...,Xir= br}

{(Xl Xl) (X Xl- Ql- 1, Xl {0,..., r } }.

Therefore,

gl(Ql)
be{O r-l} (Xl Xl-l)eQ1-1

E E
b{0 r-l} (xl xt-)Qt-. Plb "fl-, (QI- 1)
b{O 1}

fl-l(Ql-1) fi Pijbj.
j=l

g(x, Xl-1, b)

J-l(Xl, Xl-1)’Plb

Again, gt satisfies the constraint I(Qt). vq

If IS(f-l)[ < c, then [S(gz)l < rc, since each point with positive probability in
S(f_ 1) yields at most r points with positive probabilities in S(gl). Thus, gl satisfies re-
quirements (i) and (ii), but may not satisfy requirement (iii). However, gt is a nonnegative
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solution to the system of linear equations defined by IIt(C). Therefore, we may use
Algorithm or the algorithm of Beling and Megiddo [6] to reduce the cardinality of the
sample space to c as described in 2. Letf be the resulting distribution. It clearly satisfies
all three requirements. We thus obtain the following theorem.

THEOREM 3.2. Given a set of independence constraints, we can construct a man-
ageable distributionfsatisfying qg in stronglypolynomial time using O(rnc2"6) arithmetic
operations.

Proof The distributionf constructed as above is clearly a manageable distribution
satisfying c. The construction takes n iterations. Iteration requires at most O(rc) op-
erations to create gt fromf_ . It requires at most O([S(gl)[c 1"62) O(rc. 1.62) 0(FC2.62)
arithmetic operations for running the algorithm of Beling and Megiddo to reduce g to
f, as in Theorem 2.4. Therefore, the entire algorithm runs in O(rnc2"6) arithmetic op-
erations. The number of operations does not depend on the magnitudes of the numbers
in the input. To prove that the algorithm is strongly polynomial, it remains to show that
the magnitudes of the numbers used in the algorithm are polynomial in the input size.
Each distributionf is a basic solution to the system of linear equations defined by lIt().
The numbers used in describing this system are l’s, O’s, and products of polynomially
many p;b’s. Hence, their magnitudes are all polynomial in the size ofthe input. Since the
numbers in a basic solution to a system always have polynomial length in the size of the
system, we conclude that the magnitudes of the numbers in each f are polynomial in
the size of the input. The intermediate phases--creating gt + and running the algorithm
of Beling and Megiddo--do not cause blowup, since the latter is known to be strongly
polynomial. [3

As we mentioned, our algorithm can easily be extended to operate on random
variables with ranges of different sizes. Let r; be the number of values in the range ofXi.
The sample space of gt will consist of vectors (xl xz_ 1, b), where (xl, xt_ 1)
S(f_ 1) and b {0 rt }. Then S(gz) -< rzl I. The proofgoes through as before,
but the number of operations in iteration is 0(rc262). The total number of operations
is O((= rt)c262) O(rnc26), where r max {r, rn}. The cardinality of the
resulting sample space is still I1.

The algorithm can also deal with more general constraints with no change. In par-
ticular, it can deal with combinatorial rectangles, as described by Even et al. [9] and by
Linial et al. 11 ]. A combinatorial rectangle is an independence constraint over an event
of the form

{[Xi, R] [Xik Rk]},

where Rj is a subset of {0, r (or of {0, rij in the more general case).
The proof remains essentially unchanged, except for minor modifications to deal with
the fact that the "fight" probabilities for the events (their probabilities under the as-
sumption ofindependence) are different. For example, the probability ofthe event above
would be

k

The complexity of the algorithm for this case and the size of the resulting sample space
remain as in Theorem 3.2. Karger and Koller 11 show that this construction can be
further generalized to deal with a far more general class of constraints.

Throughout this section, we have assumed that the pib’s are known. This assumption
is important in view of the following theorem, which states that, if this is not the case,
it is NP-hard to verify whether all ofa given set ofconstraints are independence constraints.
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THEOREM 3.3. It is NP-hard to recognize whether, for a given set of 2-simple con-
straints c, there exists a set P {Pib} such that all the members of cg are independence
constraints relative to P.

Proof As in the proof of Proposition 2.6, we use a reduction from the problem of
3-colorability. In this proof, however, we use different variables and a different set of
constraints c. Let G (V, E) be a graph, with V {v,..., Vn}. We construct a set of
2-simple constraints over the 3-valued variables X,..., Xn. These constraints essentially
say that the probability that two neighboring vertices get the same color is 0:

c {[Pr ({X b, Xj b}) 0] (/)i, l)j) E; b {0, |, 2} }.
We claim that the constraints in (g are independence constraints with respect to some
P if and only if G is 3-colorable. Clearly, if the constraints in (g are independence
constraints relative to some P, then they are satisfiable. Letf be some distribution satisfying, and let x be some (arbitrary) point in S(f). Define 3"(vi) x. If 3" is not a legal
coloring, then there exists an edge (vi, v2) E such that xi x2 a. But since f(x) > 0,
necessarily f({Xi b, X2 b}) > 0, contradicting the assumption that f satisfies
Assume, on the other hand, that G is 3-colorable, and let 3" be an appropriate coloring.
Define p if 3"(vi) b, and Pi, 0 otherwise. We show that each constraint in is
an independence constraint relative to these pids. Each constraint in (g is of the form
Pr (Q(b,.v;)) 0, for some edge (li, l)j) E E some b E {0, 1, 2} and Qb {X b,(vi,vj)

X b} The independence constraint I(Q,.j)) relative to these pib’s is Pr (Qb(vi,vj)
Pib’Pjb. Since 3’ is a legal coloring, it is impossible that both 3"(vi) b and 3"(vj) b.
Therefore, either Pib 0 or Pjb 0 and their product is necessarily 0, resulting in the
desired constraint.

This theorem can be interpreted as showing the NP-hardness of deciding whether
a set of constraints is satisfied by an independent distribution. It shows that the problem
is hard for 2-simple constraints over 3-valued random variables. It is also possible to
prove, using a reduction in 3-SAT, that this problem is hard for 3-simple constraints
over binary-valued random variables. But, unlike the problem ofdeciding the satisfiability
of a set of constraints by an arbitrary distribution (Proposition 2.6), the problem is not
NP-hard for the case of 2-simple constraints over binary-valued random variables. In
this case, a numeric variant of the standard algorithm for 2-SAT can be used to solve
the problem in polynomial time.

It is not clear that the problem of Theorem 3.3 is even in NP. The set P relative to
which a given cg is a set of independence constraints might contain irrational numbers
even if all the numbers in the input are rational.

Example 3.4. Consider the problem of constructing a distribution over the binary-
valued variables X1, X2, and X3 satisfying

Pr ({X 1, X2 1}) 1/2,

Pr ({X, 1, X3 1}) 1/2,

Pr ({X2 1, X3 1})= 1/2.
These are independence constraints only with respect to p P2 P3 1/lf. ffq

In most practical cases, however, the Pib’S are part ofthe specification ofthe algorithm.
Thus, it is usually reasonable to assume that they are known.

4. Derandomizing algorithms. In this section, we demonstrate how the technique
of3 can be used to derandomize algorithms. We present three progressively improving
ways in which the technique can be applied. For simplicity and ease of comparison, we
base our analysis on a single problem: finding large independent sets in sparse hypergraphs.
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The problem description and the randomized algorithm for its solution are taken from
Alon, Babai, and Itai [3]. Note that a deterministic polynomial-time algorithm for this
problem is known [2].

A d-uniform hypergraph is a pair t (V, o), where V {v vn } is a set of
vertices and g {El, Em } is a collection of subsets of V, each of cardinality d,
which are called edges. (For simplicity, we restrict attention to d-uniform hypergraphs;
a similar analysis goes through in the general case.) A subset U

___
V is said to be inde-

pendent if it contains no edge.

Algorithm 2. Independent sets in hypergraphs.
1. Construct a random subset R of V.

For each vertex vi V:
put vi in R with probability p 3k/n.

2. Modify R into an independent set U.
For each edge Ej e o such that Ej R:

remove from R some arbitrary vertex vi E.
Consider the randomized algorithm above (k is defined later). The following theorem,

due to Alon, Babai, and Itai [3], states that this algorithm finds "large" independent sets
in hypergraphs with "high" probability. We only sketch the proof of this theorem, con-
centrating on the part that is relevant to this discussion: the constraints on the distribution
assumed by the proof.

PROPOSITION 4.1 (Alon, Babai, and Itai [3]). Ifg/F V, o) is a d-uniform hypergraph
with n vertices and rn edges, then, for k (1/18)(nd/m)/(d-), Algorithm 2 finds an
independent set ofcardinality exceeding k with probability greater than 1/2 3/k.

Proof. For each vertex vi V, let Xi be the random variable that equals if vi e R
and 0 otherwise. For each edge E e , let Y be the random variable that equals
if E c R and 0 otherwise. The cardinality of R is RI 7- 1Xi X, so E(X)
np 3k.

Ifthe Xi’s are pairwise independent, then the variance ofX is

(1) a2(X) a2(Xi) np(1 p) < np 3k.
i=1

Thus, using Chebychev’s inequality,

(x) 3
Pr(X<2k)< k2 <.

Ifthe Xi’s are d-w&e independent, then, for every j 1, m,

(2) E(Y)=Pr({Xi=i 1}) =pa"

Let Y = Y denote the number of edges contained in R. Computation shows
that Pr(Y > k) < 1/2.

If R contains at least 2k vertices after the first stage in the algorithm and at most k
vertices are removed in the second stage, then the independent set constructed by the
algorithm has cardinality at least k. This has probability at least

3
Pr ({Y< k} fq {X> 2k}) >

2 k’

as desired.
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Derandomization I. The derandomization procedure of Alon, Babai, and Itai [3] is
based on constructing a joint distribution of d-wise independent variables Xi that
approximates the joint d-wise independent distribution for which Pr (Xi 1) 3k/n
(i 1,..., n). It is then necessary to analyze this approximate distribution to verify that
the above correctness proofcontinues to hold. Our technique provides exactly the required
distribution, so that no further analysis is needed. As we explained in the Introduction,
this can be done by considering the set qq of the constraints

I({Xi, b,..., Xia-- ba}): i,..., ia {1 n}, b ba {0, 1}}.
The number of these constraints is I1 ()2 a O((2n)d). For fixed d, this number is
polynomial in n, resulting in a sample space of polynomial size (in fact, the size of the
sample space is comparable to that achieved in [3]). Therefore, the algorithm runs in
polynomial time, including both the phase of constructing the sample space and the
phase of running step 2 of Algorithm 2 on each point of this space until a sufficiently
large independent set is found.

Derandomization II. A closer examination of the proof reveals that not all the ()
neighborhoods of cardinality d must be independent. For (2) to hold, it suffices that
only the Xi’s associated with vertices in the same edge be independent. If Ej
{ l)i, l)id , let cgj denote the set of 2 a independence constraints

{Jr({Xi bl,...,Xid bd}): hi, bd {0,
On the other hand, for (1) to hold, the Xi’s must still be pairwise independent. Let cg2

denote the set of 4() constraints

{Jr({Xi bl, Xi:z b2 }): i,, i2 { 1,..., n}, b, b {0, } }.
Thus, the following set of constraints suffices:

More precisely, if the set cg is satisfied, then the proof of Proposition 4.1 goes through,
and the resulting sample space must contain a point that is good for this hypergraph.
Since the number of constraints is

If’l- I’1 + 2; i%1- 4 + m2,
this results in a polynomial-time algorithm for d O(log n). This algorithm therefore
applies to a larger class of graphs than that presented by Alon, Babai, and Itai [3]. At
first, it seems that, as we have polynomially many neighborhoods of logarithmic size,
Schulman’s technique 16] can also be used in this case. However, his approach is limited
to (uniformly distributed) random bits, so it does not apply to this algorithm. The results
of Berger and Rompel [7] and of Motwani, Naor, and Naor [13], however, provide a
polynomial-time algorithm for d O(polylog n). Their results use a completely different
technique and cannot be extended to handle larger values of d.

Derandomization III. A yet closer examination ofthe proofofProposition 4.1 reveals
that (2) does not require complete independence of the neighborhood associated with

0 Theoretically, we also need to include the constraints Pr (2) and Pr ({X; }) p for all i. However,
these are implied by the other constraints in cg. This will also be the case for the later sets of constraints (II
and m.
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the edge E.. It suffices to constrain the probability of the event "all the vertices in Ej are
in R" (the event corresponding to the random variable Yj. in the proof). That is, for
Ej {vii v;d }, we need only the independence constraint over the event

Qj {Xi, Xid 1).
This is a simple event that defines an independence constraint of the type to which our
technique applies. We conclude that the following set ofconstraints suffices for the analysis
of Proposition 4.1 to go through:

(Ill (02 [,.j { I(Qj E o}
The number of constraints

is polynomial in n and m, regardless of d. Therefore, this results in a deterministic poly-
nomial-time algorithm for finding large independent sets in arbitrary uniform hypergraphs.

5. Conclusions and open questions. We have presented a new approach to con-
structing distributions with small sample spaces. Our technique constructs a distribution
tailored precisely to the required constraints. The construction is based on an explicit
representation of the constraints as a set of linear equations over the distribution. It
enables us to construct sample spaces for arbitrary distributions over discrete random
variables, which are precise (not approximations) and sometimes considerably smaller
than sample spaces constructed using previously known techniques. This construction
can be done in polynomial time for a large class of practical problems--those problems
that can be described using only independence constraints.

A number of open questions arise immediately from our results.
Schulman’s approach constructs a sample space whose size depends not on the

total number of neighborhoods involved in constraints, but on the maximum number
of such neighborhoods in which a particular variable appears. Perhaps the size of the
sample space in our approach can similarly be reduced to depend on the maximum
number of independence constraints in which a variable Xi participates.

We mentioned in the Introduction that the nature of our approach generally
prevents a precomputation of the manageable distribution. However, our approach shows
the existence of manageable distributions that are useful in general contexts. For example,
for every n, d, and p, we show the existence of a d-wise independent distribution over n
binary random variables such that Pr (Xi 1) p for all i. It would be useful to come
up with an explicit construction for this class of distributions.

Our technique constructs distributions that precisely satisfy a given set ofarbitrary
independence constraints. It is natural to ask if our results can be improved by only
requiting the distribution to approximately satisfy these constraints. In particular, it may
be possible to construct approximate distributions faster, or in parallel (see 11 ]), or over
smaller sample spaces. We note that the original d-wise independent constructions [3],
[10], [12] can be viewed as precisely satisfying the d-wise independence constraints but
approximately satisfying the constraints on Pr (Xi b). In contrast, the nearly-independent
constructions [4], [5], [9], [14] can be viewed as approximately satisfying the d-wise
independence constraints. Thus, they all provide an answer to this question for certain
types of constraint-sets c and certain restrictions on which constraints can be approx-
imated.

Combined with our inability to precompute the distribution, the sequential nature
of our construction prevents its use for derandomization of parallel algorithms. Paral-
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lelizing the construction could open up many application areas for this approach
(see [11]).
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THE MINIMUM SATISFIABILITY PROBLEM*
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Abstract. This paper shows that a minimization version of satisfiability is strongly NP-hard, even if each
clause contains no more than two literals and/or each clause contains at most one unnegated variable. The
worst-case and average-case performances of greedy and probabilistic greedy heuristics for the problem are
examined, and tight upper bounds on the performance ratio in each case are developed.
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1. Introduction. The satisfiability problem is perhaps one of the most well-studied
problems in logic theory. Given a set V of Boolean (true/false) variables and a collection
D ofclauses over V, the satisfiability problem is to determine ifthere is a truth assignment
that satisfies all clauses in D. The problem is NP-complete even when every clause in D
has at most three literals (Even, Itai, and Shamir [2]). The maximum satisfiability
(MAXSAT) problem is an optimization version of satisfiability that seeks a truth assign-
ment to maximize the number of satisfied clauses (Johnson [5]). The MAXSAT problem
is NP-hard even when every clause contains at most two literals (Garey, Johnson, and
Stockmeyer [4]).

In this paper, we consider the following complement of the MAXSAT problem.
Given a set U of Boolean variables and a collection C of clauses over U, find a truth
assignment that minimizes the number of satisfied clauses. We call this the minimum
satisfiability (MINSAT) problem. The existence of a truth assignment for the MINSAT
problem that satisfies no clause can be trivially determined because such an assignment
exists only if each variable or its negation appears in no clause. Similarly, if each clause
contains one literal, the solution to the MINSAT problem is readily obtained by setting
a variable true if it occurs in less clauses than its negation and setting the variable false
otherwise. However, we show that, in general, the MINSAT problem is NP-hard, even
if every clause contains no more than two literals. We then consider two heuristics for
solving the problem. The first is a greedy heuristic similar to a procedure described by
Johnson [5] for the MAXSAT problem. The second is a probabilistic greedy heuristic
similar to an algorithm by Kohli and Krishnamurti [6] for the MAXSAT problem. Like
the greedy heuristic, the probabilistic greedy heuristic selects a truth assignment one
variable at a time. Unlike the greedy heuristic, the probabilistic greedy heuristic introduces
a chance element in selecting a truth assignment, forcing a trade-off between the value
of a nonoptimal solution and the probability of its selection. We characterize the worst-
case and average-case performances of the two heuristics and show that, while the prob-
abilistic greedy heuristic can select an arbitrarily bad assignment in the worst case, on
average it satisfies no more than twice the optimal number of clauses, regardless of the
data-generating distribution. On the other hand, if each clause contains at most s literals,
the greedy heuristic satisfies no more than s times the number of clauses satisfied by the
optimal assignment. However, the average performance of the greedy heuristic depends
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upon the minimum probability with which it selects an optimal assignment at any step.
As this probability decreases (increases), the average performance of the greedy heuristic
tends to the worst-case (optimal) solution.

In 2 we show that the MINSAT problem is NP-hard. In 3 we formally describe
the greedy heuristic and analyze its worst-case and average-case performances. In 4 we
analyze the average-case performance of the probabilistic greedy heuristic. We derive
tight upper bounds on the performance ratio in each case. In 5 we extend our results
to Horn formulae, in which each clause has no more than one unnegated variable.

2. Complexity. We show in Theorem that the following decision problem, called
the 2-MINSAT problem, in which each clause contains exactly two literals, is NP-com-
plete. It follows that the MINSAT problem is NP-hard if each clause contains at least
two literals.

2-MINSAT.
Instance. Set U ofk variables, collection C ofn clauses over U such that each clause

c e C has cl 2 literals, positive integer n* < n.
Question. Is there a truth assignment for U that satisfies no more than n* clauses

in C?
In Theorem 1, we transform the following 2-MAXSAT problem, which is NP-

complete (Garey and Johnson [3, pp. 259-260]), to the 2-MINSAT problem.

2-MAXSAT.
Instance. Set V of h variables, collection D of clauses over Vsuch that each clause

d e D has dl 2 literals, positive integer l* < l.
Question. Is there a truth assignment for V that satisfies at least l* clauses in D?
THEOREM 1. The 2-MINSAT problem is NP-complete.
Proof Given a yes instance of the 2-MINSAT problem, we can simply count the

number of satisfied clauses and verify a yes instance in polynomial time. Hence the 2-
MINSAT problem is in NP. To show that it is NP-complete, we transform the 2-MAXSAT
problem to the 2-MINSAT problem as follows.

Let d qa / qb be a clause in an instance of the 2-MAXSAT problem, where qa
and qb denote either variables in V or their negations. For each clause d e D, define a
variable Wd. Let W { wall d e D}. For each clause d qa / qb of 2-MAXSAT, define a
pair of clauses Cld, C2d C for 2-MINSAT, where

ca q-a V wa, C2d q-b V ffd.
Let C {ca, c2ald D}. Let n* 2l- l*. Thus, given an instance of the 2-MAXSAT
problem defined over the set V of h variables and the set D of clauses, we construct in
polynomial time an instance of the 2-MINSAT problem defined over the set U V tO
Wof k h + variables and the set C of n 2l clauses. We now show that no less than
l* clauses can be satisfied by a truth assignment for 2-MAXSAT if and only if no more
than n* clauses can be satisfied by a truth assignment for 2-MINSAT.

Suppose there exists a truth assignment for 2-MAXSAT that satisfies m > 1" clauses.
Clause d qa V qb is not satisfied by an assignment if and only if both qa and qb are
false, in which case, both ca and c2a are satisfied. On the other hand, clause d is satisfied
if and only if at least one of qa or q6 is true. If both qa and q are true, then any truth
assignment for wa satisfies exactly one of cla and c2a. If qa is true and q6 is false, then a
false assignment for wa satisfies c2d but not ca. Similarly, if qa is false and q is true, then
a true assignment for wa satisfies ca but not c2a. Thus, if clause d is satisfied, a suitable
truth assignment for wa ensures that only one of ca or c2a is satisfied. Consequently, if a
truth assignment for 2-MAXSAT satisfies exactly m > 1" clauses, then a suitable truth
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assignment for each Wd Wensures that exactly m + 2(l- m) 2l- m < 2l- l* n*
clauses are satisfied in the corresponding instance of2-MINSAT. Hence every yes instance
of the 2-MAXSAT problem corresponds to a yes instance of the 2-MINSAT problem.

Now suppose that a truth assignment for the 2-MINSAT problem satisfies no more
than n* 2l- l* clauses. Consider the pair of clauses Cd a / Wd and C2d
Any assignment of wa ensures that at least one of these two clauses is satisfied. Let y
denote the number ofpairs Cld, C2d, d D, where exactly one clause in the pair is satisfied
by a given assignment for the 2-MINSAT problem. Without loss of generality, let Cld
a V Wd be the clause that is not satisfied. Then qa must be true, which implies that clause
d qa /qb must be satisfied. Hence, at least y clauses in D must be satisfied. Since there
are pairs Cld, C2d, there are y such pairs in which both clauses are satisfied. Thus,
the number of clauses in C that are satisfied is 2(l y) + y < n* 2l l*, which implies
that y > l*. Thus, if n* 2l l* clauses in C are satisfied for the 2-MINSAT problem,
then at least l* clauses in D are satisfied for the 2-MAXSAT problem. Hence, every yes
instance of the 2-MINSAT problem corresponds to a yes instance of the 2-MAXSAT
problem. []

3. The greedy heuristic. Let u, u2, uk denote an arbitrary ordering of the k
variables in U for the MINSAT problem. Given any ordering of the variables, the greedy
heuristic sequentially selects an assignment for each variable to satisfy the smallest number
of additional clauses. We begin by describing the greedy heuristic more formally below.

Initialization (Step 1). Let C C denote the set of all clauses in an instance ofthe
MINSAT problem. Let Cl(Ul) denote the subset of clauses in C that contain variable
u. Let CI(/I) denote the subset of clauses in C that contain variable ff. Let xl and y
denote the number of clauses in sets C(Ul) and C(ff). At the first step, the greedy
heuristic selects the partial assignment u (i.e., assigns u to be true) ifx < y. Otherwise,
it selects the partial assignment ffl (i.e., assigns u to be false). All clauses satisfied by
the partial assignment are eliminated. Let C2 denote the set of clauses not satisfied at the
end of Step 1. Thus,

C2
[CI\CI(,I)

if U is selected at Step 1,

if ff is selected at Step 1.

Recursion (Step j). Let C denote the set of clauses that are not satisfied at the end
of Step j- 1. Let Cj.(u.) denote the subset of clauses in C that contain uj. Let Cj()
denote the subset of clauses in Cj that contain ffj. Let xj and y denote the number of
clauses in sets Cj(uj) and C(). At Step j, the greedy heuristic includes u in the partial
assignment (i.e., assigns u to be true) if xj < y. Otherwise, it includes tT in the partial
assignment (i.e., assigns u to be false). All clauses satisfied by the partial assignment are
eliminated. Let Cj+ denote the set of clauses not satisfied at the end of Step j. Thus,

C\Cj(uj) if uj is selected at Step j,
Cj-+ {

[C\C() if . is selected at Step j.

Termination Step. Stop if C+ or ifj k.
Let c;I denote the number of literals in clause i" Let s maxil cil denote the

maximum number of literals in any clause. Let r denote the performance ratio for the
greedy heuristic, i.e., the ratio ofthe number ofclauses satisfied by the assignment selected

Note that we assign uj to be false if xj yj. This simplifies the subsequent worst-case analysis of the
heuristic, where we assume, without loss of generality, that the optimal solution is to set each variable true.
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by the greedy heuristic to the number of clauses satisfied by an optimal assignment.
Theorem 2 shows that the value of the performance ratio r is bounded from above by s.
As there are no more than k literals, s < k, and it follows trivially from Theorem 2 that
r<k.

THEOREM 2. r < sfor the greedy heuristic.
Proof. Without loss of generality, let each variable uj e U be true in the optimal

assignment. Let C*
___
C denote the subset of clauses in C that are satisfied if variable uj

is true. Let C* LJj C denote the subset ofclauses satisfied by the optimal assignment.
Let mj denote the number of clauses in the set C*. Let m denote the number of clauses
in set C*. At Step j, the greedy heuristic satisfies zj min(xj, yj} clauses in set Cj. Hence
the total number of clauses satisfied by the greedy heuristic is Y= zj. Now mj > xj,
which implies that

k k k

j=l j=l j=l

Also,
k

E m= E Icl <ms.
j= ci C*

Thus, an upper bound on the performance ratio of the greedy heuristic is

Y= zj ms
r= <_=s.

m m

To prove that the bound in Theorem 2 is tight, consider the following problem
instance in which there are s variables and s + clauses:

C tt V tt2 V V tts,

Ci=U-- for2<i<s+ 1.

Each variable uj, < j < s is true in the optimal assignment, which satisfies only one
clause c. The greedy heuristic sets each variable uj false, < j < s and satisfies s clauses,
c2, c3 Cs +. Hence, r s. Note that, in this worst-case example, a reordering of the
variables has no effect on the performance of the greedy heuristic. This example also
suffices to show that, given the solution selected by the greedy heuristic, an interchange
heuristic that seeks to maximally improve the solution value by replacing a literal by its
negation does no better than the greedy heuristic alone.

In [5] Johnson suggests weighted greedy heuristics for the MAXSAT problem, the
simplest of which ensures a worst-case error of 1/2 when each clause has no less than s
literals. An analogous weighted greedy heuristic for the MINSAT problem is as follows.
At Step j, the greedy heuristic assigns

uj true if levi > ci[,
ci (C)(uj) ci Cj(a)

uj false otherwise.

The intuition behind the weighting is that a literal should be selected if the unsatisfied
clauses that contain its negation are less likely to be satisfied by subsequent assignments
to variables. However, this weighting scheme does not improve the worst-case performance
of the greedy heuristic for the MINSAT problem. To illustrate, consider the following
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S + clauses defined over 2s variables uj, _< j < 2s 1"

1 Ul V /’/2 V V Us,

Ci H-’i-1 V H-s+I V s+2 V V /2s-l 2<i<s+l.

Each variable uj, < j < 2s is true in the optimal assignment, which satisfies only
one clause, Cl. At each step j of the greedy heuristic, an equal number of clauses are
satisfied by setting uj true or false. Regardless of the truth assignment for variable u at
Step j, there are an equal number of literals in each remaining (unsatisfied) clause. Con-
sequently, any weighting of the clauses does not affect the greedy solution, which in the
worst case assigns a "false" value to each variable u, < j < 2s and satisfies the s
clauses c2, c3, cs+. Note, however, that the ordering of the variables is critical to
this worst-case example. Thus, the performance ratio for this weighted greedy heuristic
for the MINSAT problem is no better than s. Indeed, other weighting schemes (e.g., a
scheme similar to Johnson’s [5] exponential weighting of clauses) also do not improve
the worst-case performance of the greedy heuristic.

We next examine the average performance of the greedy heuristic. Let Pk denote
the MINSAT problem defined over the set U of k variables. Let Pk-+ denote the MIN-
SAT problem at Stepj of the greedy heuristic, where problem Pk-j / is defined over the
subset of unassigned variables u, uj.+,..., uk. Following Kohli and Krishnamurti [6],
we assume that there is a probability pj. with which the truth assignment selected for a
variable at step j of the greedy heuristic appears in an optimal truth assignment for
problem Pk-/ . We assume that the pj are independent across the steps of the greedy
heuristic. However, we do not assume either the independence ofthe literals across clauses,
or any specific data-generating distribution.

Let rj denote the performance ratio of the greedy heuristic for problem P. Let E(r)
denote the expected value of r. Theorem 3 characterizes the lower bound on E(rk) as a
function of k and p min j k P.

THEOREM 3. E(rk) < (1 p)k/pfor the greedy heuristic.
Proof Without loss of generality, we assume that the optimal solution is to set

variable u true for all j, < j < k. We prove the theorem by induction on k, the number
of variables.

For k 1, the greedy heuristic chooses the optimal assignment and sets u true.
Hence, p p and E(rk) 1.

Let > be an integer such that

( p)*
E(rk) <_ for k l.

We show below that

E(r) <_
(1

fork= l+ 1.
Let Zl min {x, y }. If the greedy heuristic sets Ul true at Step 1, the value of the

optimal solution to problem Pk- is rn Zl, where rn is the value ofthe optimal solution
to problem Pk. However, if the greedy heuristic sets u false at Step 1, the value of the
optimal solution to problem Pk-1 is bounded from above by m. In either case, after Step
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t, the greedy heuristic solves an l variable MINSAT problem. Thus,

E(rt+ ) <- (z + p E(rt)(m z) + (1 -p)E(rt)m)
m

z--[ (1 -pE(rt)) + E(rt) _< + E(rt)(1 -Pl).
m

Let p* mini 2 Pi. By the induction hypothesis,

Thus,

E(r3 <-
(1 p,)t

p, (1 p).

py
_< and 1-p_< l-p,

Let p min {p*, p }. Then

(1 p*
p*

which implies that

E(rl+l)< q_(1--(1- p)t)( _p)=
1- (1- p)t+

P P

Note that the bound derived in Theorem 3 approaches as p approaches and that
it approaches k as p approaches zero. As k tends to infinity, the bound on the average
performance ratio for the greedy heuristic approaches 1/p.

To prove that the bound derived in Theorem 3 is tight, consider the following
example with k variables and n (k + 1)N + k clauses. The first (k + 1)N clauses are

U / U2 / V Uk for <_i<N

forN+ <i<2N,

for2N+ <i<3N,

forkN+ < < (k + 1)N.

The remaining k clauses are probabilistically generated, each clause containing exactly
one of the k distinct variables in negated form with probability p and in unnegated form
with probability p. Specifically, clause j, < j < k is given by

C(k + 1)N+j ] with probability P,

uj with probability p.

Each variable uj, <_ j <_ k is true in the optimal assignment. For N > k, the expected
performance ratio of the greedy heuristic can be verified to approach from below the
value

p + 2(1 p)p + 3(1 p)Zp + + (k 1)(1 p)k- 2p + k(1 p)k- (1 p)k.
P

Observe that the bound on the average performance ofthe greedy heuristic depends upon
the value of p, which can vary, depending upon the data-generating distribution. If, as
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in the above example, the value ofp can be made close to zero, the average performance
of the greedy heuristic can be made to approach its deterministic worst-case bound. In
the next section, we examine a probabilistic greedy heuristic that, regardless of the data-
generating distribution, never satisfies more than twice the number of clauses satisfied
by an optimal assignment for the MINSAT problem.

4. Probabilistic greedy heuristic. The proposed probabilistic greedy heuristic differs
from the preceding greedy heuristic by the introduction of a probabilistic element in the
choice of a truth assignment for each variable. In particular, at Step j, the probabilistic
greedy heuristic sets u. to be true with probability qj yj/(x + y) and sets u. to be false
with probability q. Thus, the probability of setting u. true increases as x/y decreases
and is only ifx 0, i.e., if no additional clauses are satisfied by setting u true at Step
j of the heuristic. However, if the number of additional clauses satisfied is greater when
uj is true than when it is false, then u is set true with a smaller probability than it is
set false.

The following theorem shows that, on average, the number of clauses satisfied by
the probabilistic greedy heuristic is no larger than twice the number of clauses satisfied
by the optimal assignment.

THEOREM 4. E(r) < 2 for the probabilistic greedy heuristic.
Proof Without loss of generality, assume that variable u is true in an optimal

assignment. We prove the theorem by induction on the number of variables k.
For k 1, the greedy heuristic sets u true with probability q y/(x + y) and

sets u false with probability q. The expected number of satisfied clauses is

y x 2xlY1qx + (1 q)y x+ y .
x + y x + y x + y

As u is true in the optimal assignment, the value of the optimal solution is rn x.
Thus, for k 1, the value of the expected performance ratio for the probabilistic greedy
heuristic is

2xy 2y
E(r) < 2.

x(x + y) x + y
Let >_ be an integer such that

E(r) < 2 for k l.

We show that

E(r) < 2 fork=l+l.

If the probabilistic greedy heuristic selects u at Step 1, the value of the optimal
solution at the second step of the greedy heuristic is rn x, where rn is the optimal
solution value of the k variable MINSAT problem P. However, if the greedy heuristic
selects ff at Step 1, the value of the optimal solution at the second step is bounded from
above by m. Hence, the expected number of clauses satisfied by the probabilistic greedy
heuristic is bounded from above by

q(x + E(rt)(m x)) + (1 q)(y + E(rt)m).

As E(rt) _< 2 by the induction hypothesis, the value of the above expression is no greater
than

ql(x + 2(m x)) + (1 q)(y + 2m).

Thus, an upper bound on the expected performance ratio for the probabilistic greedy
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heuristic is

E(r+ ) <- (q(x + 2(m Xl)) + (1 q)(y + 2m))
m

--(2m q(xl + yl) + y) 2. l--1
rn

To prove the above bound is tight, consider the following example with k 2
variables and n N + clauses. Let

Cl /1 V /’/2,

C2 b/l

c=u-2, 3<i<N+ l.

The optimal assignment sets both u and u2 true and satisfies one clause, cl. The prob-
abilistic greedy heuristic sets u true or false with equal probability (= 1/2) at its first step.
If it sets u true, then it obtains the optimal solution, setting u2 true with probability
at its second step. Otherwise, at the second step, it

(i) sets u2 true with probability (N- 1)/N, satisfying 2 clauses, c and c2, and
(ii) sets u2 false with probability 1/N, satisfying N clauses, c2, c3, c4 CN+.

Hence the expected performance ratio (= expected number of satisfied clauses) for the
probabilistic greedy heuristic is

As N tends to infinity, the value of this expression approaches from below the bound
derived in Theorem 4. Note that k 2 in this example and that the optimal clause cl
contains s 2 variables. Thus, unlike the worst-case and average performance bound
for the (deterministic) greedy heuristic, the bound on the average performance of the
probabilistic greedy heuristic does not depend on k or s.. Hr dses. An important special case ofthe satisfiability problem occurs when
each clause contains no more than one unnegated variable. Such clauses are called Horn
clauses. The satisfiability problem defined over a set of Horn clauses can be solved in
linear time (Dowling and Gallier [1 ]).

We show below that the MINSAT problem continues to be NP-hard even if it is
restricted to a set of Horn clauses. In particular, we transform the 2-MINSAT problem
to a MINSAT problem in Horn clauses.

Let the 2-MINSAT problem be defined over the set V of h variables and the set D
of clauses. We transform this to a MINSAT problem in Horn clauses defined over a
set U of k h + variables and a set C of n 3l clauses. Let d q V q be a clause in
an instance of the 2-MINSAT problem, where q and q denote either variables in V or
their negations. For each clause d e D, define a variable we. Let W { we d e D}. The
set U is defined to be V U W. For each clause d q V qo of 2-MINSAT, define three
Horn clauses ce, ca, and c3e e C, where

ca= qa V if’a, ca= qb V ff, c= w.
Ifclause d is satisfied by a truth assignment, then the same truth assignment for variables
q and q, and a suitable truth assignment for variable we, satisfies two (the minimum
that must be satisfied) of the above three clauses. If clause d is not satisfied by a truth
assignment, the same truth assignment for variables q and q, and a suitable truth as-
signment for variable w satisfies one (the minimum that must be satisfied) of the above
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three clauses. Based on the above observations and using an argument similar to that in
Theorem 1, we can show that no more than l* clauses can be satisfied by some truth
assignment for 2-MINSAT if and only if no more than + l* clauses can be satisfied by
a truth assignment for the MINSAT problem in Horn clauses.

We can verify that the worst-case and average-case bounds for the greedy heuristic
and the probabilistic greedy heuristic remain unchanged for Horn clauses and that these
bounds continue to be tight. Finally, we note that the MAXSAT problem in Horn clauses
is also NP-hard (see the Appendix). Thus, while the satisfiability of Horn clauses can be
assessed in linear time, the identification of assignments that maximize or minimize the
number of Horn clauses satisfied are NP-hard problems.

Appendix. Complexity of MAXSAT for Horn clauses. We show below that the
MAXSAT problem comprised of only Horn clauses is NP-hard. In particular, we trans-
form the 2-MAXSAT problem to a MAXSAT problem in Horn clauses.

Let the 2-MAXSAT problem be defined over the set V of h variables and the set D
of l clauses. We transform this problem to a MAXSAT problem in Horn clauses, defined
over a set U of k h + 2l variables and a set C of n 5l clauses. Let d qa V qb be a
clause in an instance ofthe 2-MAXSAT problem, where qa and qb denote either variables
in V or their negations. For each clause d e D, define two new variables Wld, W2d. Let
W { Wld, W2dl d D}. The set U is defined to be V t_l W. For each clause d qa / qb

of 2-MAXSAT, define five Horn clauses Cld, C2d, Csd C, where

cla qa V ffla,

Czd qb / ff"2d,

C3d a’id V

C4d Wld,

C5d W2d.

If clause d is satisfied by a truth assignment, the same truth assignment for variables qa
and qb and a suitable truth assignment for variables Wld and W2d satisfy four (the maximum
that can be satisfied) of the above five clauses in MAXSAT. If clause d is not satisfied
by a truth assignment, the same truth assignment for variables qa and qb and a suitable
truth assignment for variables Wd and W2d satisfy three (the maximum that can be satisfied)
ofthe above five clauses. Based on the above observations and using an argument similar
to that in Theorem 1, we can now show that no less than l* clauses can be satisfied by
some truth assignment for 2-MAXSAT if and only if no less than 3l + l* clauses can be
satisfied by a truth assignment for the MAXSAT problem in Horn clauses.
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ON OPTIMAL DEPTH THRESHOLD CIRCUITS FOR
MULTIPLICATION AND RELATED PROBLEMS

KAI-YEUNG SIU AND VWANI P. ROYCHOWDHURY$

Abstract. Let LTd denote the class of functions that can be computed by depth-d threshold
circuits with polynomial size and polynomially bounded integer weights. Using the results in [M.
Goldman, J. Hstad, and A. Razborov, in Proc. 7th Annual Conference on Structure in Complexity
Theory], [M. Goldman and M. Karpinski, Constructing depth d + 1 majority circuits that simulate

depth d threshold circuits, unpublished] we show that multiple sum is in LT2, and multiplication

and division are in LT3. Moreover, it follows from the lower-bound results in [A. Hajnal et al.,
IEEE Sympos. Foundations of Comput. Sci., 28 (1987), pp. 99-110], IT. Hofmeister and P. Pudlk,
Forschungbericht Nr. 477 Uni Dortmund, 1992] that these threshold circuits are optimal in circuit
depth. The authors also indicate that these techniques can be applied to construct polynomial-size
depth-3 threshold circuits for powering and depth-4 threshold circuits for multiple product.

Key words, threshold circuits, linear threshold functions, multiplication, division, arithmetic
functions
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1. Introduction. In this paper, we consider the power of small-depth thresh-
old circuits in computing arithmetic functions such as multiple sum, multiplication,
division, and powering. Threshold circuits are unbounded fan-in Boolean circuits in
which each gate computes a linear threshold function. A linear threshold function
f(X) is a Boolean function such that

1
f(X) sgn(F(X)) 0

F(X) >_ o,
if F(X) < O,

where

n

F(X) wi xi + wo.
i=1

The real coefficients wi are commonly referred to as the weights of the threshold
function. It is well known that the weights can be chosen to be integers [11].

However, the magnitudes of the integers can be exponentially large in the number
of inputs. The size of a circuit is the number of gates. If the number of gates in a
threshold circuit is polynomially bounded, then so is the number of wires in the circuit,
and vice versa. Unless otherwise specified, we assume in the following discussions that
all the weights in the threshold circuits are integers (possibly exponential) and that
the sizes of the threshold circuits are polynomially bounded.
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An important open problem in circuit complexity theory is to find an explicit
function that cannot be computed in constant-depth polynomial-size threshoId cir-
cuits. The first attempt toward solving this problem was made by Hajnal et al. [6].
They showed that the INNER PRODUCT MOD 2 function (x Ayl).. "(xn Aye)
can be computed in linear-size depth-3 threshold circuit but requires exponential-size
depth-2 threshold circuit to compute, when the weights are polynomially bounded in-
tegers. This result gives a separation of the class of depth-2 polynomiM-size threshold
circuits from the class of depth-3 polynomial-size threshold circuits, when the weights
are polynomially bounded.

Using the notation of [12], let us denote the class of depth-d polynomial-size
threshold circuits where the weights are polynomially bounded by LTd and the cor-
responding class where the weights are unrestricted by LTd. Then the e.xponent...al
lower bound result on INNER PRODUCT MOD 2 in [6] implies that LT2 LT3.
As another consequence of this lower bound result, we can show that multiplication
and division [9] of two n-bit integers also require exponentiM-size depth-2 threshold
circuits with polynomially bounded weights to compute. In [7] Hstad and Goldmann
proved an exponential lower bound on the size of depth-3 threshold circuits with the
restriction that the bottom fan-in of the circuit is small. However, no exponential
lower bound result on the size of depth-2 threshold circuits is known when there is no
restriction on the size of the weights.

It is implicit in [3] that a constant-depth threshold circuit with arbitrary weights
can be simulated by another constant-depth threshold circuit with polynomially
bounded weights at the expense of at most a polynomial increase in size. To study
the exact relationship between the depths of threshold circuits with arbitrary weights
and with polynomially bounded weights, Siu and Bruck [12] showed that any depth-d
threshold circuit can be simulated by a depth-(2d+ 1) threshold circuit with polynomi-
ally bounded weights (both have polynomial size); that is, LTd c LT2d+. The result
was substantially strengthened by Goldmann, Hstad, and Razborov [4]; they showed

that, in fact, LTd C LTd+. While the proof techniques in [4] are not constructive,
Goldmann and Karpinski [5] later gave an explicit construction of the circuits in [4].

Threshold circuits are powerful as a model of computation. In fact, many com-
mon arithmetic functions have been shown to be computable in small-depth threshold
circuits. It was first shown in [12] that multiple sum and multiplication can be com-

puted in LT3 and LT4, respectively. This result was also independently discovered
later by Hofmeister, Hohberg, and KShling [8] with much improvement on the circuit
size. More recently, it was shown in [13] that smMl-depth threshold circuits can be
constructed for division and related problems. In particular, division and powering
are in LT4 and multiple product (iterated multiplication) is in LT5. The question of
whether multiplication of two n-bit integers can be computed in LT3 had remained
open since the work of Hajnal et al. [6].

In this paper, we demonstrate that applications of the results in [4], [5] yield
a depth-3 threshold circuit of polynomially bounded weights for multiplication; i.e.,
multiplication is in LT3. It is clear from the result in [6] that such threshold circuit is
optimal in depth. Moreover, similar techniques can be applied to show that division
and powering can be computed in LT3 and multiple product can be computed in LT4.
The result in [9] also implied that our division circuit is optimal in depth.

The rest of the paper is outlined as follows. We first describe a depth-2 threshold
circuit for multiple sum. Using this result, a depth-3 threshold circuit for multipli-
cation follows easily. We then indicate how to apply the result for multiple sum to
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obtain depth-3 threshold circuits for division and powering and depth-4 threshold
circuit for multiple product. Since the techniques for deriving the results on division
related problems are similar to those in [13], we only sketch the proof and indicate
how the results in [13] can be improved using the results in [4], [5]. In the final section,
we conclude with some open problems.

2. Main Results.
n--1DEFINITION 1. Given n n-bit integers, zi -j=o zi,J 23, 1,... ,n, zi E

{0, 1}, we define multiple sum to be the problem of computing the (n + log n)-bit ’sum
-in=l zi of the n integers.

The above problem is also referred to as iterated addition in the literature.
n--1DEFINITION 2. Gven two n-bt ntegers, x j=o x2 and n- 2Y y=oY

we define multiplication to be the problem of computing the (2n)-bit product of x and
y.

It is ey to see that, if multiple sum can be computed in LT2, then multiplication
can be computed in LT3. We first prove the result on multiple sum. Our result hinges
on the results in [4], [5]. The key observation is that multiple sum can be computed
as a sum of polynomially many linear threshold (LT1) functions (with exponemial
weights). Let us first state the results [4], [5].

LEMMA 2.1 (see [4], [5]). Let LTd denote the class of depth-d polynomial-size
threshold circuits where the weights at the output gate are polynomilly bounded inte-
gers (with no restriction on the weights of the other gates). Then LTd LTd for any
fixed integer d 1.

The following lemma is a generalization of a result in [10]. Informally, the result
says that, if a function is 1 when a weighted sum (possibly exponential) of its inputs
lies in one of polynomially many intervals, and is 0 otherwise, then the function can
be computed as a sum of polynomially many LT functions.

nLEMMA 2.2. Let S = wixi and f(X) be a function such that f 1 if
S [/i, ui] for 1,..., N and f 0 otherwise, where N is polynomially bounded in
n. Then f can be computed as a sum of polynomially many LT1 functions, and thus

LT2
Proof. For j 1,..., N, let

y sgn wizi lj
i=1

We claim that

and therefore

yu =sgn uj wixi
i--1

N

f(X) (yt + Yu N,
j--1

{N }f(X)=sgn (yg+y)-N-1
j-----1

Note the following: If, for j 1,..., N, n-=1 wxi [/, u] then y + y 1 for
all j. Thus, -v_l (yt + Yu)- N 0. On the other hand, if -i= wx e I/j, uj]
for some j {I-...,N}, then yg +y 2 and yt +yu, 1 for i j. Thus,
N-=(y, + y) N N + 1 N 1. [:]
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Combining the above two lemmas yields a depth-2 threshold circuit for multiple
sum.

THEOREM 2.3. Multiple sum is in LT2.
n-1 2j i=l, n, thesum ’i=lziProof. Given n n-bit integers z -0=o z,j

n

can be represented as an (n +logn)-bit integer, V’n+lgn-1
-,=0 2i. Clearly, the kth

bit of , k- is the same as the kth bit of the sum of the first k-bits of the zi’s, i.e.,
the kth bit of -=’ j=ok- zi,j2J. Thus, to prove the theorem, it suffices to show that

the kth bit of n k-bit integers can be computed in LT2, for k 1,..., n + log n. We
first construct a depth-2 threshold circuit where the threshold gates in the first level
have exponential weights.

Let S i=l k-1 x-lognWk-1 2=0 2jz,y -,t=0 st be the sum of n k-bit integers.
Note that the kth bit of S, sk- is 1 if S E Iy,k [j2k-l,(j+ 1)2k-l- 1] for
j 1,3, 5,... ,2lg+l 1 and 0 otherwise. Since there are only polynomial_ly many
intervals Iy,k it follows from Lemma 2.2 the kth bit can be computed in LT2. Now
apply Lemma 2.1 for d 2; thus the kth bit can be computed in LT2.

It is also easy to see that multiple sum cannot be computed in LT1. Simply
observe that the first bit of the sum is the parity function, which does not belong to
LTI. Thus the above threshold circuit for multiple sum has minimum possible depth.

THEOREM 2.4. Multiplication is in LT3.
Proof. Let the two integers be x Xn_lXn_2...X0, y Yn--lYn--2... YO. The

first level of our circuit outputs the n (2n)-bit integers zi Z2n_lZ2n_2 Zo, for
i 0,...,n-- 1, where

0 (x0
n--i

This level requires O(n2) gates. It is easy to see that the product of x and y is simply
the sum of the z’s. By Theorem 2.3, the sum of the zi’s can be computed using
two more levels of polynomially many threshold gates (with polynomially bounded
weights). [:]

We can further apply the results in [4], [5] to construct small-depth threshold
circuits for division, powering, and multiple product. Let us give a formal definition
of these problems.

DEFINITION 3. Let Z be an n-bit integer >_ O. We define powering to be the n2-bit
representation of Zn.

DEFINITION 4. Given n n-bit integers zi, i 1,..., n, we define multiple product
to be the n2-bit representation of yIin__ zi.

The above problem is also called iterated product or iterated multiplication in the
literature.

Suppose that we want to compute the quotient of two integers. Some quotient
in binary representation might require infinitely many bits; however, a circuit can
only compute the most significant bits of the quotient. If a number has both finite
and infinite binary representation (for example, 0.1 0.0111...), we always express
the number in its finite binary representation. We are interested in computing the
truncated quotient, defined below.

DEFINITION 5. Let X and Y >_ 1 be two input n bit integers. Let X/Y
n--1=_ zi2 be the quotient of Z divided by Y. We define DIVk(X/Y) to be X/Y
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truncated to the (n + k)-bit number, i.e.,

n--1

DIVk(X/Y) E
i=-k

In particular, DIVo(X/Y) is IXJ, the greatest integer < X/Y.
Using the results in [2], [12], it was shown in [13] that powering and division can

be computed in LT4 and that multiple product can be computed in LTh. Combining
these results with the results in [4], [5], we can reduce the depths of these circuits
by one. We only indicate the key steps in the construction of the circuits in [13].
For other details of the proof, see [13]. Let us rephrase the results in [4], [5] as the
following lemma.

LEMMA 2.5 (see [4], [5]). Let f(X) e LT1. Then, for any k > O, there exist m

functions tl(X),... ,tm(Z) E LT1 such that, for all X,

1
m

f(X) -E tj (X)
j--1

where m and N are integers bounded by a polynomial in n.
By Lemma 2.2, each bit in the sum of multiple sum can be computed as a sum

of polynomially many LT1 functions. Combining this result with the above lemma
yields the following result.

LEMMA 2.6. Let.si be any of the outputs in multiple sum. Then, for any > O,
there exist j X LT1 such that

<_
j=l

where and 1 are integers bounded by a polynomial in n.
The following lemma, which was shown in [13], states that, if tl and t2 can be

closely approximated by polynomially many LTk functions, so is their product tl At2.
LEMMA 2.7. Suppose that, for i 1, 2 and for every c > O, there exist integers

mi, wit, and N that are bounded by a polynomial in n such that, for all inputs X,

1 mi

t,(x) (x)
j=l

O(n-C),

where each tit Lk. Then there exist integers (n, j, and 1 that are bounded by a
polynomial in n such that

t (x) t (x) O(n-C),

where each tj LTk.
To avoid cumbersome explanations in the following discussions, we say informally

that every LT1 function and each outpu.t bit in multiple sum can be closely approxi-
mated by a sum of polynomially many LT1 functions, in the sense of Lemmas 2.5 and
2.6.
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THEOREM 2.8. Powering is in LT3.
Proof. Let X be an n-bit integer and Z Xn. Let p denote the ith prime

number and let r(k) denote the number of primes _< k. Let

(n-)

Pn H Pi
i--1

be the product of all primes < n2. Then we can show that Z < 2n < Pn, and thus
(Z mod P) Z.

Using the Chinese Remainder Theorem, we can compute Z with the following
steps:

1. For i 1, n2, compute in parallel the values r Z mod Pi;

2. 2- z_i--1 ri "m;

3. Z (Z mod RE) (Z mod P);
where, in step 2 above, the m are fixed integers (possibly exponentially_large), and
therefore step 2 is, in fact, multiple sum. Moreover, we can show that Z <_ n4. Pn,
and hence Z= (ZmodP,)- Z-k.Pn for some k, where0_< k_< n4. For each
k E {0,...,n4}, let

EQk(Z) sgn{2 k. Pn} + sgn{(k + 1)Pn 2 1} 1

{ 1 ifZ=(2modP)=2-k.Pn,
0 otherwise.

Let zjk be the jth bit of ,- k. Pn. Then the jth bit of Z is

/ (EQk(Z) A zjk).
Okn4

We can compute the values ri in step 1, above, as a sum of polynomially many
LT1 functions. By Lemmas 2.6 and 2.5, each zjk and each EQk(Z) can be closely
approximated by a sum of polynomially many LTI functions with variables ri. Thus
EQk(Z) and zjk can be closely approximated as a sum of the outputs from polynomi-
ally many depth-2 threshold circuits whose inputs are the variables X. By Lemma 2.7,
it follows that (EQk(Z) A zjk) can also be closely approximated as a sum of the out-
puts from polynomially many depth-2 threshold circuits. Hence, each of the outputs
VO<k<n4(EQk(Z)/k Zjk) can be computed in a depth-3 threshold circuit. D

Remark 1. In [13] each EQk(Z) and zjk is closely approximated as a sum of
outputs from polynomially many depth-3 threshold circuits (LT3). Lemmas 2.6 and
2.5 enable us to save one level of threshold.gtes in computing them.

THEOREM 2.9. Multiple product is in LT4.
nProof. Let Z I-[j= zj, where each zi is an n-bit integer. The proof is very

similar to the proof of Theorem 2.8. We can compute Z using the same three steps
as in Theorem 2.8. The only difference is that now each ri Z mod Pi is computed
as a sum of polynomially many depth-2 threshold circuits (LT2), one more level of
threshold gates than the circuit for powe..ring. D

THEOREM 2.10. DIVk(x/y) is in LT3.
Proof. Note that DIVk(x/y) 2-kDIVo(2kx/y); so it suffices to prove our claim

for the case where k 0. The resulting threshold circuits for the general case when
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k is polynomial in n have the same depth and the size will increase by a polynomial
factor.

The underlying idea is to compute an overapproximation z to x/y such that
x/y <_ <_ x/y + 2-(n+l). Then we can show that [] [x/y].

Since x/y is equal to the product of x and y-l, it is enough to get an overapprox-
imation -1 of y-1 with error <_ 2-(2n+l) Then we can compute the approximation
q x-)-1 to x/y with an error <_ x2-(2n+l)

_
2-(n+l) with a small-depth threshold

circuit.
To construct an overapproximation of y-l, let j _> 1 be the integer such that

2j-1 _< y < 2j. Note that I1- y2-J

_
1/2, and we can express y-1 as a series

expansion

If we put

2n

--1 2--j -(1 y2--J)i,
i=0

then the difference

0

_
(y-l_-l)

_
2-j

i--(2n+l)

2-i < 2-(2n+l)

Since x < 2n, we have

0 <_ (xy-1-x-1) < 2-(n+l).

Suppose for the moment that we can find the integer j _> 1 such that 2y-1 _< y < 2Y.
Now we can rewrite

2n+1

x_1 1
2J(2n+2)

2J(2n+l-i) x(2j y)i.
i-0

7’2n+1 2J(2n+l (1/2J(2n+2)Let Zj z_,i=0 -i)x(2y y) Then x )Z, a shifting of the
bits in Zy.

Again, we can compute Zj via the Chinese Remainder Theorem as follows:
1. For 1,..., N, compute in parallel the values ri,y Zy mod pi;

N2. Z -= r, .m;
3. Zj Zj mod PN 2j mod PN

where N is a sufficiently large integer such that the product of the first N primes
yI.N,=I pi PN > Zy for all j 1,..., n. Moreover, we can show that y _< naPN for
some a > 0, and hence Zj (j mod PN) j --kPn for some k, where 0 <_ k <_ na.
For each k E {0, n}, let

EQk(Zj) sgn{j kPg} + sgn{(k + 1)PN j 1} 1

1 ifZj=(2jmodPN)=2y-kPg,
0 otherwise.



OPTIMAL DEPTH THRESHOLD CIRCUITS 291

Let zj,k,2l- (1./2J(2n+2))(2j- kPN).
Zj k*By, then

If EQk.(Zj)= 1, i.e., (j mod PN)=

n--1

DIVo(x/y) zj,k.,2.
/=0

Thus the ith bit of DIVo(x/y) can be computed as

/ (EQk(Zi) A zy,,).
lkn

The above expression is based on the assumption that we can find the unique
integer j >_ 1 such that 2-1 <_ y < 2d. We can compute such integer j in parallel
without increasing the depth of the circuit. To see this, for each j E {1,..., n}, let

1
Ij sgn{y 2j-1 }

__
sgn{2j y 1) 1

0
if 2j-1

_
y < 2Y,

otherwise.

Then the ith bit of DIVo(x/y) is

(I A EQ(Zj) A zj,#).

Now apply the same argument as in Theorem 2.8; we can show that each (Iy A
EQk(Zj) A zj,k,i) can be closely approximated by a sum of outputsAfrom polynomially
many LT2 functions. Hence the final result can be computed in LT3. [:]

Remark 2. In [13] each (/j A EQk(Zj)A zi,k,i)is closely approximated by a

sum of outputs from polynomially many depth-3 threshold circuits (LT3). Here again
Lemmas 2.6 and 2.5 enable us to save one level of threshold gates in computing them.

3. Concluding remarks. We have demonstrated optimal-depth threshold cir-
cuits for multiplication, multiple sum, and division. We also indicated how the tech-
niques can be applied to obtain depth-3 threshold circuits for powering and depth-4
threshold circuit for multiple product. These results are improvements on the depths
of the circuits constructed in [13]. Moreover, the construction of these circuits can all
be made explicit using the results in [5].

There are a few open problems, below, related to the results in this paper:
1. What is the minimal size of a depth-3 threshold circuit .for multiplication?
2. Can INNER PRODUCT MOD 2n and multiplication be com.p.ted in LT2?

A negative answer to this question will provide the separation LT2 LT3.
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ON FINDING CRITICAL INDEPENDENT AND VERTEX SETS*

ALEXANDER A. AGEEVt

Abstract. An independent set Ic of a undirected graph G is called critical if

IIcl- IN(Ic)l- max{lI -IN(i)l I is an independent set of

where N(I) is the set of all vertices of G adjacent to some vertex of I. It has been proved by
Cun-Quan Zhang [SIAM J. Discrete Math., 3 (1990), pp. 431-438] that the problem of finding
critical independent set is polynomially solvable. This paper shows that the problem can be solved
in O(IV(G)I1/21E(G)I time and its weighted version in O(IV(G)I21E(G)I1/2) time.

Key words, independent set, minimum cut
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1. Introduction. Denote by G a simple undirected graph and by N(U), U C_
V(G), the set of all vertices of G adjacent to some vertex of U. An independent set
Ic c_ V G) is called critical if

u(G) -IIcl- IN(Ic)l- max{lI -Ig(I)l" I is an independent set of G}.
The number u(G) is a parameter of G, closely related to some other important ones

[Zh90]. A vertex set Uc is called critical if

t(a)- [V=l- IY(V=)l- mx{IVl- ]N(U)I" V c_ V(G)}.
Cun-Quan Zhang [Zh90] observed that (G) #(G) and that the problem of

finding critical independent set is reducible to the problem of finding critical vertex
set. In [Zh90] it is also shown by a rather sophisticated reduction to the linear
program that the problem of finding critical vertex set is polynomially solvable. This
paper presents a very simple reduction of the weighted version of the problem to the
maximum weight independent set problem on bipartite graphs. As a consequence, we
obtain a fast algorithm to find critical independent and vertex sets in general graphs.

2. Critical weighted sets. Let G be a undirected graph with nonnegative
weights w(v) on its vertices. For any X C_ V, denote p(X) w(X)- w(N(X)),
where w(S) is the total weight -ves w(v) of S c_ V.

A vertex set U* C_ V(G) is critical weighted if p(U*) max{p(V)" U c_ V(G)}.
An independent set I* is critical weighted if

p(I*) max{p(/)" I is an independent set of G}.
Obviously, p(I*) <_ p(V*). We claim that p(I*) p(V*). Indeed, let V be a

critical weighted vertex set. Define I c_ U to be the set of all isolated vertices of
the subgraph induced by U. Then, clearly, I is an independent set of G. Since
N(V) Vl t2 X, where U1 V \ I, X (N(U1) \ U1) t N(I), we have

p(V) W(Vl) -]- w(I) W(Vl) w(X)

_
p(I).

It follows that p(U) p(I) and I is a critical weighted independent set, of G.
Thus, to find a critical weighted independent set, it suffices to find a critical

weighted vertex set.

Received by the editors June 10, 1991; accepted for publication (in revised form) December 10,
1992.
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3. The reduction. Suppose that we have an instance of the problem of finding
critical weighted vertex set. Let (Xv), (Yv) be (0, 1) vectors whose components are
indexed by the vertices of G. Consider the following (0, 1) programming problem:

(1) max w(u)xu w(v)yv,
uEV vEV

(2) s.t. Yv >_ x, (u, v) e E(G),

(3) x,yv e (0, 1), u, v e V(G).

We claim that, if (x), (y) is an optimal solution to this problem, then (x) is the
incidence vector of a critical weighted vertex set. Indeed, let X* {v E V" x 1}.
Observe that (y) is the incidence vector of N(X*). Now let (xv) be the incidence
vector of some X C_ Y and let (yv) be the incidence vector of N(X). Since (x.), (y)
is a feasible solution of (1)-(3), it follows that

uV vV uV vV

It is easy to see that (1)-(3) is an instance of the selection problem [Ba70], [Rh70].
Finding an optimal solution of (1)-(3) is known to be equivalent to finding a minimum
cut in a bipartite network [Ba70], [ah70], [PQ82]. Hence an optimal solution of (1)-
(3) can be found in O(IV(G)I21E(G)I 1/2) time [GT88], [CM89]. Furthermore, putting
y 1 z., v e V, we can rewrite (1)-(3) as follows:

max w(u)xu + w(v)zv --t- IV(C)l,
uEV vV

s.t. X+Zv_<I, e E(V),

x ,z. e v e v(v).

The latter is nothing but an instance of the maximum weight independent set problem
on bipartite graph H with bipartition (V, W), where V is a copy of V and for any

v yuV,

(u, v’) e E(H) if and only if (u, v) e E(G).

In the case of unit weights (w(v) =_ 1), an optimal solution to this can be obtained as
a by-product with the O(IV(G)II/21E(G)I algorithm for finding maximum matching
in bipartite graphs [PS82, p. 226].
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TRIANGULATING VERTEX-COLORED GRAPHS*

F. R. MCMORRISt, TANDY J. WARNOW$, AND THOMAS WIMER

Abstract. This paper examines the class of vertex-colored graphs that can be triangulated
without the introduction of edges between vertices of the same color. This is related to a fundamental
and long-standing problem for numerical taxonomists, called the Perfect Phylogeny Problem. These
problems are known to be polynomially equivalent and NP-complete. This paper presents a dynamic
programming algorithm that can be used to determine whether a given vertex-colored graph can
be so triangulated and that runs in O((n -t- m(k 2))k+ 1) time, where the graph has n vertices,
m edges, and k colors. The corresponding algorithm for the Perfect Phylogeny Problem runs in
O(rk-t kk/

__
8k2) time, where s species are defined by k r-state characters.

Key words, graph algorithms, evolution, k-trees

AMS subject classifications. 05C85, 68Q20, 68Q25, 92B10, 05C05

1. Introduction. We are interested in two problems. The first, which has a
purely graph-theoretic statement, is as follows: Given a graph G (V, E) with a
proper vertex coloring, c: V - {1,2,...,k}, we wish to determine whether we can
add edges to G so as to make it chordal, without introducing edges between vertices
of the same color. A chordal or triangulated graph is a graph that has no induced
cycles of length 4 or more. If we can triangulate G in this way, we say that G has a
c-triangulation, or that G is c-triangulatable. We call this the Triangulating Colored
Graphs Problem, or TCGP.

The second problem is a fundamental and long-standing problem for numerical
taxonomists. This problem, called the Perfect Phylogeny Problem, or PPP, is as
follows. A phylogeny is a rooted tree that describes the evolution of a set S of species.
The species in S are at the leaves of the tree, and the internal nodes represent ancestral
species. In this problem, each species is defined in terms of characters, both the species
at the leaves (which represent extant species) and the species at the internal nodes
(which represent ancestral species). For example, a character can be binary, such as
vertebrate-invertebrate, or it can take several states, such as the character that has a
state for each possible number of legs in a species. Thus, the phylogeny is a rooted
tree, in which each vertex is labelled with a k-vector of character states. When the
phylogeny has the property that each state is transited into at most once, so that,
for each character state, the nodes having that character state form a subtree, we say
that the character set is compatible, and the phylogeny is said to be perfect. The
PPP is therefore as follows: Given a set S of n species and a set C of k characters
defined on the set S, determine whether a perfect phylogeny exists for the species and
characters. This is also known as the Character Compatibility Problem. A thorough
discussion of the biological setting of this problem can be found in [8].

In 1974, Buneman [5] proved that the PPP reduces in polynomial time to the
TCGP. The reduction from the PPP to TCGP describes each input I to the PPP as
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a vertex-colored graph GI.. The vertices in GI are labelled by the distinct character
states in I, with vertices corresponding to states of the same character given the same
color. If two states share at least one species in common, the corresponding vertices in
GI are made adjacent. Thus, the graph GI has the property that it is properly colored
by k colors and is edge-covered by k-cliques, where k is the number of characters in I.
Graphs having this property are called partition intersection graphs [14]. Buneman’s
theorem then says that a perfect phylogeny exists for I if and only if the graph GI
can be c-triangulated.

Very recently, results have shown TCGP and PPP to be polynomially equivalent
[19] and NP-complete [3], [18]. For a long time, the only solutions were for binary
(two-state) characters [6], [10], [20] and for two characters at a time [7], [9]. An
algorithm for the PPP has been found when the characters are restricted to having
at most four states [13]; this algorithm can be used to construct perfect phylogenies
from DNA sequences. The TCGP has been solved for three-colored graphs in [12],
[11], [4].

For k > 3, the only result relevant to triangulating k-colored graphs is the negative
result of Bodlaender, Fellows, and Warnow, who showed that for k > 3, the class of
k-colored graphs that can be c-triangulated is not finite-state [3]. The significance of
this last result is the following: There is a growing body of literature that shows that
many NP-hard problems become solvable in linear time when applied to graphs of
bounded treewidth, given a suitable tree-decomposition, when the class of graphs is

finite-state. One of the results of this paper is that a c-triangulatable k-colored graph
has treewidth bounded by k- 1; if this class of c-triangulatable k-colored graphs was
finite-state, we would be able to obtain a linear time algorithm to recognize these
graphs.

To say that a graph G (V, E) has treewidth bounded by k (i.e., is a partial
k-tree) is to assert that a supergraph G (V, Ep) of G exists that is a k-tree. We were
thus motivated to examine the known results about partial k-tree recognition and, in
particular, the O(nk+2) time dynamic programming algorithm of Arnborg, Corneil,
and Proskurowski [1] for recognizing partial k-trees. However, the recognition of c-
triangulatable (k- 1)-colored graphs is more difficult than recognizing partial k-trees,
for the following reason: Each k-tree containing at least k + 1 vertices contains a
(k + 1)-clique; thus, while we may be able to embed the (k + 1)-colored graph in a
properly colored k-tree, we will not be able to embed it in a properly colored k-tree,
for any k > k. Contrary to this is the fact that, if a graph G is a partial k-tree,
it is also a partial k-tree, for every k > k. Thus, the ability to use a dynamic
programming approach for partial k-tree recognition is not immediately transferrable
to recognizing c-triangulatable (k- 1)-colored graphs. Nevertheless, we were able to
obtain an O((n + m(k 2))k+l) algorithm to determine whether a k-colored graph
with n vertices and m edges can be c-triangulated. This algorithm can be used to
determine the compatibility of k r-state characters on s species in O(rk+l kk+l + 8k2)
time. Thus, when we fix the number of colors (characters), TCGP (PEP) is in P.

2. Definitions. A graph G (V, E) is a finite undirected graph without multiple
edges or loops. We say that a graph G (V, E) is connected if every two distinct
vertices in V are connected by a path. The maximal subgraphs of G that are connected
are called the components of G. A vertex separator for G will be a set of vertices S
such that G- S is disconnected. A vertex coloring is a function c V - Z, where Z is
the set of integers. We say that the coloring is proper when c(v) c(w) implies that
(v, w) E. The neighbor set F(v) of a vertex v is the set of all vertices w adjacent to
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v; that is, F(v) {w" (v, w) e E}. A clique in a graph is a set of mutually adjacent
vertices. A simplicial vertex in a graph is a vertex v such that F(v) is a clique. The
complete graph on n vertices, Kn, is the graph with n vertices, every two of which
are adjacent.

Chordal graphs admit orderings, vl, v2,..., Vn, on the vertex set such that, for
each i, Ni F(vi)N {v+l, v+2,..., vn} is a clique. These orderings are called perfect
elimination schemes. A particular class of chordal graphs, called k-trees, is character-
ized by the requirement that INI min{k, n i} for each i. The class of k-trees also
has the following recursive definition: The complete graph on k vertices is a k-tree; if
G (V, E) is a k-tree and S c V is a k-clique, then the graph formed by adding a
new vertex v and attaching it to each vertex in S is also a k-tree. Each k-tree may
be constructed using several different sequences of these operations. The initial set
S c V is called a basis for the k-tree. G (V, E) is a partial k-tree if there exists
a graph G’ (V, E’) such that E C_ E’ and G’ is a k-tree. This is also expressed
by saying that G has treewidth bounded by k. Note that, if a Vl, v2,..., Vn is a
perfect elimination scheme for the k-tree G, then we can construct G by first making
a clique out of the vertices {Vn-k+, Vn-k+2,..., Vn}, repeatedly adding a vertex v,
and making it adjacent to every vertex inside some k-clique.

It is easy to see that, if a graph G is chordal, then so is every vertex-induced sub-
graph G’ of G. Thus, if a graph G can be c-triangulated, then so can every subgraph
G’ c G. This is expressed by saying that the property of being c-triangulatable is
hereditary.

The only nonstandard definition that we will use frequently in this paper is the
following: For a graph G (V, E) and vertex separator S c V with C a component
of G- S, we define C U cl(S) to be the graph formed by adding to the subgraph of G
induced by C U S sufficient edges to make S into a clique. We also say that a graph
G is a k-partition intersection graph if it is edge-covered by k-cliques. We may simply
say that it is a partition intersection graph if the constant k is understood.

3. Lemmas and theorems. Let G be a graph with n vertices and proper ver-
tex coloring c V -- {1,2,...,k + 1}. We will show how we can determine in
O((n + m(k 1))k+2) time whether G can be c-triangulated, so that we will have a
polynomial algorithm for the case where the number of colors is fixed. The algorithm
is a modification of the partial k-tree recognition algorithm of Arnborg, Corneil, and
Proskurowski [1], which determines whether an arbitrary graph has an embedding in
a k-tree (see also [21] for a partial k-tree parsing algorithm based upon [1]).

We will now present two results (without proof) from our paper, which form the
basis of our dynamic programming algorithm, to motivate the ensuing lemmas and
theorems. The proofs of these results will follow in the text.

Let G (V, E) be a graph properly vertex-colored by c with k + 1 colors present.
Then G can be c-triangulated if and only if there exists a set S c V of k vertices such
that G- S is separated, and for every component C of G- S, the graph C U cl(S) can
be c-triangulated.

This result appears as Lemma 4.
Let G (V, E) be a partition intersection graph properly vertex-colored by c with

k + 1 colors present. Let S c V be a set of k distinctly colored vertices such that
G- S is disconnected and C is a component of G- S. We can determine the answer

for C cl(S) (i.e., whether C t2 cl(S) can be c-triangulated) simply by examining the
answer for every graph C’ cl(S’), where S is a vertex separator for G consisting of
k distinctly colored vertices, and C’ is a component of G- S’ with IV(C’U cl(S’)) <
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This result appears as Theorem 3.
The dynamic programming algorithm for partition intersection graphs is then

obvious: Determine all sets S of k vertices such that G- S is disconnected and
determine the answers for each graph C [2 cl(S), where C is a component of G- S,
using the information computed for the smaller graphs.

However, as our input graphs may not be partition intersection graphs, we begin
with the following result.

LEMMA 1. Let G (V, E) be a graph properly colored by coloring c with k + 1
colors. Then there exists a partition intersection graph G (V, E) such that the
following is true:

For every separator S ofG of k distinctly colored vertices and every component
C of G S, C S has k + 1 colors present,

G can be c-triangulated if and only if G can be c-triangulated, and
Th nu, oI

Proof. For each edge e (v, w) in E, add k- 1 vertices and sufficient edges so
that the k + 1 vertices together form a (k + 1)-clique, of distinctly colored vertices.
Call the resultant graph G. It is clear that G is edge-covered by (k + 1)-cliques,
and hence G is a partition intersection graph. Therefore, for every separator S of
k distinctly colored vertices and every component C of G- S, C U S has all k + 1
colors present. G contains G as an induced subgraph, and it is thus easy to see
that G can be c-triangulated if and only if G can be c-triangulated. Finally, each
edge in G contributes an additional k- 1 vertices, so that the last condition holds as
well.

Graphs that arise from inputs to the PPP are partition intersection graphs, so
that, for every separator S and component C of G- S, C U S have all k + 1 col-
ors present. Therefore, for graphs G that arise from instances to the PPP (using
Buneman’s reduction in [5]), we need not make any transformation to the graph.
Otherwise, we will first construct the partition intersection graph G from G using
the construction in Lemma 1 and then apply the dynamic programming algorithm to

The next lemma shows that, if G can be c-triangulated, th:en, in fact, we can
complete G to a k-tree, without ever adding edges between vertices of the same color.
This allows us to use the powerful theorems about graphs of bounded treewidth to
deduce structural information about G.

LEMMA 2. Let G be a connected vertex-colored graph with vertex coloring c V --{1, 2,..., k + 1}, with all k + 1 colors represented. Then G has a c-triangulation if
and only if G has a c-triangulation that is a k-tree.

Proof. One direction is obvious. Now consider the case where G has a c-
triangulation. We will prove that G has a c-triangulation that is a k-tree by induction
on n and k. The case where k 1 implies a two-coloring on the vertices of G. It is
easy to see that a connected two-colored graph G can be c-triangulated if and only
if G is acyclic, i.e., is a tree. The set of 1-trees is the set of trees, and so the lemma
holds whenever k-- 1.

Let G be a colored n-vertex graph, G a c-triangulation of G, and c V --{1, 2,..., k + 1} the vertex coloring. The base case, in which n k + 1, is trivial.
Inductively, we will assume the lemma is true for all graphs with fewer than n vertices
or with fewer colors represented.

Let v be a simplicial vertex in G. We have two cases to consider, depending on
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whether G- {v} is k- or (k + 1)-colored.
Case 1. G- {v} is k-colored. In this case, v is the only vertex in G that is

colored c(v), and G- {v} hs a c-triangulation (G’- {v}). Therefore, the inductive
hypothesis proves that G- {v} has a c-triangulation G" (V, E"), which is a (k- 1)-
tree. If we attach v to every vertex of G", we get a graph G" (V, E"), where
E’" E" {(v, w) w V}. G’" is a k-tree, as can be seen by placing v at the end
of the perfect elimination scheme for G", and G is a subgraph of G". Thus, G can
be c-triangulated to a k-tree.

Case 2. G- {v} is (k + 1)-colored. The neighbor set of v in G’ will be A
{Xl,X2,... ,x}, and, since v is simplicial in G, this is an r-clique, for some r <_ k.

Let G" be a k-tree c-triangulation of G {v}, with perfect elimination scheme
a. Among the vertices in A, let x be the first to appear in a. There are two cases to
consider, depending on the position for x in the order given by a. If x appears in the
last k + 1 positions, in a, then we will connect v to each of the vertices in the last
k + 1 positions, which are colored differently from c(v). This produces a k-tree, since
the last k + 1 vertices in a are a clique in G", and thus exactly k of these vertices are
colored differently from v. We have attached v to each vertex in a k-clique, including
A. Therefore, we have a k-tree supergraph of G, which is properly colored by c.

On the other hand, if x appears at least k + 2 positions from the end, then let
B denote the set of vertices that are neighbors of x in G" and that follow x in the
ordering a. B will be a k-clique, since G" is a k-tree, and will include A- {x}.
Consider the graph G", which is defined by attaching the vertex v to x and to
every vertex in B that is colored differently from c(v). Thus, G"’ (V, E’"), where
E’" E(G")U {(v, y) y e B, c(y) c(v)}. This graph G"’ contains G as a subgraph
and is a k-tree. [:]

We now observe certain facts about partial k-trees.
LEMMA 3. If G can be c-triangulated to a k-tree, then any k-clique in G can be

a basis for G.
Proof. Let G be a k-tree c-triangulation of G and let S be any k-clique in G. It

is shown in [15] that any k-clique of a k-tree can be a basis; hence, S can be a basis
for G’.

The following lemma has an uncolored counerpar in [1].
LEMMA 4. A gie (k + 1)-colored graph G of sze at least k + 2 ca be c-

triangulated if and only if there is a set S of k distinctly colored vertices such that,
for each component C of G- S, the graph C U cl(S) can be c-triangulated.

Proof. If G can be c-triangulated, then, by Lemma 2, there exists a k-tree G that
is a supergraph of G. It is shown in [16] that the minimal vertex-separators of G are
k-cliques. Let S be one such minimal vertex separator of G. Since G is properly
colored, S consists of distinctly colored vertices, and, for each component C of G- S,
C cl(S) is a subgraph of the partial k-tree given by the subgraph of G induced by
the vertices of C t2 S. Hence, C cl(S) can be c-triangulated as well.

Conversely, suppose that there is a set S of k distinctly colored vertices such that,
for each component C of G- S, the graph C cl(S) can be c-triangulated. Let Tc
be a c-triangulation of C cl(S). We can combine these graphs into a c-triangulation
for all of G, since they only intersect on S.

We have thus reduced the problem of determining whether the entire (k + 1)-
colored graph G can be c-triangulated to looking at graphs of the form C cl(S),
where S is a a vertex separator for G of k vertices, and C is one of the components
of G-S.
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Rose, Tarjan, and Lueker [17] proved the following lemma.
LEMMA 5. Let G be a triangulated graph, a a perfect elimination scheme for

G, and let a,b be vertices in G. If there is a path P from a to b in G such that
every vertex in P- {a, b} comes before a and b in the ordering r, then (a, b) is an
edge in G.

We now prove the following theorem.
THEOREM 1. Let G (V, E) be a (k + 1)-colored partition intersection graph

containing at least k + 2 vertices, So a set of k vertices of G that is a separator for
G, and let C be a component of G- So. Then C U cl(So) can be c-triangulated if and
only if there exists a family .7z of k-trees and a vertex v E C such that

1. For every F , there exists a vertex x So such that V(F) C’ U cl(S)
where S So t3 {v} {x}, C’ is both a component of G S and of C U cl(So) S,

3. Every two graphs in .T intersect only on So {v}, and
4. GI(V- So) is contained in JFe= F.

Proof. It is easy to see that, if these conditions hold, we can combine the k-trees
in " into one k-tree covering C cl(So), since they only intersect on So {v}. Thus,
we need only show .the converse.

So, suppose that G1 CWcl(So) can be c-triangulated. Let G be a c-triangulation
of C cl(So). By Lemma 3, the k-clique So can be a basis for G. Let v be the vertex
added to the basis So in the construction of G and let S So U {v}. Thus, there is
a perfect elimination scheme for G in which the vertices of S occur at the end. We
will show that we can decompose C t cl(So) into the union of k-trees, TK, each of
which is based upon a k-clique subset K C S. We will then show that each such K
forming the basis of one of these k-trees will be a separator for G, so that TK K has
components C1,..., Cr. We can then, in turn, write each TK as the union of possibly
smaller k-trees, Tc TKI(C g). These k-trees are the ones of interest.

G is built by adding vertices, one at a time, and making each new vertex adjacent
to every vertex in some k-clique. We will define G to be the subgraph of G induced
by the vertex set {v,v+l,... ,Vn}. Thus, Gn-k+ is a k-clique, and, to form G,
we make vertex v adjacent to every vertex in some k-clique in G+. We will show
that we can assign to each added vertex v (with i < n- k) a label L(v) the name
of a k-clique K c S, so that, for each K c St, the subgraph TK GIVc, where
VK {v: L(v) g or v e g}, is a k-tree. We will also show that every edge e in
GI(V- S) is in one of these k-trees and that the k-cliques K forming the basis of
the k-trees TK are separators of G. We will also need to show that the component
C’ of C [J cl(So)- L(v) containing v is a component of G- L(v). This will prove our
assertions.

We first must show how we assign vertices to k-clique subsets of S. Let L be
the assignment function we wish to define for every vertex not in S. Suppose that
we have constructed the graph G+, are now adding v to the graph, and making
it adjacent to every vertex in some k-clique, R. If R C S, then we set L(v) R.
Otherwise, the vertices in R will consist of (perhaps) some unlabelled vertices (these
will be in S) and at least one labelled vertex. If all of the labels in R agree, then
this is the label that we will assign to v. On the other hand, suppose, for our
construction, that when we make v adjacent to every vertex in the k-clique R, not
all the labels are the same and that this is the first vertex in this construction for
which this happens. In this case, for some vertices vj and vk in R, L(vj) X and
L(vk) Y, for distinct subsets X, Y c S. Without loss of generality, we can assume
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that i < j < k. In constructing Gj, we made vj adjacent to every vertex in some
k-clique C c Gy+l. Note that Vk E C, since vj and vk are adjacent and k > j. Since
we were able to set L(vy) X unambiguously, this means that either every vertex in
C was unlabelled, and thus X C, or that the labelled vertices were all labelled X.
Since we have assumed that vk was labelled, we can infer that L(vk) X, and hence
X Y. Thus, this assignment of vertices to k-clique bases is well defined, and each
label denotes a subset K of S. It is easy to see that the subgraph TK GIVI (for
VK {V: L(v) K or v K}) is a k-tree and that TK is based upon the set g.

By our construction of the labelling function, it is also clear that no edge in G
has different labels at its endpoints, so that every edge in GI(V- S) is in exactly one
k-tree, TK.

We now show that each k-clique K c S forming the basis of a k-tree in $" is a
separator for C U cl(So) and for G. We first show that K is a separator for C t cl(So).
Suppose to the contrary, so that, for some set K C S forming the basis of a k-tree
TK, C U cl(So) g is connected. Let K S- {x}. We will show that there is no
path from x to any vertex in C cl(So) K. Let a be a perfect elimination scheme
for TK {x}. Clearly, we can assume that x is the last vertex in a to occur before the
vertices of K. Let a be the vertex immediately preceding x. If there is a path from
x to a in C (9 cl(S) K, then the edge (a,x) is in G by Lemma 5. Then, however,
S t2 {a} is a (k + 2)-clique, contradicting that G is a partial k-tree. The proof can
be modified to show that K is a separator for G as well. Hence the k-trees T each
contain fewer vertices than G.

We now complete our proof by showing that the components of C cl(So) K
are also components of G- K, where K is the basis of a k-tree F 9v. Recall that,
by our construction, each such basis K is a set L(a) for some a e V(F) g. So
let C’ be a component of C cl(So) L(a), for some a C. It is easy to see that
n(a) So {v} {x} is a separator for C J cl(So) and that every component X of
C cl(So) L(a), such that x X, is also a component of G- L(a). Thus, we will
show that x C’, so that C is a component of G- L(a).

Suppose that x C. Then x is adjacent to at least one vertex z of C- {x}.
When we labelled the vertex z, we labelled it with L(a), implying that x L(a), and
yet, by our construction, x

_
L(a). Hence, the component C’ of C U cl(So)- L(a)

containing a is a component of G- L(a). This completes our proof.
We can now prove the following theorem, which is a colored version of a lemma

in [1].
THEOREM 2. Let G (V, E) be a (k + 1)-colored graph with IV >_ k + 2. Let

So be a set of k distinctly vertices in G such that G- So is separated and let C be a

component of G So. Then Ccl(So) can be c-triangulated if and only if there exists
some vertex v in C and a family of k-vertex sets J4 such that the following is true:

1. For each M A/I, M C So {v}, and M is a separator for C t.J cl(So) and
for G,

2. For each vertex x So- {v}, there is a Mx .h4 and a component Cx
of G- Mx and of C cl(So) Mx such that ]C < ICI and Cx cl(M) can be
c-triangulated,

3. Every edge in C is in exactly one C, given above.

Proof. Suppose that Ccl(So) can be c-triangulated and let G be a c-triangu-
lation of C cl(So). We can therefore apply Theorem 1 and deduce the existence of a
vertex v C such that the subgraph of G induced by the vertices of C cl(So) can
be written as the union of k-trees TK based upon k-clique subsets K c S’ So W {v}.
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We will let J4 consist of these subsets K, which form the bases of the k-trees TK.
Theorem 1 then shows that A/ satisfies the conditions above.

= For the converse, if such a family J4 {Mi E I} of vertex separators exists,
then there exists v E Co such that the graph C [J cl(So) is contained in the union of
c-triangulatable graphs of the form Cx 9 cl(M), where each M J4 is a k-vertex
subset of So t {v} and Cx is a component of G- M and a proper subset of C. These
graphs are (k + 1)-colored, since G is a (k + 1)-partition intersection graph, and hence
can be completed to properly colored k-trees Tx, where V(Tx) V(C U M). This
family of k-trees 9 {T :x e Co {v}} satisfies Theorem 1, so that C U cl(So) is
c-triangulatable. [:l

We can now conclude with our final theorem, referred to in the beginning of this
section.

THEOREM 3. Let G (V, E) be a (k + 1)-colored partition intersection graph and
let S c V be a set of k vertices such that G- S is disconnected and C is a component
of G S. Then we can determine whether C U cl(S) can be c-triangulated simply by
knowing the "answer’ for each smaller graph of the form C’ cl(S’), where S’ is a
vertex separator for G of size k and C is a component of

4. The algorithm. We first modify (if necessary) G using the techniques of
Lemma 1 so that the resultant graph G is a partition intersection graph. We can
therefore assume that the input graph G is a (k + 1)-colored partition intersection
graph.

The algorithm determines which sets S of k vertices in G are vertex separators,
computes all graphs C cl(S) for components C of G- S, and orders these graphs
Ccl(S) by the number of vertices. By performing a dynamic programming algorithm
and computing the answers for each such graph in the order given by the number of
vertices, we can efficiently compute the answer for all graphs of the form C cl(S),
for S a separator of size k and C a component of G- S. This is the basis of our
algorithm.

Note that the obvious recursive algorithm will not produce the running time we
want, since we would have to determine many times over whether the various graphs
C [2 cl(S) are c-triangulatable. Here then is the dynamic programming algorithm.

INPUT: A graph G, with n vertices, and a proper vertex coloring c V
{1, 2,..., k + 1}. We assume that the number of colors present in G is k + 1 and that
G is a partition intersection graph.

0UTPUT: YES or NO.
DATA STRUCTURE: A family A’ {Mi} of k-element subsets of distinctly

colored vertices, which are vertex separators of G. For each set Mi in A’ and for each
of the ri components Cj of G- M, we denote by M, j 1, 2,..., r, the subgraph of
G induced by Cy M with the addition of edges required to make M.i into a clique.
Each such M can either be c-triangulated or not. This will be determined during
the algorithm, in the order of increasing size of the M’s, and an appropriate answer
("yes" or "no") will be stored for each.

ALGORITHM:
for each set M of k distinctly colored vertices
in G, do

if M is a vertex separator of G, then
insert M M and the corresponding

graphs M[ into the data structure
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end-do
sort the graphs M by increasing size

{examine the M in turn by order of number of
{vertices, and determine whether each can be
{c-triangulated. Any properly colored graph of
{k + 1 vertices containing k + 1 colors can be
{c-triangulated;

ifM has size k + 1, set its answer to "yes."
{We will now apply Theorem 2 to each graph
{M and search for a vertex v E M Mi
{and family A4 satisfying the conditions of
{Theorem 2 to determines whether M can be
{c-triangulated.}
for each graph M in order of size h > k + 1, do

for each v M Mi such that
for all x Mi, c(v) :/: c(x), do
{We now check whether for vertex there is
{family j/stisfying the
{conditions of Theorem 2

examine all sets Mm of k distinctly
colored vertices in Mi t {}
which are vertex separators of G

for each such M, let L be the
union of the M that cn be
c-triangulated
If the union of the Lm (for each

Mm above) contains M{ Mi {v},
then set the answer of M to
"yes" and exit-do

end-do
if no answer was set for M,

then set the answer for M to "no"
{Applying Lemma 4 now}
if G has a vertex separator Mi such that

all M/j graphs have the answer "yes,"
then (G can be c-triangulated)

return (Yes)
else return (No)

end-do
end of algorithm

Essentially, the only difference between this algorithm and the partial k-tree recog-
nition algorithm of Arnborg, Corneil, and Proskurowski in [1] is that, for partial k-tree
recognition, we check all subsets of k vertices and we check only those subsets of k
vertices that are distinctly colored.

5. Analysis of running time. The implementation for this algorithm is the
same as for the partial k-tree recognition algorithm of Arnborg, Corneil, and Proskur-
owski in [1]; the running time is therefore O(nk+2). We describe the implementation
suggested for [1].
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If necessary, we will enlarge the graph G (V, E) so that it is edge-covered by
(k + 1)-cliques, using the techniques of Lemma 1. This may add m(k- 1) vertices to
G, where m is the number of edges in G and the graph has k + 1 colors. So let us
assume that the input graph G is edge-covered by (k + 1)-cliques and that n is the
number of vertices in G.

In the worst case, the algorithm checks all subsets of k distinctly colored vertices,
of which there are at most O(nk). Each of these is checked for being a vertex separator,
which takes O(n2) time. The subgraphs Mj are bucket-sorted according to size; this
can be accomplished in time O(nk+l), and it costs only constant time to check the
exit conditions for each M. Each subgraph M has at most n vertices, and we can
access the vertex-separators Mm in constant time as well. Computing the union of
the Lm is of the order of the size of M. Thus, the overall complexity is O(nk+2).

Note that, if the graph G had not been edge-covered by (k + 1)-cliques, the
transformation from G to G would increase the number of vertices to n + m(k 1).
Therefore, for arbitrary graphs containing n vertices, m edges, and k + 1 colors, the
complexity of this algorithm is O((n + m(k 1))k+2).

An alternative approach to this problem would have modified the algorithm in
[1] so that the list would have included all graphs of the form C U cl(S), where S is a
separator of size up to k. This approach avoids having to explicitly enlarge G so that
it is a partition intersection graph, but would have involved a somewhat complicated
case analysis in the inner loop of the algorithm.

6. Further problems. The similarities between partial k-trees and colored
graphs that have c-triangulations led us to this algorithm. It is interesting to note
that it is possible to use this algorithm to find a minimum c-triangulation of G, by
keeping track of the minimum c-triangulation of each of the subgraphs, just as the
algorithm for partial k-tree recognition achieves that for the uncolored case.

There are several more efficient algorithms for partial k-tree recognition that,
unfortunately, do not carry over to this problem. The best of these is the algorithm of
Bodlaender [2], which exploits the fact that partial k-trees are finite-state to obtain a
running time of O(n) time for each fixed k. This approach will not work for the TCGP,
because Bodlaender, Fellows, and Warnow [3] showed that the class of k-colored
triangulatable graphs is not finite-state. As a result, standard techniques to find
efficient algorithms for recognizing these graphs will fail. Thus, an interesting open
problem is whether there exists an deterministic algorithm to determine whether a
given n-vertex k-colored graph can be c-triangulated with running time O(Ckp(n, k)),
for some constant Ck depending on k, and p(n, k) a polynomial in n and k.

7. Acknowledgments. The authors are grateful to the referees whose exten-
sive comments led to tremendous improvements in the exposition. Sampath Kannan
pointed out the trick (of embedding each graph in a partition intersection graph),
which simplified the algorithm, and Martin Vingron helped to clarify the exposition
by a careful reading and criticism of the text. The second author thanks Gene Lawler,
Simon Tavare, and Michael Waterman.
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Abstract. The authors present a lower bound on the maximum size of a bipartite subgraph of
a triangle-free graph that improves a result due to ErdSs and Lovsz. It also gives a polynomial-time
algorithm, while the previous bound was proved by probabilistic methods.
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ErdSs and Lovz (see [6]) proved by probabilistic methods that every triangle-free
graph with m edges contains a bipartite subgraph with at least

) /1 log m-m + cm2/3
log log m

edges, for some positive constant c. We improve their bound to

1/2m + c(m log m)2/3

and show that a bipartite subgraph with at least that many edges can be constructed
by a polynomial-time algorithm. Our approach is related to the proof of ErdSs and
Lovsz. For a given triangle-free graph, (i) color the graph by relatively few colors
and identify each color class with a single vertex of a weighted complete graph, where
an edge weight corresponds to the number of edges between two color classes in G;
(ii) use a symmetrization argument to establish the existence of a large cut of the
complete graph obtained.

We show that both steps can be algorithmized. A suitable coloring can be ob-
tained by successive deletion of "large" independent sets constructed by a method of
Shearer, and the symmetrization argument can be turned into a construction by a trick
due to [9]. The total complexity of the algorithm is bounded by O(n11/3 log-2/3 n).
All logarithms are of base e.

LEMMA 1 (Shearer [13]). Let G be triangle-free graph with n vertices and average
degree d. Let f(d) (dlog d- d / 1)/(d- 1)2, f(0) 1, f(1) 1/2. Then G contains
an independent set of at least nf(d) vertices.

As proved in [13], an independent set S of required size can be obtained by the
following procedure. Let f(d) be the derivative of the above function f. Find a
vertex u (it must exist) satisfying

(dl + 1)f(d) <_ 1 + (dd + d- 2dld2)f’(d),

where d and d2 denote the degree of u and the average degree of the neighbours
of u, respectively. Set S S U {u}, where S is the independent set constructed
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recursively in the subgraph G after deleting u and the set N(u) of its neighbours
from G. Clearly, vertex u can be found in O(n2) time, and hence the complexity of
constructing S is O(n3).

We also use Lemma 1 in a more convenient form: A triangle-free graph G with n
vertices and average degree d >_ 2 contains an independent set of at least n(log d/d)
vertices.

LEMMA 2. A triangle-free graph G with n >_ 15 vertices contains an independent
set of size at least (nlogn)1/2, which can be constructed in O(n3) time.

Proof. If G contains a vertex u of degree greater or equal to d’ (nlogn)1/2,
then the neighbours of u form an independent set of the required size. Assume there
is no such vertex. Then the average degree d is less than d. Assume d > e. By the
corollary of Lemma 1, we have

a(G) > nlgd > 3 logd’ 3 1/2(log-3s + logn + loglogn))
d n d’

>-n
4 (nlogn)l/2

Since log -38 + log log n > 0 for n >_ 15, we have

llogn (3)a(G) >_ n (nlogn)l/2 gnlogn
1/2

If d < e, then

by Lemma 1 and because the function f(d) is decreasing.
THEOREM 1. The chromatic number x(G) of every triangle-free graph G of n

vertices and rn edges is bounded by

rain 4 ldgn 14(10g)2/3
and proper vertex colorings with that many colors can be found in O(n11/3 log-2/3 n)
time.

Proof. (i) Define f(x) 4(x/log x) /2. We show that X(G) < f(n). Since the
general induction step below applies only for sufficiently large value of n, some initial
values should be handled separately. For this purpose, observe a simple bound x(G) <_
Ln/2] + 1. (Choose a pair x, y of nonadjacent vertices and color them by the first
color. Since G is triangle-free, G\{x,y} also contains nonadjacent pair, and so on.)
Since In/2] + 1 < f(n) for n < 17, we are done for these values of n. Furthermore,
we compute that

9 for n 18,
[f(n)J 10 for n 19,..., 24,

11 for n- 25,..., 30.

For n 18, 24, and 30, the graph G contains an independent set of size

(nlogn)l/2 5,6, and 7, respectively. Thus the statement is proved for n < 30.
Furthermore, we will proceed by induction on n. Let n > 30 and assume that
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the statement is true for all values less than n. By Lemma 2, there is an inde-
pendent set S of size at least (nlogn) 1/2. Let G’ G\S. By the induction hy-
pothesis, X(G’) <_ f(n’), where n’ denotes the number of vertices of G’. Then
X(G) <_ 1 + X(G’) <_ 1 + f(n’). We prove f(n’) + 1 <_ f(n). By the "mean value
theorem," we have f(n)- f(n’) (n-n’)f’(z) for some z, n’ _< z _< n. We can check
that f(x) is decreasing for x _> 6. Then

f(n) f(n’) (n n’) f’ (z) >_ (n n’) f’ (n)

(3)1/2 ( n )-1/21ogn-1 =2<3)1/21ogn-1>_ nlogn 2
logn log2n logn

which is greater than 1 for n > 30. Hence x(G) <_f(n) is proved.
(ii) Define n* m2/3/(log m) 1/3. If n _< n*, then we can apply (i) as follows:

( ./ 1 )
1/

_<6x(G) < 4(n/logn) 1/2 < 4(n*/logn*) 1/2 < 4
(logm)l/3 logm (logm)2/3"

Suppose that n > n*. We can also eliminate vertices of small degree (either 0
or 1), i.e., assume m > n. Applying Lemma 1, we find a sequence $1,$2,... ,Sk of
relatively large independent sets, below:

3 log d(Gi_l)Is, >_ lV(a,-)l d-(a,_)

where Go G, Gi := Gi-I\S, and d denotes average degree. Putting ni :=
IV(,-1)[, the pocedue stops when n _< n*. Since

(n*)
1/2 ml/3

x(Gk) <_ 4 logn, <_ 6(logm)2/3’
it is sufficient to prove that k <_ 6(ml/3/log m2/3). Observe that (Gi) _< 2m/n, i.e.,

2 m
I+1 > - n og_ d(,) >

_. n__, og
4 d(G) 4 2m n

For x S, let w(x) IS] -1 Then the number k of colors is equal to k
w(x). The previous observation shows

4 2j2m
w(x) <_ -5 n2 log m

for x E S when Hi-1 >_ n/j. Thus, for the vertices between n/(j- 1) and n/j, the
total weight is at most

(1)
4 n n m 4 2m 1

?Tt3 j-1 j n nlogjm 3 n logj+logwn

Here j was from 2 to n/n* n(logm)l/3/m2/3 := t. If t <_ m/n, then we delete the
first term of the denominator of (1) and obtain

a. , (o,)1/ 4./ (om)l/
m mk w(x)<- n m2/3 log- 3 logw
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Since we assumed t <_ m/n, we have tm/n (mlogm)1/3, i.e., m/n > m/6 and
logm/n > logm. Thus, k <_ 8m/3/(logm)2/3.

If t >_ m/n, then t > m/6, and log t _> log m. Deleting the second term of the
denominator in (1), we obtain

k w(x) < 4 m

j
1

3 n log j

Note that f(1/ log x)dx <_ t/ logt. Consequently,

k< 4m. t _-4m. n (log m)/3
3n log t 3n m2/3 log t

Since logt _> logm, we conclude that k <_ 8(m1/3/(logm)2/3).
The complexity bound O(nl/alog-2/3 n) is obtained, since we must repeat

O(m/3 log-2/3 m) times the search for a large independent set, and each search needs
O(n3) time. [3

Let Kr be the complete graph on r vertices and let w(i,j) be a weight of the
edge ij for each pair of the vertices i,j E {1,..., r}. For S c V,S denotes the set
of edges between S and V\S, and w(6S) := ees w(e) is the weight of the cut 6S.
The maximum cut problem is to find a cut gS of maximum weight w(6S). Clearly, the
maximum bipartite subgraph problem is a special case of the max-cut problem, when
all edge weights are 0 or 1. The maximum bipartite subgraph problem, and hence
also the maximum cut problem, are known to be NP-complete (see [8]).

LEMMA 3. Let Kr be a complete graph, w be an edge-weight function, and M "=

w(e) be the total sum of edge weights. Then
(i) There exists a cut 5S whose weight is at least (1/2 + 1/2r)M,
(ii) We can construct a cut of weight at least (1/2 + 3/7r)M in time O(r3).

Proof. (i) The following probabilistic proof is well known (see, e.g., [5]). Assume
that r 2k (or r 2k- 1) and consider a random 2-partition of the vertex set into
two parts of sizes k (or k and k 1). The probability that the endvertices of an edge
are in distinct classes is k/(2k- 1), which is at least (r + 1)/2r. Hence the solution of
the max-cut problem has value at least M(r + 1)/2r.

(ii) An efficient construction is possible by a trick due to Lieberherr and Specker
(used in [9] for a related problem of partial 2-satisfiability). The construction needs
O(r) steps and ensures the lower bound M in the case where r is a power of a prime.
Otherwise, we must take some s > r, which is a power of a prime, embed Kr into K
(so that the weights of new edges are zero), and find a cut of weight at least M in
K. By a result of Breusch [1], for every integer r _> 48, there exist a prime p such
that r _< p _< r. Hence there is always some prime power s with r _< s _< r (we
must check only values r _< 47). Hence we proved the bound of (ii). In fact, the gap
between consecutive primes p and p’ is o(p) as p c. The construction of [9] goes
as follows.

A permutation group G is said to be doubly transitive when, for every quadru-
ple i 7 i’ and j = j’, there is a permutation r such that r(i) j and r(i’)
j/. For example, the full permutation group is doubly transitive, but fortunately
there are also much smaller doubly transitive groups. Let G be a doubly transi-
tive group on {1,..., s}. Consider the system of 2-partitions (S, Y\S),r E G,
where St {r(1),..., r([s/2])}, and observe that every edge ij of the graph G is
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separated by the same number of partitions (S, V\S). Hence, the above proba-
bilistic proof by ErdSs can be modified so that only the partitions (S, V\S) are
considered. Thus, we have w((S)) >_ M(s + 1)/2s for some e . Hence we can
check all the partitions (St, V\S), r E G, and one of them is a required solution.
This gives a polynomial-time algorithm, provided that we have a doubly transitive
group of polynomial size. A doubly transitive group of size s(s 1) can be obtained
from a finite field GFa], s pa by taking G as the permutations i iq + r,q,
r e GFa], q # O.

As a consequence of Theorem 1 and Lemma 3(i), we have the following lower
bound.

THEOREM 2. Let G be a triangle-free graph with n vertices and m edges. Then
G contains a bipartite subgraph with at least

m 1
(m log m)2/3(2) +

edges.
For m large (m > cn3/2(logn)/2), a better estimate

m 1 log n
() +

can be obtained applying the first bound of Theorem 1.
CORLLARY 1. There is an O(n/3 log-2/3 n) time algothm that, for a given

triangle-free graph with n vertices and m edges, constructs a bipaite subgraph with
at least

m 1
+ (m

or

m 1 n

edges.
Proof. The algorithm is as follows. We first construct an r-coloring of G with

r <_ 12ml/3 /(log m)2/3 in O(n11/3 log-2/3 n) time. Then we apply the algorithm of
Lemma 3(ii) to find a large cut of the complete graph Kr, where the weight w(ij) is
defined as the number of edges between the color classes and j in G. The construction
of the cut requires O(r3) O(m/log2 m) time, which is less than the time we need
to color G.

In [7] there are two other lower bounds

m 2m(2m2 n3)
(4)

2 n2(n2_2m

and

am2

n2

on the size of a maximum bipartite subgraph of a triangle-free graph. Let us compare
n2bounds (2)-(5). Bound (5) is best for m greater than (4) is best for m between
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n2nT/a(logn) 1/a and (3)is best for m between n3/2(logn)/2 and nT/a(logn)/a,
and (2) is best for m less than n3/2 log/2 n.

PROPOSITION 1. Both bounds (4) and (5) can be achieved by a polynomial-time
algorithm.

Proof (sketch). In the case of (4), find an edge uv of G that is contained in the
maximum number of quadrilaterals (cycles Ca). Set S :=- g(v) and Sv :-- N(u)
(where N(x) denotes the set of the neighbours of x), and add successively the remain-
ing vertices x E V\(S U Sv) to one of Su and S., depending on where x has fewer
neighbours. The resulting partition S t2 S V induces a bipartite subgraph with
at least (4) edges.

The procedure for (5) is even simpler; the required bipartite subgraph is induced
by a bipartition (N(u), Y\N(u)) for a suitable vertex u e V. D

Even better bounds are known for some special cases. Bondy and Locke [2] proved
that every triangle-free graph with degree at most 3 contains a bipartite subgraph
with at least rn edges, and the subgraph can be constructed in polynomial time.
Locke [10] proved that a 2k-regular triangle free graph contains a bipartite graph
with m(k + 2)/(2k + 2) edges (and a similar bound for 2k + 1-regular graphs). Some
of Locke’s estimates have been generalized by Caro and the second author in [3]. Z:ka
[15] presented a lower bound for 3-regular graphs with large girth.

In the general case, for a connected graph with possible triangles, there is a
bipartite subgraph with at least 1/2m + 1/4(n- 1) edges, as proved by Edwards [4].
A polynomial-time algorithm to find such a subgraph has been given in [11] and
generalized to the weighted case in [12].

Note added in proof. Recently, Shearer [14] proved that every triangle-free graph
with rn edges contains a bipartite subgraph with at least m[2 + am3/4 edges. This
improves the bound of Corollary 1 when m is less than n2/logzn. However, it remains
an open question whether the improved bound can be attained by a polynomial-time
algorithm.
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Abstract. The sum of squares of the edge lengths of the tour provided by the spacefilling curve
heuristic applied to a random sample of n points from the unit square is proved to be asymptotically
equal to a periodic function of the logarithm of the sample size.
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1. Two sources of motivation. Two lines of investigation come together to
form the motivation for the present work. The first of these concerns the behavior
of the sums of squares of the edge lengths in several classical problems of geometric
combinatorial optimization. The second concerns recent progress in the understanding
of the behavior of the spacefilling curve heuristic for the traveling salesman problem
(TSP).

Sums of squares of edges. This line begins with an empirical discovery of R.
Bland. Since we obtain the same minimum spanning tree (MST) for a set of n
points (Xl,X2,...,Xn} C [0,1] 2 whether we assign edge costs cij that are equal to
the Euclidean length lxi xjl or to the square of the lengths lxi xll 2, we can
save some computation time by working with the squared lengths. When Bland used
the sum of squared edge lengths as the feature of merit in a study of algorithms
for the MST, he found after computing the MST of a number of random samples of
different sizes from [0, 1] 2 that the value of the minimum value of the sum of squared
edge lengths showed very little dependence on n and little variation between samples.
Bland was led to conjecture that there is a constant CMST such that for the MST of
(X1, X2,..., Xn) where the Xi are independent random variables with the uniform
distribution on [0, 1] 2, we have

(1) nlirn Ilell 2 CMST
eMST

with convergence in probability. This conjecture was proved in Aldous and Steele [1].
The method used to prove (1) relied on the possibility of calculating the MST via

a greedy algorithm. Still, there are many functionals that are closely related to the
MST for which there is no such possibility. Probably the most studied of these is the
TSP that asks for the shortest tour through the points {Xl,X2,... ,xn} C [0, 1] 2. We
do not know at present whether the analogue to (1) holds for the TSP.

For the worst-case analysis, the state of knowledge for the TSP is more complete.
Snyder and Steele [10] showed that there is a universal constant CTSP such that, for
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any S {Xl,X2,... ,Xn} C [0, 1] 2 and any tour T of S of minimal length, we have

(2) I1112 CTSP log n.
eET

In subsequent analyses, Bern and Epstein [3] showed that the logarithmic term of (2)
could not be replaced with a more slowly growing function.

Limit theory for the spacefilling heuristic. The spacefilling curve heuristic rests
on the existence of a surjective mapping [0, 1] --, [0, 1] 2 such that for each
x e [0, 1] 2 we can quickly compute a t e [0, 1] such that (t) x. Formally, given
{xl,x2,... ,Xn} C [0,1] 2, we have a three-step process where we (1) compute a set
of points {tl,t2,... ,tn} C [0,1] such that (t) x for each 1 <_ i <_ n, (2) or-
der the t so that t(1) _< t(2

_ _
t(n), and, finally, (3) define a permutation

a- [1, n] [1, n] by requiring x() (t()). The path that visits {x,x2,...,xn} in
the order of x(),x(2),... ,x(n) will be called the spacefilling curve path, and the
tour that closes this path by adding the step from x(n) back to x() will be called
the spacefilling curve tour.

Here we will focus on the behavior of the spacefilling curve heuristic in the context
of the simplest possible stochastic model, where the points to be toured are modeled
by independent random variables X, 1 _< _< n that are uniformly distributed in

[0, 1] 2. In [4], results of Platzman and Bartholdi [8] were refined to show that for a
large class of spacefilling curves (SFCs) the length LsFc LSFC(x,x2,..., X,) of
a spacefilling heuristic tour through {X1, X2,..., X} satisfies

ELSFc(3) limo v"-(logp n)
1,

where p is an integer depending on the geometry of the spacefilling curve and where
is a continuous periodic function of period 1 that is bounded away from zero. This

behavior offers a novel contrast to that of the length --aT’OPT LnOPT (X1, X2,..., Xn)
of the shortest tour through the random sample {X1, X2,..., X}, where the theorem
of Beardwood, Halton, and Hammersley [2] declares that for the optimal solution no
periodic term is needed; rather, there is simply a constant fl > 0 such that for n --. oc
we have

where the convergence takes place in expectation as well as with probability 1.
The purpose of this article is to provide a precise asymptotic understanding of the

sum of the squares of the edges of the tour provided by the spacefilling curve heuristic

n n

(4) & IlX(,) x(,+) II : lie(t(,)) (t(,+1))112
i=1 i=1

where we invoke the convention that

a(n + 1) def defa(1) and t(n+) t().

We will establish the possibly surprising fact that for a large class of spacefilling curves
the value of this random variable is well approximated by a periodic function of the
logarithm of the sample size.
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2. Main result. The first three properties described below are found in many
classical spacefilling curves, including those of nilbert [5] and Peano [7]. For these and
related curves, the ordinary Lipschitz property and the bimeasure-preserving property
are established in Milne [6]. The dilation and translation properties are easily verified
by direct consideration of the traditional constructions, and only minor alterations
of the usual constructions are needed to obtain curves with the circular Lipschitz
property Assumption 4.

Assumption 1 (dilation property). There is an integer p >_ 2 such that, for all
0

_
s, t

_
1,

s t

Assumption 2 (translation property). For 1 _< i _< p, if (i-1)/p <_ s,t <_ i/p, then

I[(s) (t)ll ]l(s + i/p) 2(t +
Assumption 3 (bimeasure-preserving property) Given any Borel set A in [0, 1],

the set (A) is measurable, and

1 (A) A2((A)),

where Ad is the Lebesgue measure on d.
Assumption 4 (circular Lipschitz property). There is a constant c such that

I1(,) (t)ll _< ccp(s, t)/,

where p is the circular metric on [0, 1] given by

p(s, t) min{[s- t], 1 -]s t[}.

The main result of this article is the following theorem.
THEOREM 1. If a heuristic tour is built using a spacefilling curve that satisfies

Assumptions 1-4, then there exists a strictly positive continuous function o of period
1 such that

ES=
n)

where p is the integer of Assumptions 1 and 2.

3. Convergence of expectations. We first recall that a that satisfies As-
sumption 3 creates a natural correspondence between random variables with the uni-
form distribution on [0, 1] 2 and [0, 1]. We safely omit the routine proof.

LEMMA 1. Suppose that X is a random variable that is uniformly distributed in

[0, 1] 2 and that ’[0, 1] - [0, 1] 2 is a surjection. Let * be a function that, for every
x E [0, 1] 2, selects a preimage of x; that is, * satisfies (*(x)) x. For t defined
by t *(X), we have the fact that t is uniformly distributed in [0, 1], provided that
the spacefilling curve satisfies the bimeasure preserving Assumption 3.

One key to the analysis of Sn is that ESn has a tidy expression in terms of the
independent (unordered) ti’s. If d(s, t) is given by

t-s if O<_s<_t<_l,d(s,t) 1-s+t if 0 _< t _< s _< l,
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then d(s, t) describes the distance along the circle of unit circumference in the coun-
terclockwise direction from s to t, and we can write Sn in the symmetrical form

where

n

I1() (( + ) mod 1)112
i--1

5i min d(ti, tj)
tj

and Si (tl, t2,..., ti-1, ti+l,..., tn). Moreover, the variables 5i and ti are indepen-
dent, and for each the variable 5i has probability density given by

f(t) (n-1)(1-t)-2;
so we can compute

n

ES E [](ti) ((ti + 5i) mod 1)]2

E(t,) ((tl + 51) mod )]

n II(s) ((s + t) mod 1)l(n- 1)(1 t)-dsdt.

inally, introducing

we end up with the following lemma.
LNNa 2 (key representation). It holds that

(6) ES n(n- 1) re(t)(1 t)-dt.

To use this representation, we must collect some properties of m(t). From the
definition of m(.) and the circular Lipschitz property (Assumption 4) of , we imme-
diately find a useful pointwise bound.

LEMMA 3. For 0 <_ t <_ 1, we have

2 min(t, 1 t),m(t) <_ c,
where c is the Lipschitz constant of Assumption 4.

To get to the deeper properties of re(t), we first set q lip and define a sequence
of related functions {fn}n_>0 on the increasing intervals [O,p=q] by

fo(t) II(s + t) (s)ll2ds, 0 <_ t <_ q

and

O<_t <_p’q.
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We also define a parallel sequence of functions {gn}n>0 by

2t2 0<t<q o(t) A(t)

and

gn(t) pngo 0 (_ t (_ pnq.

The benefit of introducing fn and g is that we can show that they share a common
limit that offers insight into the behavior of re(x). We first establish a monotonicity
relationship.

LEMMA 4. There is a function w(t) such that for all n >_ 0 we have

(7) f(t) <_ f+l(t) <_ w(t) <_ g+(t) <_ g,(t), 0 <_ t <_ pnq.

Proof. For any 0 <_ x <_ q, we see from the definition of m(x) that

P fiq--x(8) m(x) >_
-.= J (-l)q

Next, by the translation Assumption 2, by changing variables, and by the dilation
Assumption 1, we obtain

lie(s) (s + x)ll2ds p lie(s) (s + x)ll2ds
J (i--1)q

fpq--px 8
2

(9) o

I /1-px lie(s) (s + px)ll2ds
PJo
1

P

By combining (9) and (8), we find the basic fact that

1
(10) re(x) >_ -m(px),
and from (10) the first inequality of (7) follows immediately.

Turning to the g, we first note by the definition of go and identity (9) that for
0 <_ x _< q we have
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By the Lipschitz property of , we have

lie(s) (s+x)lj2ds 2 ,2ccx <_ 0;

so, after replacing x by x/p, we have for 0 < x < 1 that go(x) >_ pgo(x/p), and our
inequality for go immediately yields the last inequality of (7).

Local boundedness and monotonicity of the sequences fn (x) and gn (x) tell us the
sequences have pointwise limits. The definition of gn further tells us that

(12) gn(X) fn(x) 2 2
cCx /pn, 0 <_ x <_ pnq;

so, in fact, both fn (x) and g(x) must have the same limit; moreover, if we denote this
limit by w(x), then by the first and last inequalities of (7) we have for 0 < x < pnq
that

(13) A(x) < (x) < (x),

completing the proof of Lemma 4.
The next lemma shows how w(x) approximates re(x) and articulates a vital scal-

ing property.
LEMMA 5. The function w has the following properties:

2t forO<t<l() (t) <
(b) For 0 < t <_ q l/p, Im(t) w(t)] <_ ct22,
(c) (t) (t/).
Proof. By Lemma 3, we have m(u) <_ 2ccuforO_<u_< 1; so, for0<_x<_p’qwe

have

n 2 n 2(14) fn(X) pm(x,p) <_ p ccx/p cCx,

yielding (a). To show (b), we note that the case where n 0 in inequality (7) states
that, for 0 _< x <_ q,

.(x) fo() <_ -() < 0().

and, by the definition of go, we obtain

Ira(x) zo(x)[ < Igo(x) fo(x)l 2 2
=cCx O<_x<_q.

All that remains is to establish (c). By Lemma 4 and the definition of go, we have

w(x/p) n--.olim pnm pn

n--.o p pn+l

(x)/p.

completing the proof of the lemma.
LEMMA 6 (first Laplace representation). As n -- oc, we have

(15) ESn n2 m(t)e-ntdt + O(1/n).
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Proof. The difference between ESn and the integral of (15) is bounded by

n(n- i)(im(t) ln2e-nt t)n-21dt

and, by Lemma 3, m(t) O(t) as t --+ 0; so easy estimates give the lemma.
We can modify this last representation slightly to obtain one with the form of a

standard Laplace integral. First, we note that

ES, n e-’tm(t)dt + n e-’tm(t)dt + O(1/n)

n e-’tw(t)dt + O(1/n),

since

and

/0
q

/0
q

n2e-ntlm(t w(t)ldt <_ n2e-ntct2dt O(1/n)

n2 m(t)e-ntdt < n2 c2te-ntdt _< ccn2e-nq.

Moreover, we have

n2w(t)e-ntdt < n c te-ntdt O(ne-q’);

so we have proved the following lemma.
LEMMA 7 (second Laplace representation). It holds that

ES n2 w(t)e-tdt + O(1/n).

All that remains is to show that the last integral is a periodic function of logp n. If
we let I(n) denote the value of the integral, divide the interval [0, oc) into subintervals
gk/n, pk+l/n], where -oc < k < oo, and let t pk+u/n, then we obtain

(6)

oo -pk+l/n
I(n) n2 E w(t)e-ntdt

--n w(pk+U/n)pk+u exp(-pk+u) log pdu.

Using the key recursion relation of Lemma 5, part (c), we have w(pk+U/n) pkw(pU/n);
so

/01 }I(Tt) 1ogp w(pu-log, n)/(pu-logp n) p2(k+u) exp(_pk+U) du
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where l(u) is defined by

l(u) p2(k+u)exp(_pk+u).

Since the defining sum for converges uniformly on compact subsets of [0, cx)), we see
that is continuous. Furthermore, if we define a function a by

j01 {w(p-(X-u))/(p-(x-u)(17) a(x) logp ) l(u)du,

the continuity of l, the local boundedness of w, and the convolution form of (17) show
that a is also continuous. Since a(logp n) I(n), we can write Lemma 7 as

(18) ES (o) + O(/n),

and the proof of the theorem is completed once we establish the following lemma.
LEMMA 8. The function a is continuous, periodic of period 1, and bounded away

from zero.

Proof. We have already noted the continuity of a, and periodicity is immediate
from the recursion w(pu) pw(u) combined with the integral representation (17) of
a. The integral representation also gives a(x) _> 0 for all x.

By compactness, a will be bounded away from zero unless there is an x0 such that
(x0) 0. However, for such an x0, we would get from (17) that w(p-(x-)) 0 for
all 0 <_ u _< 1. By the recursion w(pu) pw(u), we could then conclude that both
and ES, were identically zero. This contradiction establishes that (x) is bounded
away from zero. By (18) and division by (logp n), we find that

E 1 + O(1/n)(log n)

which is more than we require to complete the proof of the theorem.

4. Beyond expectations. One finds no difficulty in extending Theorem 1 be-
yond the convergence of expectations to almost sure convergence. The first step is
to obtain an understanding of VarSn, and this is easily approached though the use
of martingales. For the martingale difference sequence defined by di E(SnlJ:i)
E(Sn I’i-1) where ’i a{X1, X2, Xn}, we have the representation

n

Sn ESn di,
i=1

and, by the orthogonality of the martingale differences, we have

VarSn EISn ESnl2
n

i--1

To help estimate Ed2i, we introduce another collection of random variables (i, 1 _<
<_ n} that are assumed to be independent, uniformly distributed, and independent

of the random variables (Xi, 1 <_ i <_ n}. We then let S(ni) denote the sum of squares
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of the edges in the spacefilling heuristic tour of (X1,X2,... ,Xi-l,Xi, Xi/l,... ,Xn}
and note by E(S(ni)]Jzi) E(Sn]JZi_l) that we have

The basic observation is that the tours associated with Sn and S(i) differ by at
most six edges. Furthermore, if we recall the oriented distance function d(s, t) defined
in 3 and specify integers jl and j2 by the relations

d(tjl ti) min d(tj, ) and d(, tj2) min d(i tj)
j:ji j:jyi

then we obtain the spacefilling tour through {X1, X2,..., Xi-1, fi, Xi+I,-.., Xn} by
connecting i into the spacefilling tour through {X1, X2,..., Xi-1, Xi+I,..., Xn} by
edges to Xjl and Xj2 and removing the edge that connects Xj and Xj.. We are thus
led to

(ni) S(X1, X2, ,Xi-l,Xi+l,... ,Xn)-lie(q,)- ()112

Similarly, to build the spacefilling tour through {X1, X2,..., Xn} from the tour through
{X1,X2,...,Xi_I,Xi+I,...,Xn} we find kl and k2 such that

d(tk, ti) min d(tk,ti) and d(ti, tk:) min d(ti, tk);
k:kyi k:ki

from which we obtain

n S(X1, X2, ,Xi-l,Xi+l,... ,Xn)-II(t,)- (t)llu

/ [l(t) (t.)ll -II(tx) (t)l[u-
The implied bound on IS(i)- Snl is then

I() Sl _< II(q) ()112 + 11() (q=)ll2

/ lie(rye) (t.)ll 2 / II(tk) (t)ll
/ II(t) (tk,)ll / II(tk) (tk)ll,

from which we find by Assumption 4 that Eldil2 <_ EIS S(ni)l 2 is bounded by

(19)
2 t02 p2 92 tO

2 p2

The computation of the expectations in (19) are now routine, given the known distri-
bution of the gaps between n (or n- 1) points chosen on the unit circle. All of these
expectations are 0(1/n2), and hence we have Lemma 9.

LEMMA 9. For n --+ x, the variance of the sum of squares of edges Sn satisfies

VarSn O(1/n).

Now we are ready to prove the almost sure convergence of S.
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THEOREM 2. We have

n. (logp n)
1 a.s.

Proof. The remaining steps follow a familiar pattern and will just be sketched.
First, we consider a subsequence by letting ni [i log2 i]. By Chebyshev’s inequality,
for any e > 0, we have

E P(ISn ESn, > e)

_
e-2 E VarSn,

_
e-2 E i-1 lg-2 i < ;

i--1 i=2 i=2

so, by the easy part of the Borel-Cantelli lemma, for n --, cx, we have (Sn-ES, ---* 0
with probability 1. To stretch the convergence to the full sequence, we look at the
largest difference V of Sn and S, as n varies through the intervals [ni, ni+l),

V max ]Sn Sn, ].
n _n_n+

For each n such that n_ _< n _< n, the number of terms that occur in Sn and not
in S, or vice versa is at most O(n- n_) O(log2 i). If A denotes the set of all
such terms, then ]A] O(loga i); and, if L is the largest of these terms, then by
Assumption 4 and the classical proof of the fact that the largest gap between n points
chosen at random from the circle is sharply concentrated around n- log n, we can
show that EL O(n;2 log2 n). Since V _< Idln, we see EV2 O(i-2 log i); so,
again by the Borel-Cantelli lemma, we see that, for n --, cx, we have V -- 0 with
probability 1, which, in turn, completes the proof of the theorem.

5. Concluding remarks. We have established a striking property of the sum
of squares of the heuristic tour provided by the spacefilling curve method. Of the
questions that remain open, the most natural are perhaps those that seek a more
detailed understanding of , the periodic function that figures in Theorem 1. The
(centered) supremum norm of determines the strength of the oscillation of ESn,
and almost nothing is known about this norm. Simulations offer little insight because
of the slow growth of logp n and the difficulty of estimating ESn. Still, calculations
given in Platzman and Bartholdi [8] would suggest by analogy that the oscillation
due to is not large, perhaps only a few percent. This reinforces the difficulty of
obtaining detailed information about from simulations.

Another natural question addresses the possibility of obtaining sharp bounds on
the tail probabilities P(Sn >_ t). In view of the remarkable work of Rhee and Talagrand
[9] on the Gaussian tail bound for the optimal length of the TSP tour length, we are
tempted to suggest that P(Sn >_ t) <_ A exp(-Bt2) for all some A and B and all t _> 0.
Some of the structure that Rhee and Talagrand require (like the martingale used in
4) is available in for Sn, but a detailed understanding of P(S, >_ t) seems to require
additional insights, since, in particular, S may have tails that are much lighter than
those of the Gaussian distribution.

Perhaps the most compelling problems suggested by this work concern the be-
havior of the optimal tours rather than the heuristic cousins. First, if we let .TSPn
denote the sum of the squares of the edges in the (almost surely unique) shortest tour
through a random sample of n points chosen from the unit square, do we have

lira EsT sP C
n--- (:x:)
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for some constant C?
Finally, there at least one compelling problem concerning the worst-case behavior

of the sum of squared edges in an minimal length path. If S is a finite subset of [0, 1] 2
and TSP(S) denotes a path of minimal length through the points of S, we suspect
that

eeTSP(S)

is asymptotic to c log n as n -- c. By the results cited in the first section, we know
M, O(log n) and M t(log n), but the present methods offer no serious progress
toward a full asymptotic result. The periodicity that has been found for ES shows
that subtleties can emerge, though we need not expect them at every turn.
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EULERIAN SELF-DUAL CODES*

L. BABAI, H. ORALS, AND K.T. PHELPS

Abstract. The authors present a construction of binary self-dual codes from Eulerian graphs
and establish that the code will be indecomposable if and only if the vertices of degree 2 are not a
cutset of the graph. The construction-is used to establish that every finite group is isomorphic to
the automorphism group of some self-dual code. It is further shown that deciding isomorphism of
self-dual codes is at least as difficult as graph isomorphism.

Key words. Eulerian graph, self-dual code, automorphisms
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1. Introduction. There are many constructions of codes from the incidence ma-
trices associated with graphs, designs, and so forth. While in most cases the codes are
not especially good, the structure of the combinatorial object allows us to establish
results about the corresponding code. For example, the vertex-edge incidence matrix
of a connected graph X generates a code of length IE(X)I and dimension IXI- 1.
Nonisomorphic graphs may generate isomorphic codes. However, as a consequence of
a famous result of Whitney, the codes of 3-connected graphs are isomorphic if and
only if the graphs are. One consequence of this construction of codes is that every
finite group is the automorphism group of some linear code. Another consequence is
that deciding on the isomorphism of linear codes is at least as difficult as deciding on
the isomorphism of graphs. In this paper, we intend to establish similar results for
self-dual codes, but first we present a construction of self-dual codes from Eulerian
graphs.

Before proceeding with the construction, we introduce some definitions. First, a
binary code of length n and dimension k is just a linear subspace of Vn, the vector
space of dimension n over GF(2). A code is said to be self-dual if it is equal to its
dual. Of course, this means that the length n is even and that the dimension is n/2.
A self-dual code is said to be indecomposable if it is not isomorphic to the direct sum
of two shorter self-dual codes.

A connected graph X is Eulerian if all vertices have even degree. If the graph is
not connected but each component is Eulerian, our construction still applies. However,
the self-dual code constructed in this manner is clearly decomposable.

There is at least one other construction of self-dual codes from graphs: The face-
vertex incidence matrix of a cubic planar bipartite graph generates a self-dual code [2].
However, the structure of these codes in terms of automorphism groups and others is
limited.

2. Eulerian self-dual codes. Let X be an Eulerian graph on n vertices
{xl,...,xn} with no isolated vertices. For each edge e (x,xj) of X, we intro-
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duce two half edges or flags, denoted by [e, xi] and [e, xj]. We define the edge-flag
incidence matrix of X as follows.

DEFINITION. Let A [hi/] be the IE(X)I 21E(X)I binary incidence matrix
whose rows are indexed by the edges of X and columns are indexed by the flags (half
edges). An edge e’ is incident with a flag [e, xi] if e’ e, and e’ is incident with xi.

We henceforth identify the rows of A by the edges of X. Note that the weight of
any row of A is just the number of l’s in it. We now can prove the following result.

THEOREM 2.1. Let X be an Eulerian graph on n vertices and let A be the edge-flag
incidence matrix of X. Then A is a generator matrix of a binary self-dual code.

Proof. We must prove that the rows of A are orthogonal to each other and
that they are linearly independent. Let A be row of A corresponding to the edge
e (x,xj) of X; then the weight of A is equal to d(x) + d(xj) 2, which is even.
So any row of A is orthogonal to itself. Let A and Av be two distinct rows of A
corresponding to the edges (x,xj) and (xk,xl). If X,Xj,Xk,Xl are all distinct, then
A and Av have no l’s in common, and so they are orthogonal. If they share a vertex
(say) xi xk, then Au and A have d(xi)- 2 l’s in common. Again, since d(xi)- 2
is even, this implies the orthogonality of A and Av.

Now we prove that the rows of A are linearly independent. Assume that we can
find a subset B of edges of X such that eeBA 0. Let xi be a vertex of X
with degree di; then xi corresponds to di flags (half edges) and thus di columns of
A. The nonzero entries in these columns of A occur in the rows that correspond to
the edges of X incident with the vertex xi. This di di submatrix of the matrix A
is just Jd Ida, where J denotes all-l’s matrix, I denotes the identity matrix, and
the subscripts indicate the dimension. Since this submatrix has full rank, there can
be no edges in B incident with xi, and thus B must be empty. We deduce that any
nonempty subset of the set of rows of A is linearly independent, and thus A has full
rank. Therefore A is a generator matrix of a self-dual code of length

Let X be an Eulerian graph and let C the corresponding self-dual code. Each
codeword of C corresponds to an edge-induced subgraph of X. Let u be an element of
(7 and let U be the corresponding subgraph of X. Let x be a vertex in U. By dv(x),
we denote the degree of x in the subgraph U. As we noted in the proof of Theorem
2.1, each vertex x X corresponds to d(x) columns of A and thus d(x) coordinate
places of any codeword u. Let u(x) denote the coordinate places corresponding to the
vertex x X. Then we have that the number of nonzero entries in u(x) is dv(x) or
d(x)- d(x), depending on whether du(x) is even or odd, respectively. To see this,
observe that the sum of k rows of Jd Id has weight k if k is even and if weight
di k if k is odd. Obviously, the weight of u is just the sum of the weights of the
u(x),x V(U), and these weights are always positive. Using the above explanation
and Theorem 2.1, we can prove the following theorem.

THEOREM 2.2. Every finite group is isomorphic to the automorphism group of
some binary self dual code.

Proof. Let X be a 4-regular graph of girth 7 on n vertices and let A be the
edge-flag incidence matrix of X. By Theorem 2.1, we know that the row space of A
is a self-dual code C of length 4n. It is relatively easy to show that any finite group
occurs as the automorphism group of an 4-regular graph of girth 7 (e.g., see [5]). If
we prove that the automorphism group of C is isomorphic to the automorphism group
of X, we are done. To prove this fact, first we prove that (: has no element of weight
6 other than the rows of A.

Each vertex of X has degree 4, so the weight of each row of A is 6. Since the
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rows of A are linearly independent, then there is a one-to-one correspondence between
edge-induced subgraphs of X and the elements of C, namely,

UcX+--- Ae
eE(U)

(where Ae is the row of A corresponding to the edge e E U and where the summation
is modulo 2).

Let u be an element of C and let U be the corresponding subgraph of X. Let x
be a vertex in U. By dv(x), we denote the degree of x in the subgraph U. We assume
that U is not an edge, so it has at least two edges and hence at least three vertices.
If the number of vertices of U is less than 7, then U is a forest, and hence it has at
least two vertices of degree 1. Since the vertices of degree 1 contribute 3 to the weight
of u, the weight of u is strictly greater than 6. If U has at least 7 vertices, then the
weight of u is at least 7, since the contribution of each vertex is positive. Thus the
only elements of weight 6 are the codewords corresponding to the edges of X.

Since the only codewords of weight 6 are the rows of A, any permutation of the
columns of A is an automorphism of C if and only if it induces a permutation of the
rows of A (i.e., the edges of X) and thus is an automorphism of X. This proves our
theorem. [:]

We mentioned that, if the graph is not connected but each component is Eulerian,
then our construction would give a decomposable self-dual code. We next characterize
graphs that give indecomposable codes. In particular, we prove that the code we
obtain with this construction is indecomposable if and only if the graph does not
contain a set vertices of degree 2 that is a cutset. Obviously, if the graph is not
connected, then the empty set is such a cutset, and thus it is sufficient to prove this
for Eulerian graphs.

To prove this result, we first note that codewords corresponding to the edges of
the graph are minimal. Let Sup(u) {ilui 1} denote the support of a codeword u;
then u E C is minimal if there is no nonzero codeword in C whose support is a proper
subset of Sup(u). Since each codeword corresponds to a subgraph and each vertex of
positive degree in this subgraph contributes to the support, if Sup(w) c Sup(u) for
u, w C, then V(W) C V(U), where W, U are the subgraphs corresponding to w, u
and V(W), V(U) are the vertex sets of these edge-induced subgraphs. In particular,
this means that, assuming there are no multiple edges, the words corresponding to
edges are always minimal.

THEOREM 2.3. Let X be an Eulerian graph and let C the self-dual code constructed
from it; then C is indecomposable if and only if no subset of vertices of degree 2 in X
is a cutset.

Proof. Let X be an Eulerian graph and let A the corresponding edge-flag incidence
matrix as constructed above; let C be the self-dual code having A as its generator
matrix. Since the rows of A are minimal codewords, the code C is decomposable if
and only if the matrix A is, that is, if and only if A is equivalent to

A1 0
0 A2 )"

Note that, since the rows of A are independeng and mutually orthogonal, both A1
and A generate self-dual codes.

For any vertex z e X having degree d(x) > 2, the corresponding d(x) columns
in A must all be congained in ghe same part. On ghe other hand, the two columns of
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FIG. 1. Graphs that produce isomorphic codes.

A corresponding to a vertex of degree 2 in X can be in different parts, as they have
only one nonzero entry. If a set of vertices of degree 2 is a (minimal) cutset in X,
then this induces a decomposition of the matrix A. Conversely, any decomposition of
A can only split sets of columns corresponding to vertices of degree 2, and thus these
vertices must form a cutset in X.

3. Isomorphism of Eulerian self-dual codes. While isomorphic Eulerian
graphs produce isomorphic self-dual codes with the above construction, the converse
is not true in general. However, we show that it is true for a class of graphs that are
isomorphism complete, that is, equivalent to the graph isomorphism problem.

In Fig. 1, we give two Eulerian graphs that give isomorphic self-dual codes. The
codes are decomposable. An indecomposable self-dual code of length 20 can be con-
structed from both K5, the complete graph on five vertices, and the graph on six
vertices in Fig. 2. Consider the code constructed from K5; it has exactly five dis-
joint codewords of weight 4 corresponding to the five subgraphs K4. Figure 2 has
four words of weight 4 that correspond to edges and one subgraph K4 that gives the
fifth word of weight 4. Since there is only one such indecomposable code of length
20, which is called M20 in [4], we conclude that they are isomorphic. We give the
generator matrix constructed from K5 in Fig. 3.

FIG. 2. Graph on ten edges.

We now consider the isomorphism problem for self-dual codes, which is as follows:
Given two self-dual codes of length n, is there a permutation matrix that maps one
subspace to the other? If we represent the code by an explicit list of all codewords,
then the isomorphism question is equivalent to graph isomorphism. However, linear
codes are usually represented by a generator matrix (or basis), which is logarithmic
in the size of the code. Next, we intend to establish that the isomorphism problem
for graphs reduces to the isomorphism problem for self-dual codes.

There are various classes of graphs that are known to be isomorphism complete:
regular graphs, Eulerian graphs, regular bipartite graphs, and so forth [1]. We claim,
in fact, that the following result can be easily proved using the same techniques.
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LEMMA 3.1. Regular Eulerian bipartite graphs of degree r containing no subgraph
isomorphic to the complete bipartite graph Kr-l,r-1 are isomorphism complete.

We now show that two graphs from this class are isomorphic if and only if the cor-
responding self-dual codes are; thus, deciding graph isomorphism reduces to deciding
isomorphism of self-dual codes.

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

0 1 1 1

1 0 1 1
1 1 0 1
1 1 1 0

0 1 1 1

1 0 1 1

0 1 1 1

1 0 1 1

1 1 0 1 1 1 0 1
1 1 1 0

0 1 1 1

1 0 1 1

1 1 0 1
1 1 1 0 1 1 1 0

FIG. 3. Self-dual code from K5.

THEOREM 3.2. Let X and X* be two regular Eulerian bipartite graphs of de-
gree r having no sub-Kr-l,r-1 and let C and C * be the corresponding self-dual codes
constructed from them as above. Then these graphs are isomorphic if and only if the
self-dual codes are.

Proof. Let X be a regular bipartite graph of degree r, where r is even, and
assume that it does not contain a sub-Kr_1,-1. Let C be the corresponding self-dual
code. We intend to show that the only codewords in C of weight 2r 2 are those
corresponding to edges in X. First, note that 2r- 2 2 (mod 4), since r is even.
If U is an edge-induced subgraph of X whose vertex degrees are all even, then the
corresponding codeword u has weight wt(u) 0 (mod 4). To see this, recall that
wt(u) is just the sum of the degrees in this case; however, a bipartite graph with all
vertex degrees even has an even number of edges, and hence the sum of the degrees
is divisible by 4.

Now consider subgraphs U having 2k odd vertices, k _> 1. We assume that the
vertices of odd degree are {xl, x2,..., x2k}. If u is the corresponding codeword, then

2k n

+
i--1 i--2k+l

We wish to minimize this expression over all subgraphs U C X having at least two
edges and least two vertices of odd degree. Assume that we have 2k kl + k2 vertices
of odd degree with kl in one part and k2 vertices in the other. The subgraph that
minimizes wt(u) has as many edges as possible between vertices of odd degree. In
this case, we always obtain

wt(u) >_ 2kr- 2klk2,

which is minimal when kl k2 k. On the interval (1, r-1), the expression 2kr-2k2

has its minimum values at the endpoints, and thus

wt(u) > 2r- 2
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for these values of k as well as for k _> r. For k r- 1, we have assumed that no

sub-Kr-l,r-1 exists, so some of the vertices of odd degree must be adjacent to vertices
of even degree, and thus again wt(u) > 2r- 2. For the last case where k 1, the
minimum occurs when U is a path of length 2 and again wt(u) > 2r- 2. D

4. Final comments. The results of the previous sections lead to several inter-
esting questions. First, is there a reasonable characterization of classes of Eulerian
graphs whose corresponding self-dual codes are unique to within isomorphism? For
graphical codes, we have that connectivity is the key issue. In particular, graphical
codes is isomorphic if and only if the corresponding graphs are 2-isomorphic. In the
case of 3-connected graphs, 2-isomorphism reduces to just isomorphism.

Second, is deciding isomorphism Of self-dual codes isomorphism complete? Of
course, this remains unsolved even for binary linear codes in general. We remark that
isomorphism of binary linear codes reduces to isomorphism of permutation groups
(given a list of generators). Isomorphism of permutation groups is known to be in NP
as well as the complexity class CoAM. This latter fact implies that the problem is not
NP-complete unless the polynomial time hierarchy of complexity classes collapses (it
is conjectured not to).

Finally, let us comment on the minimum distance. It was shown [3] that a self-
dual code with minimum distance 4 cannot have trivial automorphism group. So, to
construct a self-dual code with any automorphism group, we should have distance at
least 6, as we had in this paper.

REFERENCES

[1] K. S. BOOTH AND C. J. COLBOURN, Problems polynomial equivalent to graph isomorphism, Re-
port cs-77-04, Department of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, June 1979.

[2] H. ORAL, Constructing self-dual codes using graphs, J. Combin. Theory Ser. B, 52 (1991),
pp. 250-258.

[3] ., Self-dual codes of distance four are not rigid, Discrete Math., 104 (1992), pp. 263-271.
[4] V. PLESS, A classification of self-dual codes over GF(2), Discrete Math., 3 (1972), pp. 209-246.
[5] G. SABIDUSSI, Graphs with given group and given graph-theoretical properties, Canad. J. Math.,

9 (1957), pp. 515-527.



SIAM J. DISCRETE MATH.
Vol. 7, No. 2, pp. 331-336, May 1994

() 1994 Society for Industrial and Applied Mathematics
O2O

CLIQUE GRAPHS OF CHORDAL AND PATH GRAPHS*

JAYME L. SZWARCFITER AND CLAUDSON F. BORNSTEIN$

Abstract. Clique graphs of chordal and path graphs are characterized. A special class of graphs
named expanded trees is discussed. It consists of a subclass of disk-Helly graphs. It is shown that
the clique graph of every chordal (hence path) graph is an expanded tree. In addition, every expanded
tree is the clique graph of some path (hence chordal) graph. Different characterizations of expanded
trees are described, leading to a polynomial time algorithm for recognizing them.
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1. Introduction. We examine clique graphs of chordal graphs. Bandelt and
Prisner [2] proved that they are disk-Helly. Chen and Lih [4] and, independently,
Bandelt and Prisner [2] showed that the second iterated clique graph of a chordal graph
is again chordal. Here it is shown that clique graphs of chordal graphs correspond to
a class, named expanded trees, in the sense that the clique graph of a chordal graph
is always an expanded tree and that every expanded tree is the clique graph of some
chordal graph. In addition, the class of clique graphs of (undirected) path graphs is
no more restricted than that of chordal graphs. Every expanded tree is also the clique
graph of some path graph. Expanded trees are characterized, and a polynomial time
recognition algorithm is described.

Expanded trees are closely related to dismantlable graphs. The latter were ex-
amined by Bandelt and Prisner [2], Prisner [9], and Nowakovski and Winkler [8].
Disk-Helly graphs are a subclass of dismantlable graphs and can be recognized in poly-
nomial time, according to an algorithm by Bandelt and Pesch [1]. See also Nowakovski
and Rival [7] and Quilliot [10].

G denotes a simple undirected graph, V(G) and E(G) are its vertex and edge
sets, respectively, n --IV(G)I and m -IE(G)]. g(v) is the set of vertices adjacent to
v e V(G), while N[v]- N(v)U (v}. The vertex v e V(G)is dominated by w e V(G)
in G when v, w are distinct and N[v] C N[w]. A clique is a subset of vertices inducing
a complete subgraph in G. Let F be a family of subsets of some set. The intersection
graph of F is a graph whose vertices are associated with the subsets of F, two vertices
being adjacent if the corresponding pair of subsets intersect. The clique graph K(G)
of G is the intersection graph of the maximal cliques of G. A chordal graph G is
the intersection graph of subtrees of a tree T. The subtree of T corresponding to
a vertex v E V(G) is called representative subtree of v and denoted by T(v). The
tree T, together with the representative subtrees, forms a tree representation of G. A
minimal representation is a tree representation such that IV(T)I is the least possible.
Gavril [5] and Buneman [3] showed that a minimal representation is precisely one in
which each vertex of T corresponds to a maximal clique of G. In addition, for each
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v E V(G), the subtree T(v) is formed exactly by the vertices of T corresponding to
those maximal cliques of G that contain v. A path graph is the intersection graph of
paths of a tree. Monma and Wei [6] characterized path graphs and variations of this
class in terms of their minimal representations.

Let F be a family of subsets Si of some set. F satisfies the Helly property when
every subfamily F’ of F in which Si Sj q}, for all pairs S, Sj E F’, is such
that SeF’ Si J. Finally, G is a dismantlable graph if there exists a sequence
vl,..., Vn of its vertices such that, for i < n, vi is dominated in G- {Vl,..., vi-1}. If,
additionally, the maximal cliques of G satisfy the Helly property, then G is disk-Helly.

2. Expanded trees. G is an expanded tree when it admits a spanning tree T(G),
such that, for each edge (v, w) E(G), the vertices of the v w path in T form a
clique in G. In this case, T(G) is a canonical tree of G.

THEOREM 2.1. The following are equivalent.
(i) G is the clique graph of some connected chordal graph H.
(ii) G admits a spanning tree T, such that, for each v e V(G), NG[v] N T is a

(connected) subtree of T.
(iii) G is an expanded tree.
Proof. (i)(ii) Let H be a chordal graph, T a minimal representation of it, and

G K(H). Let G be the graph obtained from T by adding exactly the edges that
transform each representative subtree T(w) into a IT(w)l-clique. V(G)

_
V(G’). Let

M1, M2 be two maximal cliques of H and let Vl, v2 and v, v be their corresponding
vertices in G and G’, respectively. Suppose that (v, v2) E(G). Then there exists
w V(H) such that w E M N M2. In consequence, the subtree T(w) of the minimal
representation of H contains Vl, v e V(G’). Hence (v, v) e E(G’). Conversely, if
(v, v) e E(G’), then there is a representative subtree T(w) containing v, v. That
is, w M1 g M2, and, consequently, (v,v2) E E(G). Hence G

_
G’, and T is a

spanning tree of G. For any v V(G), each u NG[v] corresponds to a subtree of T
containing v. Hence NG[v] T is connected.

(ii)=(iii) It suffices to show that T is a canonical tree of G. Let (v, w) e E(G)
and let v vo,...,vr w be the v-w path in T. Suppose by induction that
{vo,..., vr-} is a clique of G, r > 1. Since v and w are adjacent and Na[v] T is
connected, it follows that vo, vr_l are all adjacent to w. Consequently, {vo,..., v}
is a clique of G; that is, G is an expanded tree.

(iii)=v(i) Given an expanded tree G, we construct a-connected chordal graph H
such that G K(H). Let M be the set of maximal cliques of G. Define H as the
intersection graph of the elements of M U V(G). Denote by T a canonical tree of G.
We show that each maximal clique C M of G induces a subtree in T, which implies
that H is the intersection graph of subtrees of a tree. Let v, z be two vertices of C
and let P be the v z path in T. For each vertex w of C, the paths w v and w z
cover P. Since (w, v) and (w, z) are edges of the expanded tree G, it follows that w
is adjacent to every vertex of P. By maximality of C, each vertex of P belongs to C.
Hence C T is a subtree of T, and, consequently, H is a chordal graph. It remains to
show that G K(H). Clearly, each vertex v of T corresponds to a maximal clique of
H, namely, that formed by the maximal cliques of G that contain v and by v itself.
That is, V(G)

_
V(K(H)). Let C, C2 be two maximal cliques of H and let Vl, v2 be

their corresponding vertices in G. If C1 N C2 q}, then there is a maximal clique C of
G such that C E V(H) is contained in C C2. In other words, Vl, v2 are vertices of G
belonging to the same clique C. That is, (v, v2) E(G). Conversely, if C1
then there is no maximal clique C V(H) of G containing both v, v2 V(G). That
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is, (vl, v2) E(G), and, consequently, G K(H). 0
COROLLARY 2.2. G is an expanded tree if and only if it is the clique graph of

some connected path graph.
Proof. Let G be an expanded tree. Construct a path graph H such that G

K(H). By Theorem 1, there exists a chordal graph F such that G K(F). Let T
be a minimal representation of F. Substitute each representative subtree (of a vertex
of F) with the collection of all paths between its leaves. The intersection graph of
all those paths is a path graph H with minimal tree representation T and such that
K(H) K(F). The converse is clear.

FIG. 1

Note the following relation between expanded trees and disk-Helly graphs. The
clique graph of every chordal graph is disk-Helly [2]. Hence expanded trees are also
disk-Helly, by Theorem 1. The inclusion is proper, as the graph of Fig. 1 is disk-Helly
and not an expanded tree.

3. Recognition of expanded trees. A sequence Sk of vertices vl,..., vk, k <_ n
of a graph G is canonical when, for each 1 _< i _< k, either n or vi is dominated
by some vertex vj, i < j in the graph G(Si), defined as

V(G(S,))= V(G),
E(G(Si)) E(G) ((x, y) e E(G)

s.t. x e {vl,..., vi-1}, y e {vi,..., Vn}, and INc(x) v,}l- 1}.

Call the vertex vi canonical in G(Si). The value k is the length of Sk. If k n,
then Sk is complete. Sk is maximal when it is complete, or otherwise G(Sk+I) has no
canonical vertex. Clearly, if Sk is canonical, then so is Si, < k. Define G(So) G.

Expanded trees can also be characterized as follows.
THEOREM 3.1. G is an expanded tree if and only if it admits a complete canonical

sequence.

Proof. (=v) Let T be a canonical tree of G. Let Sn be a sequence v,..., Vn of
the vertices of G, such that vi is a leaf of Ti, 1 <_ <_ n, where T1 T and, for i > 1,
Ti Ti- -vi-1. We show by induction that Si is canonical. Assume it is true for
all subsequences of length < i. If i n, there is nothing to prove. Otherwise, let vj,
j > i be the vertex adjacent to vi in Ti. We claim that vj dominates vi in G(Si).
This is clear for i 1. When i > 1, suppose that the claim is false. Then there is
a vertex Vp, such that (Vp, Vi) e E(G(Si)) and (Vp, Vj) E(G(Si)). T is canonical.
Hence the following two conditions must hold: p < i and (Vp, vq)

_
E(G) for all q > i;

otherwise, (Vp, vj)would belong to E(G(Si)), a contradiction.
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In this case, INa(vp) g {vi,..., Vn}l 1, and (Vp, vi) ; E(G(&)), again a contra-
diction. Therefore vj dominates vi in G(Si); that is, Si is canonical.

(=) Let Vl,..., Vn be a canonical sequence of G. Each vi, i < n has a dominator

vj in G(S), i < j; write vj dom(v). Let T be a graph defined as

V(T) V(G),
E(T) {(v, dom(v)) s.t. 1 <_ i <_ n} c E(G).

When n > 1, every vertex of G is incident to some edge of T. Since IE(T)I n- 1,
T is a spanning tree of G. We show that T is canonical. Suppose the contrary. Then
G contains an edge (ca, Vb) such that the Va -Vb path P in T is not a clique of G.
We can choose (va, Vb) such that (v, Vb) E E(G) for all vertices v of P, except the
neighbor vc of Va in P, which satisfies (Vc, Vb) E(G). Let Vd, d a, b be the second
adjacent vertex to v in P. Let T be the in-tree obtained by directing each edge
(v, dom(v))of W from v to dom(v).

Case l. a < b.
The edge (Ca, Vc) must be oriented in T from Va to v. Otherwise, T contains the

directed path Vb--Va, implying b < a, a contradiction. Then a < c, and (v, v) E E()
implies that v dominates v in G(S). Since a < b, (va, Vb) e E(G(Sa)). Hence
(Vb, vc) E(G), a contradiction.

Case 2. a > b.
Suppose that (Ca, vc) is directed from Vc to Va in T. Then P is directed from Vb to

Ca. That is, a > c > d > b, and, consequently, (v, Vb), (Vd, Vb) E(G(Sd)). However,
vc dominates Vd in G(Sd). Hence (vc, Vb) E(G), a contradiction.

Finally, let (v, v) be directed from Va to vc in T. Since a > b, P contains some
vertex v, a, b having in-degree > 1. Such vi satisfies i > a and (Va, Vb), (v, Vb)
E(G(Sa)). However, v dominates v in G(S). Hence (vc, Vb) e E(G), again a
contradiction.

LEMMA 3.2. All maximal sequences have the same length.
Proof. Suppose the contrary. Then there is a graph G with two maximal sequences

Sk {vl,...,vk} and S {v,...,v} satisfying0 < k < . Clearly, 0 k
cannot occur, as v is canonical in G(So) G. If Sk S’k, then Sk is not maximal,

Weand the lemma holds. Otherwise, let q be the smallest integer satisfying vq : vq.
l!construct a canonical sequence S in which Sq+I Sq+I and such that S is maximal

if and only if Sk is so, leading to a contradiction.
In general, for a vertex v, let dom(i, Sj) denote its set of dominators in

not belonging to Sj-1. First, we show that, if w,x are vertices Sj-1 such that
w dom(x, S), then w dom(x, Sj), for < j. Suppose this domination condition
is not true. Then, either (x, w) E(G(Sj)) or there exists some vertex y adjacent to
x and not to w in G(Sj). However, w e dom(x, S). Then (x, w) e E(G(S)). Since
< j and x, w Sj-1, it follows that (x, w) e E(G(Sj)). For the second alternative,

suppose that (y,x) is an edge of G(Sj). Then (y,x) is an edge of G(S), t < j. That
is, y is incident in G(St) to at least two vertices w,x Sj-1. This implies (y, w) to
be an edge of G(Sj), a contradiction. Hence w dominates x in Sj, and the assertion
is proved.

The following can occur.Examine the unmatched vertex vq.
Sk.Case 1. Vq

’-vj for somej>qThen vq
Case 1.1. dom(vj, Sq) Sj-1 .
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Let w e dom(vj, Sq)- Sj-1. Let S be the sequence obtained from Sk by mov-
ing v to the qth position, while maintaining the relative ordering of the remaining
vertices. We show that S is canonical. Let z E dom(vi, Si), q _< i < j. If z = vj, it

" in G(Si+I). Consider z By the abovefollows that z also dominates v v+ v.
domination-preserving condition, w dom(vj,Sj). If there is v, q + 1 g j 1,
such that v dom(v, S), then, because w dom(v, &), it follows w dom(v, S).
Hence S is canonical. In addition, the vertices of S and Sk are the same; i.e., S is
mimal. However, +, q+.S S’ while S+ S’

Case 1.2. dom(vj, S) Sj_ .
By the domination condition, there exists some v e {Vq,..., vj_ } dom(vj, S).

Moreover, choose v so that no v, i + 1,... ,j 1 dominates vj in G(S). Let
S be the sequence obtained by interchanging the positions of v and vj in Sk. Let
z dom(v, S). If z v, then Y(s,)[v] Y(s,)[v], and S; is canonical. If z v,
then z v, g + 1,..., j- 1; otherwise, v dominates vj in G(S), a contradiction.
Hence vy dom(v, Sp) implies that z dom(vp, Sp), i p j. Therefore, S; is
canonical and maximal. Then Case 1.1 applies.

Case 2. Vq
Let w dom(v, S). Then w v, for some i k; otherwise, Sk is not maximM,

by the domination property. Moreover, choose v such that no v, > i dominates v
It follows that z dom(v, S)in G(&). Let z dom(v, S). Suppose that z Vq.

If z Sk, then z dom(v, S), and S is not maximal. Then z Sk. Now, however,
In thisz ve for some g > i and v dom(v, S), a contradiction. Hence z v

in Sk The new sequence so obtainedcase, Nv(,)[va’ N(s,)[v] Replace v by va
is also canonical and maximal. Then Case 1 applies.

Theorem 2 and Lemma 1 lead to a greedy algorithm for recognizing expanded
trees. Construct a maximal canonical sequence Sk of vertices v,..., vk of the graph
G. Clearly, G is an expanded tree if and only if k n. For i < n, each v can be
arbitrarily chosen among the dominated vertices in G(S), if existing. The algorithm
terminates within O(n2m) steps. A cnonical tree T can be obtained as a by-product:
For i < n, include in E(T) the edge (v, w), where w is the dominator of v in G(S).

Acknowledgments. A referee has pointed out that expanded trees were previ-
ously investigated by F. F. Dragan in his Ph.D. thesis (Centers of Graphs and the
Helly Property, Minsk, 1989, in Russian) under the name HT-graphs, where the equiv-
alence (ii)(iii) of Theorem 1 was already established. We are grateful to the referees
for the suggestions that improved this article. Particulalrly, H. Bandelt provided new
proofs of Corollary 1 and part of Theorem 1, which have been adopted.
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Introduction. Linear codes that are q-ary images were studied by MacWilliams [4],
Mouaha [5], [6], and Wolfmann [8], among others; Beenker examined double circulant
codes, which are obtained from linear codes over GF(4) and GF(9). Goldberg [2] recon-
structed the ternary Golay code.

In this paper, we give a characterization of systematic codes over GF(q) that are q-
ary images of linear codes over GF(q2). The characterization utilizes the concept of min-
imal polynomials of elements of GF(q2).

The plan of this paper is as follows. Section gives some general properties in the
study of q-ary images. Section 2 characterizes systematic codes over GF(q) obtained from
linear codes over GF(q2). Section 3 deals with cyclic codes. Section 4 studies systematic
self-dual codes that are q-ary images over GF(q2). Section 5 constructs some linear codes
that map onto linear codes over GF(q2).

1. Preliminaries. Let GF(q) be the finite field of q elements and let GF(q’) be the
extension of degree rn of GF(q). Let B (bl,..., bm) be a basis of GF(qm) over GF(q)
and let hB be the mapping from GF(qm) to GF(q) defined by hB(___) (---1, m),
for all

_
(Cl, cn) Z’= -ibi GF(qm)n, where, for all _< < n, c/. Z= cg;bj

and, for all < j _< m, _j (Clj., cn). It is clear that h is an isomorphism from
GF(qm) to GF(q)mn, and, consequently, if C is a linear code over GF(qm), h(C) is a
linear code over GF(q). h(C) is called the q-ary image of C with respect to B.

Remark 1.1. A monomial matrix is a matrix with exactly one nonzero entry
in each row and column. Two linear codes C1 and C2 both of length n over GF(q)
are called equivalent if there is an n n monomial matrix A over GF(q) such that C2
{=__A, C}.

The terminology in this paper is the same as the one used in [5] and [6]. It is
important to note that h and the map dB studied in [5] and [6] transform a linear code
to equivalent codes.

We have the following obvious properties.
Property 1.1. If {ui, 1, k} is a basis of a linear code C over GF(qm) and

B (bl,..., bm) is a basis of GF(qm) over GF(q), then h(biu;), _<_ < m, <.j <_ k}
is a basis of h(C) over GF(q).

Property 1.2. Let C be a linear code over GF(qm) and let B a basis of GF(qm) over
GF(q). Then, for all nonzero k of GF(qm), h(C) h(C).

Property 1.3. If C is an (n, k, 6) linear code over GF(qm) and B a basis of GF(qm)
over GF(q), then the minimum distance 6’ of hB(C) satisfies 6 < 6’.
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D6partement de Math6matiques, Ecole Normale Superieure de Yaound6, B.P. 47 Yaound6, Cameroun.

337



338 c. MOUAHA

2. Characterization of systematic codes over GF(q) obtained from linear codes over
GF(qm). A systematic code is an (n, k) linear code with generator matrix

[k ],

where Ik is the k k identity matrix. It is well known that every (n, k) linear code k >
is equivalent to a systematic code.

In this section and in the following ones, mx denotes the minimal polynomial of
X GF(q2). Let B (1, X) be a basis of GF(q) over GF(q) and let A be an n n matrix
over GF(q) such that mx(A) 0. Let T(X, A) {aoln + aA, ao, a GF(q)} and let 0x
be the mapping from GF(q) to T(X, A) defined by 0x(ao + aX) aoln + aA, for all ao
and a in GF(q). Then we have the following result.

Property 2.1. 0x is a field isomorphism from GF(q) to T(X, A).
Proof 0x is obviously a ring epimorphism. Let (ao, a) GF(q)2 such that

0x(ao + aX) 0. Since A {0, I }, then there is (i, j) { 1, n}, 4 j such that
ao 4: O, where

A (aij)l<i,j<n.

Therefore, a 0 and ao 0.
The following theorem is the fundamental result of this paper.
THEOREM 2.1. Let D be a (4k, 2k) linear code over GF(q) with generator matrix

G [I2k A]

and let B (1, X) be a basis of GF(q) over GF(q). Then h3 (D) is a linear code over
GF(q) ifand only ifm-l/x(A) O.

Proof Assume that C h31(D) is a linear code over GF(q2). Then, for all
_

-o + -l X C, X_ r___l + X(c_0 + S_l) e C, where ), r + sX, for some r, s in GF(q).
Therefore, the mapping b from D to D defined by ((---o, -1)) (r_, -o + s___ is an
automorphism of D. Thus,

p(G) [rA I + sA]

is also a generator matrix of D. Since D is a systematic code, then

(rA)-l(I2 + A) A,

that is, m_/x(A) O.
Conversely, assume that m_/x(A) 0. Then rA z I2 + sA. Let __v e C, C

h (D). Then there is u e GF(q)zk such that h(v) (u, uA), and so _v u + XuA. Since
A is an invertible matrix, rAG is also a generator matrix of D. Thus u(rAG) h(av__)
D. Therefore C is a linear code over G.F(q).

In the following, D(k, A) denotes the (4k, 2k) linear code with generator matrix

[I2 A].

COROLLARY 2.1. Let GF(q) GF(q) and let A be a 2k 2k matrix over GF(q)
such that rex(A) 0. Then, for all U T(X, A) such that O;(U) GF(q), there is a basis
B ofGF(q2) over GF(q) such that h(D(k, U)) is a linear code over GF(q2).

Proof Let U 6 T(X, A) such that O;(U) GF(q). Let be a root of the minimal
polynomial of O(U) and

(1)/3- 1,-
Then, by Theorem 2.1, h (D(k, U)) is a linear code over GF(q2).
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The following result gives a necessary and sufficient condition under which a q-ary
image of a systematic code over GF(q2) is systematic.

THEOREM 2.2. Let C be a (2k, k) linear code over GF(q) with generator matrix

G=[Ik A]

andB (1, ) a basis ofGF(q2) over GF(q). LetA A + XA2. Then hn(C) is a systematic
code ifand only ifA2 is an invertible matrix.

Proof Let g be the th rowvector of G, < < k. Then the result follows from
Property 1.1 because h(C) has generator matrix

h/(_gl)

hB(gk) Al 0

h(X_g) rA2 Ik A1 + sA2

hn(Xgg)

where X2 r + sX, for some (r, s) e GF(q)2.
Remark 2.1. Let C be a (2k, k) linear code over GF(q2) with generator matrix

[i A].

Let A A1 + XA2, where B (1, X) is a basis of GF(q2) over GF(q). Then hn(C) is
equivalent to the systematic code over GF(q) with generator matrix

]Ik ra2 11 -t- s/12

where X r + sX, for some (r, s) e GF(q)-.
Conversely, let D be a (4k, 2k) linear code over GF(q) with generator matrix of the

form

[1 0 g g2 ]I rU_ Ul + sU_

where, for all _< _< 2, Ui is a k k matrix over GF(q). IfX sX- r is an irreducible
polynomial over GF(q), then h(C is equivalent to D, where C1 is the linear code over
GF(q) with generator matrix

[ Ul,

U= UI+XU,X=r+sx,andB=(1,x).
3. The case of cyclic codes. Cyclic codes are an important class ofsystematic codes.

Here we prove that, if D(k, A) is a cyclic code over GF(q), then, for all X e GF(q-)
GF(q), rex(A) q= 0. T denotes the shift operator of GF(q).

THEOREM 3.1. Let C be an (n, k) linear code over GF(q) and let B (bo, bl be a
basis of GF(q) over GF(q). Then T(h(C)) h.(C) if and only if C is generated by
Co C fq GF(q).

Proof. Assume that Tn(h(C)) h(C). Let c_ --obo + ---bl e C. Then
(C_o, C_l) e h(C) and (___, -o) e h(C). Therefore _Co + __c_ s C. Since c_ bo(c_o + ___.)
and

_
bl (-o h-

_
are codewords of C, then -o e C and 122 t C.

Conversely, assume that C is generated by Co. Then h(C) Cg.
If C is an (n, k) linear code over GF(q), _< k _< n 1, then h(C) cannot be a

cyclic code over GF(q), as we show in the next theorem.
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THEOREM 3.2. Let C be an (n, k) linear code over GF(q2), <_ k <_ n 1. Then,
for all basis B ofGF(q2) over GF(q), he(C) is not a cyclic code.

Proof By Theorem 3.1, it is sufficient to prove that, if D is an (m, k’) linear code
over GF(q), _< k’ < m 1, then O2 is not a cyclic code. Let D be a (m, k’) linear code
over GF(q), < k’ < m 1. Let u (u, Um) D, u 4: O. Then _v_ (u, 0, 0)
O2. Assume that O2 is a cyclic code. Then T(v_) (0, u, Um, 0,..., 0); so x
(Urn, O, O) D. Without loss of generality, assume that Um 4: O. Since w (x, 0,

0) O2, then { Ti(w), 0 <_ < 2m 1} is a basis of O2, and so O2 GF(q)2m.
This contradicts the fact that _< k’ < m 1.

Since every (n, k) cyclic code, _< k _< n 1, is a systematic code, we have the
following corollary.

COROLLARY 3.1. Let D be a (4k, 2k) cyclic code over GF(q) and let

[h A]

be its generator matrix. Then, for all X GF(q2) GF(q), mx(A) 4: 0.
Proof The result follows from Theorems 2.1 and 3.2.

4. Systematic self-dual q-ary images of linear codes over GF(q2). Self-dual codes
are an important class of linear codes because of their algebraic and combinatorial prop-
erties. In this section, we study systematic self-dual codes that can be constructed as q-
ary images over GF(q2).

We need the following two lemmas.
LEMMA 4.1. There is GF(q2) GF(q) such that Xq+l -1.
Proof Let a be a primitive element of GF(q2). Since aq+ is a primitive element

of GF(q), there is { 1,..., q } such ai(q+ 1) 1. Obviously, O GF(q).
LEMMA 4.2. There is GF(q) GF(q) such that 2 -1 if and only if q

3(rood 4).
Proof Assume that there is X GF(q2) GF(q) such that X -1. Then q is an

odd number. So xq- (-1)<q:-)/2 1. Therefore q 3(mod 4).
Conversely, assume that q 3 (mod 4). Let a be a primitive element of GF(q).

Then there is { 1, q 2} such that ciu+ 1) _1. Thus we have Ol
iq(q+ 1)/2

__oi(q+ 1)/2, and so oi(q+ 1)/2 GF(q).
C+/- denotes the orthogonal of the linear code C.
We have the following theorem.
THEOREM 4.1. Let B (1, ) be a basis ofGF(q2) over GF(q). Then thefollowing

statements are equivalent:
1) )kq+l --1,
2) he(C+/-) he(C)l for all linear code C over GF(q2).
Proof Assume that Xq +l 1. Then there is s GF(q) such that X2 + sX. Let

C be a linear code over GF(q2),
_

C, and _’ e C+/-. Then (he(___), h,(_c’)) 0, (where
{u, _V_v) denotes the usual inner product of u and _V_V), and so h,(_’) e he(C)’. There-
fore the result follows from the fact that he(C)+/- and h,(C) have the same dimension
over GF(q).

Conversely, assume that he(CA) he(C) for all linear code C over GF(q2). Let
)t2 r + s for some (r, s) GF(q)2. Let C be the linear code generated by (1, ). Since
hB(C-L) hB(C)-L, then (hB((), k2)), hB((), --1))) 0. Therefore r 1.

The following theorem characterizes systematic self-dual codes that are q-ary images
over GF(q2).
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THEOREM 4.2. Let B 1, X) be a basis ofGF(q2) over GF(q), k2 r + sXfor some
(r, s) E GF(q)2. Let D be a (4k, 2k) self-dual code over GF(q) with generator matrix

[I2k A].

Then h (D) is a linear code over GF(q2) ifand only ifrA + A sI2k.
Proof Assume that h (D) is a linear code over GF(q2). Then, by Theorem 2.1,

FA2 I2 k qt_ sA. Since AA -I2, we obtain rA + A Size.
Conversely, assume that rA + A Size. Since D is a self-dual code, then FA2

I2 sA. The result follows from Theorem 2.1.
The following corollaries are obvious.
COROLLARY 4.1. Let B (1,)) be a basis of GF(q) over GF(q), q 0(mod 2),

such that )q+ 1. Let D be a (4k, 2k) systematic self-dual code over GF(q). Then
h (D) is not a linear code over GF(q2).

COROLLARY 4.2. Let B (1,)) be a basis of GF(q2) over GF(q), q 3(mod 4),
such that ) -1. Let D be a (4k, 2k) self-dual code over GF(q) with generator matrix

[Izk A].

Then h (D) is a linear code over GF(q) ifand only ifA At.
Example 4.1. Let

2

be a matrix over GF(3). Then A A + I and AA -I. Therefore the linear code D
with generator matrix

[h AI
is self-dual, and h (D) is a self-dual code over GF(9), B (1, c3), OZ

2 + c.

5. Construction of q-ary images of some linear codes over GF(q2). Let B be a basis
of GF(qm) over GF(q), a GF(qm) and let/Z be the mapping from GF(qm) to GF(qm)
defined by #a(X) ax. Obviously if a 4: 0,/-a is an automorphism of GF(qm) over GF(q).
Let Mta be the matrix of/.t with respect to B and let M(B) {Mx, x GF(qm)}. Then
M(B) is a finite field of qm elements. Let r/. be the mapping of GF(qm) onto M(B) by
l,(x) Mx. Then r/. is a field isomorphism from GF(q m) to M(B). In this paper, every
finite field of m m matrices over GF(q) is a matrix representation of GF(qm).

THEOREM 5.1. Letf GF(q)[x] be an irreducible polynomial ofdegree 2 over GF(q)
and let A (aij )1 i,j <_2t be a matrix over GF(q2m) such that f(A) O. Let B be a basis
ofGF(q2m) over GF(q) and let D be the (4mt, 2mt) linear code over GF(q) with generator
matrix

[Iemt (71(aij))l<_i,j<_2t].

Then there is a basis B of GF(q2) over GF(q) such that h;l(D) is a linear code
over GF(q).

Proof. Set

U (lt(aij))l i,j 2t"

Sincef(A) 0 and n is a field isomorphism from GF(qm) to M(B), thenf(U) 0. Thus
the result follows from Theorem 2.1.
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COROLLARY 5.1. Let B be a basis of GF(qTM) over GF(q). Then, for all x
GF(q2) GF(q), there is a basis B ofGF(q2) over GF(q) such that h(Dx) is a linear
code over GF(q2), where Dx is the linear code over GF(q) with generator matrix

[I2m B(X)].

Proof Let x GF(q2) GF(q). Then mx(nB(x)) 0. The result follows from Theo-
rem 5.1.

DEFINITION 5.1. A basis B of GF(qm) over GF(q) is a symmetric basis if for all
A M(B), A At.

In [7] it is established that every finite field GF(q’) has a symmetric basis over
GF(q). The following result is a direct consequence of Theorem 3.2 of [6].

THEOREM 5.2. Let B be a basis ofGF(qm) over GF(q). Then thefollowing statements
are equivalent:

1) B is a symmetric basis,
2) hB(C-) hn(C)- for every linear code C over GF(qm).
Again, we have the following theorem.
THEOREM 5.3. Let q 3(mod 4) and let A (aij) i,j<_2t be a symmetric matrix

over GF(q2m) such that A2 -Izt. Then,for all symmetric basis B ofGF(q:m) over GF(q),
we have thefollowingfacts:

1) The linear code D with generator matrix

[I2mt ((ai ))1 i,j 2t]

is a self-dual code;
2) There is a basis B of GF(q2) over GF(q) such that h(D) is a linear code

over GF(q).
Proof 1) Since A is a symmetric matrix and B a symmetric basis, then

U (rll(aij))li,j2t

is symmetric and U- -I2mt.

2) Since U2 -I2mt, the result follows from Theorem 5.1.
Example 5.1. Let a be a primitive element of GF(9) and let

A= c

3 O/2

Then A is a symmetric matrix and A2 -I. Let B be a symmetric basis of GF(3m)
over GF(3) and let U r(o). Then the linear code Dm with generator matrix

where

[I6m M],

U U2 U )M U2 I2m U2

U3 U2 I2m

is a (12m, 6m, m) self-dual code over GF(3) with m 6. Let B1 (1, 3’) be a basis of
GF(9) over GF(3) such that 3"2 1. Then h(Dm) is a linear code over GF(9).

We need a result that can be found in [7], stated here in the form of the follow-
ing lemma.
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LEMMA 5.1. R is a matrix representation of GF(qm) if and only if there exists a
basis B ofGF(qm) over GF(q) such that R M(B).

We end this section with the following theorem.
THEOREM 5.4. Let D be a (4m, 2m) linear code over GF(q) with generator matt&

[I2m A].

Ifthere is in GF(q) GF(q) such that rex(A) 0, then there exist a linear code C over
GF(q2m) and a basis B ofGF(q2m) over GF(q) such that h(C) andD are equivalent codes.

Proof Assume that there is , GF(q2) GF(q) such that mx(A) 0. Since T(X, A)
is a field of q2 elements and GF(q) is a subfield of GF(qZm), then, by Lemma 5.1, there
is a basis B of GF(q2m) over GF(q) such that T(, A) M(B). Let v GF(q2m) such that
tin(v) A and let C be the linear code over GF(q-m) generated by (1, v). Then h(C) and
D are equivalent codes.

6. Conclusion. This paper has shown interesting algebraic properties on systematic
q-ary images of linear codes over GF(q). We hope that, with the help ofthis work, other
important linear codes can be either constructed or reconstructed and new properties
discovered about them.

Acknowledgments. The author is grateful to the anonymous referees for their useful
suggestions.
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COMPOSITIONS OF GRAPHS AND POLYHEDRA I:
BALANCED INDUCED SUBGRAPHS AND ACYCLIC SUBGRAPHS*

FRANCISCO BARAHONA AND ALl RIDHA MAHJOUB*

Abstract. Let P(G) be the balanced induced subgraph polytope of G. If G has a two-node cutset, then G
decomposes into GI and G2. It is shown that P(G) can be obtained as a projection of a polytope defined by a
system of inequalities that decomposes into two pieces associated with G1 and G2. The problem max cx, x
P(G) is decomposed in the same way. This is applied to series-parallel graphs to show that, in this case, P(G)
is a projection of a polytope defined by a system with O(n) inequalities and O(n) variables, where n is the
number of nodes in G. Also for this class of graphs, an algorithm is given that finds a maximum weighted
balanced induced subgraph in O(n log n) time. This approach is also used to obtain composition of facets of
P(G). Analogous results are presented for acyclic induced subgraphs.

Key words, polyhedral combinatorics, composition of polyhedra, balanced subgraphs, acyclic subgraphs,
compact systems

AMS subject classifications. 05C85, 90C27

1. Introduction. Given a graph G, let P(G) be a polytope associated with G. If G
has a one- or two-node cutset, then G decomposes into G1 and G2. We study a technique
to derive P(G), provided that we know two polytopes related to G1 and G2. We use the
same ideas to decompose the problem

Maximize cx,

x e P(G)

into two optimization problems related to G1 and G2. Similar compositions ofpolyhedra
have been studied in [8], [3], 10], [5], and [9]. First, we study the polytopes of balanced
induced subgraphs and acyclic induced subgraphs. In a subsequent paper, we apply a
simplification of this technique to the stable set polytope.

The graphs we consider are finite, undirected, and may have multiple edges. We
denote a graph by G (V, E), where V is the node set and E is the edge set of G. If
W
_

V, then E(W) denotes the set of all edges of G with both endnodes in W, and the
graph H (W, E(W)) is the subgraph of G induced by W.

A signed graph G (V, E) is a graph whose edges are labeled positive or negative
11 ]. A positive (negative) edge { u, v is denoted by { u, v, + }, ({ u, v, }). A signed graph

is said to be balanced if the set of negative edges form a cut, that is, if the node set V can
be partitioned into U and in such a way that E(U) U E() is the set of positive edges.
Also, a signed graph is balanced if it does not contain a cycle with an odd number of
negative edges. Suppose that from a node we send a signal si {- 1, to all the adjacent
nodes; if the edge { i, j is positive, then j receives the signal s; if { i, j is negative, then
j receives -si. A signed graph is balanced if and only if, when we send a signal from a
node, this node receives the same signal in return.
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If W V and H (W, E(W)) is balanced, then H is called a balanced induced
subgraph (BIS) of G. If W V, let x w v, where xW(u) if u 6 W and where
x W(u) 0 if u W; xw is called the incidence vector of W.

The convex hull of incidence vectors of all balanced induced subgraphs of G is
denoted by P(G) and called the BIS polytope of G, i.e.,

P(G) =conv {xw vl(W, E(W)) is a BIS of G}.
Given a signed graph G (V, E) with node weights c(v) for all v 6 V, the maximum

BIS problem is to find a BIS (W, E(W)) such that c(W) Z {c(v) v W} is as large
as possible.

Every optimum basic solution of the linear program

max cx,

x P(G)

is the incidence vector of a maximum weighted BIS of G.
The edge problem offinding a maximum balanced spanning subgraph can be reduced

to a max-cut problem [4]. This problem is polynomially solvable for graphs not con-
tractible to K5 [3] and for toroidal graphs [2].

IfH (V, F) is a graph, then the maximum stable set problem in H can be reduced
to a maximum BIS problem in a signed graph G (V, E) that is obtained by replacing
each edge in F by a positive edge and a negative edge. Thus the maximum BIS problem
can be viewed as a generalization of the maximum stable set problem. This shows that
the maximum BIS problem is NP-hard even for signed planar graphs. When all the edges
are negative, a BIS coincides with a bipartite induced subgraph.

The polytope P(G) is full-dimensional. This implies that (up to multiplication by a
positive constant) there is a unique nonredundant inequality system Ax < b such that
P(G) {x lAx < b}; moreover, there is a natural bijection among the facets ofP(G) and
the inequalities of that system.

In 2 we show that, if G admits a two-vertex decomposition into G1 and G2, then
P(G) is a projection of a polytope defined by a system of inequalities that decomposes
into pieces associated with G1 and G2. In 3 the optimization problem is decomposed in
a similar way. In 4 we apply this technique to series-parallel graphs and we show that,
in this case, P(G) is a projection of a polytope defined by a system with O(n) inequalities
and O(n) variables, where n is the number of nodes in G. Also for this class of graphs,
we give an algorithm that finds a maximum BIS in O(n log n) time. In 5 we use the
same approach for finding compositions of facets ofP(G). Analogous results about acyclic
induced subgraphs are mentioned in 6.

2. Compositions of graphs. In this section, we derive a system of inequalities that
defines a polytope having P(G) as a projection, provided that G is a composition of two
graphs and such a system is known for each piece.

The next theorem is a generalization of a result of Chvhtal [7] about the stable set
polytope.

THEOREM 2.1. Let G V, E) be a signed graph such that there exists node sets

V and V2 with thefollowing properties:
(i) V V t_J V2,
(ii) W V, fq V2 4: ,
(iii) Between each pair { i, j } W, there exists a positive edge and a negative edge

in E,
(iv) The induced subgraph V\ W, E( V\ W)) is disconnected.
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IfG (V, E(V)), G2 (V2, E(V2)), then a system ofinequalities that defines P(G)
is obtained by thejuxtaposition ofsuch systems defining P(GI and P(G2).

Proof Let Ax < b be the system obtained by juxtaposing both systems. Let Y be a
point in the polyhedron defined by Ax < b. Let Y (Y2) be the restriction of Y to the set
of indices associated with nodes in Vl (V2). Since Yi e P(GI), we can write

p, ;iYi,
i=1

P

;i>0 for < < p, , hi 1,
i=1

where Yi is an extreme point of P(G) for p. We can also write
k

2 OliZi,
i=1

k

ai>0 forl < < k, , ai 1,
i=1

where zi is an extreme point of P(G2) for 1, k.
Let W= {w,..., wt}. Then

.(Wj) Z {,ilYi(Wj)= 1} {ailzi(wj)= 1}, _<j _< l.

We can match a vector y; with yi(wj) with a vector zr with zr(wj) for <
j < l and we can match a vector Yi with yi(wj) 0 for < j < l with a vector Zr with
Zr(Wj) 0 for _< j _< l. We obtain an incidence vector of a balanced induced subgraph
of G. Thus Y can be written as a convex combination of incidence vectors of balanced
induced subgraphs of G. [--1

Now we study graphs with a two-vertex cutset. Let G (Vl, E) and G2
(V2, E2) be two graphs such that V f’) V2 { u, v} and let G (V, E) be the union of
G and G2, i.e., V V U V2, E E U E2. We cover four cases.

Case 1. There is a positive edge and a negative edge between u and v in G.
Case 2. There is only a positive edge between u and v in G.
Case 3. There is only a negative edge between u and v in G.
Case 4. Nodes u and v are not adjacent in G.
Case is covered by Theorem 2.1; thus we restrict ourselves to the three other cases.

In Case 2, we define Gi (V/, Ei), 1, 2 as follows; see Fig. 1"

Vi--- Vi J {Wl, w2, w3, w4},

Ei Ei tO {{w, u,-}, {w, v, +}, {w2, u,-}, {w3, u,-},

{W3, 1),--}, {W4, I),--}, {W3, W4,--), {W3, W2,--}}.
In Case 3, Gi (Vi, Ei), 1, 2 are defined as in Case 2, but { w, v} is labeled negative.
In Case 4, Gi (Vi, Ei), 1, 2 are defined as follows:

ri Vi -J {wl, w2, w3, w4, w5},
E E .J {{Wl, u,-}, {w2, u,-}, {w3, u,-}, {w,, u,-},

{WI, /),--}, {W2, ’0, "-}, {’0, W4,--}, {/), W,,--}, {W3, W4,--}, {W4, WS,--}}.
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t92

FIG.

Our aim is to derive a system of inequalities for P(G) from systems defining P(G)
and P(G2). Let G (V, E) be the graph obtained as union ofG and G2, i.e., V Vl t3
V:z,E E t3 E2.

In Cases 2 and 3, the inequality

4

(2.1) x(wi) + x(u) + x(v) < 4
i=1

defines a facet F(Gi) of P(Gi), 1, 2 and a facet F(G) ofP(G). In Case 4, the inequality

(2.2) , x(wi) + x(u) + x(v) <_ 5
i=1

plays the same role.
The polytope P(G) is the projection of F((7) along the variables {x(wi)}. The next

theorem gives us a system defining F(G).
THEOREM 2.2. The juxtaposition ofa system that defines F(G) and a system that

defines F(G2) gives a system that defines F(G).
Proof. Let Ax <_ b be such a system and let : be a vector that satisfies it. Let (2)

be the restriction of to the set of indices associated with nodes in V (V2). Since e
F(G), we have that

P

.1-"

_
)kiYi,

i=1

P

)i>0 for0<i<p, )i 1,
i=1

where Yi is an extreme point ofF(G) for 1, p.
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We can also write

olin0

k

2-- Z Og.iZi

i=1

k

forO_< i_<k, i 1,
i=1

where Z is an extreme point of F(G2) for 1,..., k.
Let us study Case 2. For a vector x e F(G), let us assume that its last six components

are x(wi), 1, 4, x(u), and x(v). Then, for each vector Yi, its last six components
form one column of the matrix

0
0

0 0
0

0 0 0
0 0 0

Set fly { Xilyi is associated with the jth column of M}. The vector/3 satisfies

M
/ x{u) /
L (v) 3

In the same way, we can associate the vectors {zi with the columns of M.
We can define y ailzi is associated with thejth column ofM}, since satisfies

L

and M is nonsingular; we have that/3 3’. Hence vectors {y;} can be matched with
vectors {zi} in such a way that can be written as a convex combination of extreme
points of F(G).

Cases 3 and 4 are analogous. E3

3. Algorithmic aspects of the compositions. In this section, we use the compositions
of 2 to obtain a maximum weighted BIS, provided that we have an algorithm to solve
the problem in each piece.

Let G (V, E) be a signed graph and c: V-- + a weight function.
First, let us assume that G is the graph of Theorem 2. l, let W w, wl}, and

let Bi be the maximum weight of a BIS of G2 that contains wi for _< _< l. Let flo be the
maximum weight of a BIS of G2 that does not contain any node of W. Let us redefine
the weights in G as follows:

c’(u)=c(u) ifu W,

C’(Wi) max {0,/i- /0 for < < l.
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Let c be the maximum weight of a BIS of Gl; then the maximum weight of a BIS of G
is c +

Now let us study Cases 2-4 of 2. Set W V1 71 V2 and let

(3.1) x(u) <_ r(W)
u6W

be inequality (2.1) or (2.2). If is the incidence vector of a BIS of G, we can always
complete it to an incidence vector of a BIS of ( that satisfies (3.1).

Let W {v v }. There are p BIS of(W, E(W)) whose incidence vectors satisfy
(3.1); moreover, they are linearly independent. Let U U be the node sets ofthem.
Let fl; be the maximum weight of a BIS of G2 whose node set contains U; for _< _< p.
The weights for nodes of W\V2 are zero. Let [3’1"’" q/p] be the solution of the system of
equations

[’]/1"" ""p][xUI’" "xUP] [/1" "/p]

Let us redefine the weights in G as follows:

c’(u) c(u) if u e VI\ W,

c’(vi) 3,i + M forl_<i_<p,

where M is a big number (M Zu v c(u)). Let a be the maximum weight of a BIS of
G1. Then the maximum weight of a BIS of G is a r(W)M.

4. Apllieation to series-parallel graphs. These decomposition techniques are useful
for classes of graphs that can be decomposed by two-node cutsets. For series-parallel
graphs, Hassin and Tamir [12] proved the following result.

THEOREM 4.1. Let G V, E) be a series-parallel graph. There exist two nodes u,
v V and two subsets V, V2 V, such that

(i) Iv,-I-< ]lrl / 2, i= 1,2,
(ii) V 71 V2 {u, v},
(iii) V V1 U V., E E( V1 (.J E(V2).
Furthermore, the vertices u, v and the sets V1 and V2 can befound in linear time.
To find a maximum weighted BIS, we should recursively decompose the graph. We

might have to add five nodes to each piece so we do not decompose if the pieces are not
smaller than the graph; i.e., we want -[V[ + 7 _< IV[. Thus we stop when each piece
has at most 2 nodes. Figure 2 shows an example of a graph that cannot be further
decomposed. If the graph has 2 nodes or less, we solve the problem by enumeration.

FIG. 2
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Let T(n) be the number of operations to solve the problem in a graph with n nodes.
Then

T(n) < cn + T(n) + T(n2),

where ni -< In + 2, 1, 2 and n + n2 n + 2. Therefore T(n) O(n log n). We can
state the following result.

THEOREM 4.2. A maximum weighted BIS in a series-parallel graph with n nodes
can befound in O(n log n) time.

In [6] we showed that, even for series-parallel graphs, P(G) may have facet-defining
inequalities that are not simple to describe. However, the theorem below shows that, by
allowing some extra variables, we obtain P(G) as a projection of a polytope that is much
easier to represent.

THEOREM 4.3. IfG is series-parallel and has n nodes, then P(G) is a projection of
a polytope defined by a system with O(n) inequalities and O(n) variables.

Proof Applying Theorems 2.1 and 2.2 to the decomposition ofthe graph, we obtain
a polytope Q such that P(G) is a projection of Q. If G has n nodes, then the number of
variables in the system that defines Q is O(n), and the number of inequalities is O(n).
For this, it is sufficient to know a characterization of P(G) for series-parallel graphs with
at most 21 nodes. E3

5. Compositions of facets. Now we see that, in Cases 2 and 3 of 2, we obtain a
complete description of the facets of P(G) from the facets coming from the pieces. We
must first study the structure of these inequalities.

Let ax <_ a be an inequality that defines a nontrivial facet of P(G); i.e., a contains
at least two nonzero components. It is easy to see that a >_ 0 and a > 0. Also, if a has
exactly two nonzero components, then it corresponds to x(u) + x(v) < 1. This can only
be the case when u and v are linked by a positive edge and a negative edge. We denote
by Va the set

Va={Vla>O}.
The graph Ga (Va, E(Va)) is called a facet-inducing graph. We denote by fl(G) the set

B(G) { W
_

VI(W, E(W)) is balanced},
and/a is the set

a { W c7. V W. B(G) and axw= a}
Given a path u, u, u2 Uk, V between u and v, the nodes u, uk are called
internal nodes. Now we present several lemmas about the inequality ax <__ a.

LEMMA 5.1. The graph Ga is connected.
Proof Suppose that Ga is the union of two disjoint graphs G (V, El) and G2

(Vl, E2). Let a (respectively, a2) be the row obtained from a by setting to zero all the
components associated with nodes in G (respectively, G2). Letting

max aix, x P(G), 1, 2,

we have that a a + 0/2 and a a + a2; thus ax < a can be obtained as the sum of
two valid inequalities. This is not possible because it defines a facet. [5]

LEMMA 5.2. If Ga contains a node u of degree 2 and its neighbours are v and w,
then au < ao, au < aw.

Proof Since ax < a defines a nontrivial facet, there is a set W a such that u
W. It implies that v, w W.
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FIG. 3

Let

w’= w\{v} (u}, w"= W\{w} (u}.
It is clear that W’ /3(G) and W" /3(G); then au < av, au < aw.

COROLLARY 5.3. IfCa contains a path u, ul, Uk, V whose internal nodes are

ofdegree 2, then au aujfor < < k, < j < k.
LEMMA 5.4. IfGa contains the induced subgraph I’ U, E( U)) where

U {u,l), w1, w2, w3}
E(U) { uwl uw2, vw2, vw3, w w2, w2w3 },

and all the edges in E(U) are labeled negative, then aw aw2 aw3. See Fig. 3.
Proof Let T { u, w, w2 } and Tz {v, w2, w3 }. If W

and Wf) {v, w2} :/: , then [TI N W] 2 and IT2 f) W[ 2.
Since ax < a is different from the inequalities

x(u) + x(w) + x(wz) <_ 2, x(v) -’1- X(W2) -- X(W3) 2,

there are two node sets W and W. in/3a such that { u, w2 } f3 W , v, w2 } W2. Hence w W and w3 e W2. Let

w; t.J

Since { W’, W }
_

3(G), we have

aw2 <-- aw,, aw2 <-- aw3
and, from Lemma 5.2, we have

aw2 >-- aw, aw2 >- aw.3,

which yields

aw aw2 aw3. !-]

LEMMA 5.5. Given two nodes u and v, there is at most one path in Ga containing
an even (respectively, odd) number ofnegative edges whose internal nodes are ofdegree
2 (a path couM consist ofa single edge).

Proof Suppose that Ga contains the paths u, ul, Uk, V and u, v, vt, v that
satisfy the conditions above. If W e 3a, then either (a) ]W {Ul, uk}] k and
Wfq {v Vl}l lor(b) ]Wf) {u,..., u}l k- and ]Wf3 {v,..., vz}l
1- 1. Thus , xW(ui)- , xW(vj) k- l,

j

but this is not possible because ax <_ a defines a facet.
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LEMMA 5.6. Let p be a node ofdegree 3 in Ga; given any other node q in Ga, there
is at most one path between p and q in Ga whose internal nodes are ofdegree 2.

Proof Suppose that there are two paths p, u,..., uk, q and p, v,..., Vl, q that
satisfy the above conditions. Because of Lemma 5.5, we assume that these paths have
different parities.

Let W /3a. We have the two following cases:
(i) If q W, then {p, u uk, v v}

_
W, because p has degree 3 in Ga

and a >_ 0;
(ii) Ifq W, then ]{p, u u, v, v1} fq W[ k + l, because a >_ 0 and

Wcannot contain a cycle with an odd number of negative edges.
Thus xw satisfies

x(p) + x(q) + , x(ui) + , x(v) k + + 1,
j

but this is not possible because ax <_ a defines a facet.
LEMMA 5.7. For afacet-defining inequality ax < , the graph Ga cannot be decom-

posed as in Theorem 2.1.
Proof Suppose that Ga admits such decomposition, since ax <_ should also define

a facet of P(Ga). This contradicts Theorem 2.1.
Now we study the facet-defining inequalities of P(Gk).
LEMMA 5.8. Ifax < c defines a facet ofP(G), k 1, 2 and { u, v, wi; < < 4}

_
Va in Cases 2 and 3, { u, v, wi; < < 5 } c_ Va, in Case 4, then ax <_ a is of the type
(2.1) or (2.2).

Proof In Case 2, we can apply Lemma 5.4 and we have that aw2 aw3 aw4.
Let W /3a. There are the three following cases:
(i) Wf-) {u, v} ; in this case, {will < < 4} c_ W;
(ii) {u, v} c_ IV; in this case, w t W, because it would create a cycle with one

negative edge, and W f-) { w2, w3, w4 } { w2, w4 ), because aw2 aw3 aw4;
(iii) I{u, v} A W 1; this implies that W f’l {w2, w3, w4}l 2; also, w W,

because aw, > O.
Therefore IV f) {u, v, wi; < < 4}1 4. Hence xw satisfies (2.1); this implies that
ax <_ a is of the type (2.1). In Case 3 or Case 4, the proof is analogous.

Consider now a nontrivial facet-defining inequality ax <_ c. In Cases 2 and 3, the
structure of Ga falls into one of the types below:

(i) Ga does not contain any of {will < < 4};
(ii) If w2 e Ga, Lemma 5.7 shows that u, w3 e Ga; if there is any other node in Ga,

then Lemma 5.7 shows that v Ga, and Lemma 5.6 shows that w3 should not have
degree 3. Hence w4 Ga. From Lemma 5.4, we have that aw2 aw3 aw4. We can
assume without loss of generality that aw2 1. From Lemma 5.8, we have that Wl e Ga
only if the inequality is of type (2.1).

(iii) If { w2, w4 } f) Va , then Lemma 5.5 shows that, in Case 2, w3 cannot be in
Va; however, Wl could be in Va. In Case 3, Lemma 5.5 shows that { Wl, w3 } f) Va < 1.

Thus we have that, in Cases 2 and 3, the facet-defining inequalities of P(G) are
classified as follows, for k 1, 2"

(5.1a) , a}x(j) < ai, Il,
je Vk

(5.1b) , a}x(j) + x(w2) + x(w3) + x(w4) Ogik, e I2,
je Vk
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(5.1c)

(5.1d)

(5.1e)

(5.1f)

(5. lg)

(5.1h)

(5. li)

E a}x(j) + X(W3) O/, e I3,
Z ax(j) + x(w,) <_ ai, 6 I4,
j Vk

X(b/) -[- X(W2) ’]- X(W3) 2,

X(1)) -- X(W3) %- X(W4) 2,

X(U) Af_ X(1)) - X(W1) - X(W2) t_ X(W3 At_ X(W4) 4,

x(wj) <_ 1, <_ j <_ 4,

x(j) >_ O, j V.
Then F(G) is defined by both systems, together with the inequality

(5.2) --X(U) X(1)) X(W1) X(W2) X(W3) X(W4) -4.

To project the variables {x(wi)}, we use the following theorem of Balas and Pulley-
blank ].

THEOREM 5.9. Let Z {(w, x) lAw + Bx < b}; the projection ofZ along the subspace
ofthe w variables is

X {xI(vB)x <- vb, Vv 6 extr Y, x > 0},
where extr Y denotes the set ofextreme rays of

{ylyA >- 0, y >_ 0).

In our case, the matrix A has the following twelve types of rows:

0 0 0 0
0
0 0 0

0 0 0
0 0
0 0

0 0 0
0 0 0
0 0 0
0 0 0

-1 -1 -1 -1.

Column j corresponds to x(wj) for < j < 4; the first seven rows correspond to
inequalities (5.1a)-(5.1g), respectively; the next four rows correspond to inequalities
(5.1h); the last row corresponds to inequality (5.2).

The extreme rays of Y correspond to the extreme points of

{ylyA >- O, Yi 1, y >_ 0},

so we enumerate the extreme points of

{zlBz >_ O, Z z 1, z >_ 0},
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where B is the matrix below:

IOi 0 0 0 0 0 0 -1"]

]0 0 0 0 -1
0 0 0 -1

0 0 0 0 -1

The extreme points are the columns of

10...0000000-
o 00000

o .. o o o o o
0 0 00

o o oo
o o o o 1/2 o

o0 o o- 0-
o o oo-

0 0 0 0

So the inequalities given by Theorem 5.9 are obtained by performing the following
steps:

(i) Keep inequalities (5.1a)-(5.1g), but delete the variables {x(wi)};
(ii) Add three inequalities, one oftype (5.1b), one oftype (5.1d) or X(Wl) < 1, and

(.),
(iii) Add four inequalities, one of type (5.1d) or x(w) <_ 1, one of type (5.1e), one

of type (5.10, and (5.2), from the result delete x(w3);
(iv) Add four inequalities, one oftype (5. ld) or x(w) <_ 1, one oftype (5. le), x(w4)

_< 1, and (5.2);
(v) Add four inequalities, one of type (5.1d) or x(w) < 1, one of type (5.1f),

x(w2) < 1, and (5.2);
(vi) Add (5.1g) and (5.2) (which gives the redundant inequality 0 < 0);
(vii) Add five inequalities, one of type (5.1c) or x(w3) < 1, one of type (5.1d) or

x(w) < 1, X(W2) 1, X(W4) 1, and (5.2).
The next lemma shows that some of these inequalities are redundant.
LEMMA 5.10. Let ax <_ be afacet-defining inequality ofP(G), a >_ O. IfV Vk,

then this inequality also defines afacet ofP(Gg), k 1, 2.
Proof It is clear that this inequality is valid for P(Gk).
By hypothesis, there are Vkl linearly independent incidence vectors of balanced

induced subgraphs that satisfy ax a. Let us form a matrix Mwith them. Among these
vectors, there is one vector Y with Y(u) 0 or Y(v) 0. Hence the columns of
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form a set of Vkl linearly independent incidence vectors ofbalanced induced subgraphs
of Gk. Moreover, they satisfy ax a. Vq

This lemma states that, if an inequality is essential in the definition of P(G) and its
support is included in Vk, then a multiple of this inequality already appears in (5.1a). So
in (i) we should only keep (5.1 a) and in (ii) we should keep the constraints whose support
intersects both VI\ { u, v} and V2\ { u, v}. For the same reasons, the inequalities produced
in (iii)-(v) are redundant. Thus we obtain the following result.

THEOREM 5.1 1. Itl Cases 2 and 3, P(G) is defined by (5.1a), together with
x(j) >_ 0 forj e V and the mixed inequalities

(5.3) , ax(j) + ., ajx(j) x(u) x(v) <_ ai + a- 4
je Vk j Vt

fork= 1,2;l= 1, 2; e lk, s e fl4.
In what follows, we prove that, ifk 4:/, inequalities (5.3) define facets ofP(G). First,

we must introduce a technical lemma.
LEMMA 5.12. Inequalities (5.1b) and (5.1d) definefacets ofF(Gk).
Proof First, let us study inequalities (5. b). Since dim (F(Gk)) Vg[ 1, we must

show that there are Vgl linearly independent vectors in F(G) that satisfy (5.1 b). Let
n tTkl. There is a linearly independent set {x x } of extreme points of
that satisfy (5.1 b).

For a vector xj., we do the following. If xj satisfies (5.2), we keep it; otherwise, we
set the component x(w) equal to 1. We obtain a set S {x’,..., x } of vectors that
satisfy both (5.1b) and (5.2). Since we only modified one component, there are n
linearly independent vectors in S.

Now let us study an inequality of type (5.1d), say ax < a. Let S {x,..., x,} be
a set of linearly independent extreme points of P(G,) that satisfy ax a. Let xj. be one
of these vectors; ifx satisfies (5.2), we define x) x; otherwise, we define x(u) x(u)
if u 4: w)_, w3, w4. We set to some of the components x)(w), x(w3), x(w4) to obtain
an extreme point x) that satisfies (5.2).

Let us assume that ax <_ a is inessential in the definition of F(G). This implies that

a , bib; + 3’d, a --. E hii + ")/’, hi -- 0,

where bix <- [Ji denotes an inequality in (5.1), other than ax <_ a, but not (5.1 g), and
dx e denotes the equation derived from (5.1 g).

For each inequality bix <- 3i, there is a vector xj e S such that bix </3; and b;x)
/3i. Hence b;wj > 0, j 2, 3, 4; then b;w 0. This implies "r and some hi < 0, a
contradiction. [

So if ax < a is of type (5.1b) or (5.1 d) and another inequality bx < [3 defines the
same face of F(Gk), then b ha + 3’d, where dx e denotes (5.1g) as equation and h >
0. The constraint bx < 3 cannot be in (5.1), because of the structure of the inequalities
in this system.

LEMMA 5.13. Ifk 4: l, inequalities (5.3) definefacets ofP(G).
Proof. Suppose that k 1, 2. We show that there exists a vector in P(G) that

satisfies this inequality as equation, and all the others as strict inequality.
For the inequality, abx(j) + x(w2) + x(w3) + x(w4) < O/i,

i V
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(c}

FIG. 4

let S {x,..., xz} be the set of extreme points ofF(G) that satisfy it as equation. For., ax(j) + x(wl) < ai, 124,
jc: V2

let T {y, Ym be the set of extreme points of F(G2) that satisfy it as equation.
First, for each vector xi, we can find a vector yj; such that both together give a vector

in F(G), 0 <_ < l. Next, for each vector yj, we can find a vector xij such that together
they give a vector in F(G), 0 <_ j <_ m.

Let { zl Zr} be the set of vectors thus obtained (r + m). Let z be the vector
obtained by dropping the components Zk(W), < j < 4.

Then

2 (Ztl -I-"’"-I-Ztr)

is the required vector. V1

This theorem gives a way to describe facets ofP(G) by composition of facets for the
pieces. For instance, consider the graphs in Figs. 4(a) and 4(b), with all the edges labeled
negative. The inequalities _, x(i)_< 9 and , x(i) < 7

define facets for the first and second graph respectively; see [6]. Theorem 5.16 shows that, x(i) _<_ 12

defines a facet for the graph in Fig. 4(c).
The techniques of this section also apply to Case 4 of 2. The only missing piece in

this case is a characterization of the extreme rays of the set Y, defined in Theorem 5.9.

6. Acyclic induced subgraphs. In this section, our aim is to show how the same
ideas apply to the acyclic induced subgraph polytope. Similar compositions for the
polytope of acyclic spanning subgraphs have been studied in [5].
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Let D (V, A) be a directed graph; the induced subgraph (W, A(W)) is called acyclic
if it does not have a directed cycle. The acyclic induced subgraph (AIS) polytope is

P’(D) =conv {xw V](w, A(W)) is acyclic},

and the maximum AIS problem is

max cx, x P’(D).
If G (V, E) is an undirected graph, the maximum stable set problem in G can be

reduced to a maximum AIS problem in a directed graph D (V, A), where each edge
e E is replaced by the arcs (i, j) and (j, i). This shows that the maximum AIS problem
is NP-hard for planar digraphs.

The analogue of Theorem 2.1 is the following result.
THEOREM 6.1. Let D V, A) be a directed graph such that there exist two node

sets V and V2 with thefollowing properties:
(i) V V tO V2,
(ii) W= Vfq V24:,
(iii) For i, j } W, the arc (i, j) A and (j, A,
(iv) The induced subgraph (V\ W, A( V\ W)) is disconnected.
IfD (V, A(V)) and De (V2, A(V2)), then a system ofinequalities that defines

P’(D) is obtained by the juxtaposition ofsuch systems defining P’(D) and P’(D2).
Now let us study digraphs with a two-vertex cutset.
Let D (VI, A1) and O2 (V2, A2) be two digraphs such that V f3 V2 {b/, I))

and let D (V, A) be the union ofD and O2, i.e., V V tO V2, A A tO A2. There
are three cases.

Case 1. The arcs (u, v) and (v, u) belong to A.
Case 2. The arc (u, v) A.
Case 3. There is no arc between u and v.
Case is covered by Theorem 6.1. In Case 2, we define i (ITi, .3i), 1, 2 as

follows:

v, v u {w,, w),

Ai Ai tO {(w, u), (v, w), (u, w2), (w2, u), (v, w2), (w2, v)}.
In Case 3, we define

Vi Vl tO {Wl, w2, w3},

i Ai tO {(v, w), (w, u), (u, w2), (we, v), (u, w3), (w3, u), (w3, v), (v, w3)).
For Case 2, the inequality

x(w) + x(w2) + x(u) + x(v) _<_ 2

plays the role of inequality (2.1). For Case 3, the inequality

x(w) + x(w) + x(w3) + x(u) + x(v) 3

plays the role of (2.2).
So they define a facet F(Di) of P’(Di), 1, 2 and a facet F(D) of P’(D); again, the

polytope P’(D) is the projection of F(D) along the variables {x(wi)}, and the following
is the analogue of Theorem 2.2.

THEOrEM 6.2. The juxtaposition ofa system that dejnes F(D) and a system that
defines F(/32) gives a system that defines F().

Algorithmic aspects analogous to those of 3 hold for the AIS problem. For series-
parallel digraphs, we have the following result.
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THEOREM 6.3. IfD is a series-parallel directed graph with n nodes, then a maximum
weighted AIS can befound in O(n log n) time.

THEOIEM 6.4. IfD is a series-parallel directed graph with n nodes, then P’(D) is a
projection ofa polytope defined by a system with O(n) inequalities and O(n) variables.

As for the BIS polytope, P’(D) may have facet-defining inequalities that are not easy
to describe even for series-parallel digraphs [6]. The above theorem shows that, if we
allow extra variables, then we have a polytope that has a much simpler representation.

The techniques of5 can also be adapted to Case 2 ofthe present section to produce
compositions of facets of P(D’).

Acknowledgment. We are grateful to the referee for his suggestions on the presen-
tation of this paper.
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COMPOSITIONS OF GRAPHS AND POLYHEDRA II: STABLE SETS*
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Abstract. A graph G with a two-node cutset decomposes into two pieces. A technique to describe the stable
set polytope for G based on stable set polytopes associated with the pieces is studied. This gives a way to
characterize this polytope for classes of graphs that can be recursively decomposed. This also gives a procedure
to describe new facets of this polytope. A compact system for the stable set problem in series-parallel graphs is
derived. This technique is also applied to characterize facet-defining inequalities for graphs with no Ks\e minor.
The stable set problem is polynomially solvable for this class of graphs. Compositions of h-perfect graphs are
also studied.

Key words, polyhedral combinatorics, composition of polyhedra, stable set polytope, compact systems

AMS subject classifications. 05C85, 90C27

1. Introduction. Given a graph G, let P(G) be the stable set polytope of G. If G has
a one- or two-node cutset, then G decomposes into G1 and G2. We study a technique to
derive a system of inequalities that defines P(G) from systems related to GI and G2. In
a companion paper [2], we studied the same technique for the polytopes ofbalanced and
acyclic subgraphs. We can use this to characterize the stable set polytope for classes of
graphs that can be decomposed by two-vertex cuts, provided that the pieces are "easy"
to handle. It also gives a procedure for characterizing facets of the stable set po!ope by
composition of facets for the pieces. We use this method in [3] to characterize the stable
set polytope for graphs with no W4 minor.

In 2 we study the structure of the facets of P(G) and show some facet-defining
inequalities for subdivisions of a wheel. In 3 we study the composition of polyhedra. In
4 we study the algorithmic aspects of this kind of composition. In 5 we study series-
parallel graphs. We derive a compact system for the stable set problem in this class of
graphs; i.e., we show that P(G) is a projection ofa polyhedron that is defined by a system
whose number of variables and number of inequalities is linear in the number of nodes
of the graph. In 6 we study some facets of P(G) for graphs with no Ks\e minor. Based
on a decomposition theorem ofWagner, we can derive a polynomial algorithm for finding
a maximum weighted stable set in this class of graphs. Using composition of facets, we
show that, for any positive integer p, we can find a graph G with no Ks\e minor such
that P(G) has a facet-defining inequality with coefficients 1, 2 p. In 7 we study
compositions of h-perfect graphs.

We finish this introduction with a few definitions. Given a graph G (V, E), a
stable set S

_
V is a node set such that there is no edge with both endnodes in S. If S

_
V, let xs Rv, where xS(u) if u e S, and xS(u) 0 if u S; xs is called the incidence
vector of S.
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The stable set polytope P(G) is the convex hull of incidence vectors of all stable sets
of G, i.e.,

P(G) =conv {xs tVls is a stable set of G}.
The polytope P(G) is full-dimensional. This implies that (up to multiplication by a positive
constant) there is a unique nonredundant inequality system Ax <_ b such that P(G)
{x lAx <- b}; moreover, there is a natural bijection among the facets of P(G) and the
inequalities of that system.

2. On the facets of P(G). The facets of P(G) have been studied in [11], [5], [10],
[13]-[ 15]. In this section, we present some properties of those inequalities that will be
used later. We also present some facets for subdivisions of a wheel.

Let ax < a be an inequality that defines a facet of P(G). If a contains at least two
nonzero components, we say that ax < a defines a nontrivial facet. In this section, we
study only nontrivial facets, so we have that a > 0 and a > 0. We denote by Va the set

Va={vla>O}.
The subgraph induced by Va is denoted by Ga. Let us remark that Ga is a two-con-
nected graph.

We now present two lemmas about the structure of Ga; their proofs appear in [9].
LEMMA 2.1. IfGa contains a path with vertices p, u, v, q, where u and v are ofdegree

2, then au av.
LEMMA 2.2. If Ga is different from an odd hole (and from K3), then it does not

contain between two given nodes p and q two edge-disjoint paths such that each node of
them differentfrom p, q is ofdegree 2.

In what follows, we give two procedures of construction of facets of the stable set
polytope from known facets. The first procedure consists of subdividing a star.

THEOREM 2.3 (subdivision of a star). Let G V, E) be a graph and ax < c be a
nontrivial facet-defining inequality. Let v be a vertex ofG and N { Vo, vk-1) be
the neighbor set ofv. Suppose that, jbr each 0,..., k 1, there exists a stable set i
such that axs c and i ( N { l)i, 1) + 1, l)i + p-- }, where p >_ is a fixed integer
and the indices are numbered modulo k. Suppose also that p and k are relatively prime
and av a, ak_ a/p. Let G’ V’, E’) be the graph obtainedfrom G by
adding on each edge vvi a new node vfor O, k 1. Set

a- au for u V\{v},

a a(k p)/p,

a-; =adp fori=O, 1,...,k- 1,

a + a(k- p)/p.

Then 6x <_ defines a facet ofP(G’).
Proof First, let us show that 6x < is valid for P(G’). Let S’ be a maximal stable

set of G’.
Case 1. The node v belongs to S’.
Then S S’\{v} is a stable set in G, which implies that axs <_ and then

xS’ <_ &.
Case 2. The node v does not belong to S’.
Let T S’fq N and T’= {vlvi T, 0 < <_ k- 1}. Note that T’ G S’. Let

S (S’\(T tO T’)) tO {v}. It is clear that S is a stable set of G; then axs <_ a. Since

IT to T’I k, we have that 6xS’<_ .
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Now we have to show that 6x _< is facet-inducing. Let n VI and m n + k.
There are n stable sets Sl Sn of G whose incidence vectors are linearly independent
and satisfy ax a. Consider the following sets:

S[ (Si\ { v U {v, v_ } ifvSi,

S[=SitO{v} if v a Si, for 1,...,n,

and

S;,+j+l U {vflvi} forj=0, 1,...,k- 1.

The incidence vectors of S, S satisfy 6x . Let us assume that they also
satisfy bx 3, where bx < is a facet-defining inequality of P(G’). We prove that
b=6.

Since the incidence vectors of0,. k- are linearly independent, we can assume
that S 0,..., S _l.

Consider the equations bxs; bxs;+ O, 1,..., k. This is a system like

where u is a row of l’s, and C is the k k cyclic matrix having (k p) l’s in each row
and column. Hence, we have that

bv;=bv/(k-p) fori=0,...,k- 1.

There is some number 6 > 0 such that
Consider the equations bxs; & (or bxs; b b), 1, n. Since a is

the unique solution of axsg a, 1,..., n, and 3 b 6a, we have that

bu 6a forue V\{v} and bvp/(k- p) 6a.

Therefore,

b 6a(k- p)/p 66 and bv=6a/p=66, O, k 1.

Since 6a + b 6a + 6a(k p)/p, we have that 6 1. The proof is complete. []

Wolsey [15] gave some methods to construct facets of P(G) from known ones. One
of those methods is the following, which consists of replacing one edge by a chordless
path of length 3.

THEOREM 2.4 (subdivision of an edge). Given a graph G V, E) and uv E, let
ax <_ a be a nontrivialfacet-defining inequality ofP (G), differentfrom x(u) + x(v) <_ 1.
Let G’ be the graph G without the edge uv, if max {axlx P(G’)} has a solution
with x(u) x(v) 1, then

ax + Xx(s) + Xx(t) _</3

defines afacet ofP(G"), where X 13 a, and G" has been obtained by adding the nodes
s and to G’, and the edges us, st, and tv.

In the following, we show a converse transformation.
THEOREM 2.5. Let G V, E) be a graph. Let ax <_ a be afacet-defining inequality

ofP(G). Suppose that G contains a path (pu, uv, vq) such that u and v are ofdegree 2.
Assume also that ap au av t3. Let G’ V’, E’) be the graph obtainedfrom G by
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replacing that path by the edge pq. Let

a-u au forue V’,

then 6x <_ ? defines aface ofP(G’).
Proof First, we show that 6x _< is valid for P(G’). Let S’ be a stable set of G’. If

{p, q} fq S’ 4: , say p S’, then S S’ tA {v} is a stable set in G; hence 6xs’ <_ a

/3 . If {p, q} N S’ , then S S’ t_J {v} is a stable set of G and thus 6xs’ <_ a

Let n VI and m n 2. We must exhibit m stable sets of G’ whose incidence
vectors are linearly independent and satisfy ix .

Since ax <_ a defines a facet of P(G), there are n stable sets S,..., Sn of G such
that axsi a, <_ <_ n, and this set of vectors is linearly independent. Consider the
following sets:

1) S Si\{l) } if {p, v}
_

Si,
2) S SiX{p} if {p, q}

_
Si,

3) S SiX{u} if {q, u}
_

Si,
4) S SiX{u} if u r Si, q qt Si,
5) S Si\{v} if v Si, p Si

for/= 1,..., n.
Note that the sets S[ for 1, n are all stable sets of G’. Let us denote by M

(respectively, M’) the matrix whose columns are the incidence vectors of S, Sn
(S, S,). The matrices M and M’ look like

AI
1...1

M= 0-.’0
1...1
0".’0

A A A4 A
1""1 0""0 0""0 0""0
0""0 1""1 1""1 0 0
0""0 0"’0 0""0
1--’1 1".’1 0""0 0 0

A2 A3 A4 As\)0...0 0...0 0...0 0...
1...1 1...1 0.--0 0

We must show that the rank ofM’ is n 2. Let M be the following matrix:

M 0

0
0
0

1-..1]

This is nonsingular. In fact, ifMis singular, then its last row should be linearly dependent
of the others. Since a is the only solution of tM (a, a), we should have /a 1.
However, a > 2/3, a contradiction.
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Now let us add the rows corresponding to u and v to the row corresponding to p
and subtract from the resulting row the last row of M. We obtain the following:

A A2 A3 A4 A5 0
1"’1 0""0 0"’0 0""0 0""0
0-"0 0""0 1"’1 1-"1 0""0 0
1.’.1 0""0 0---0 0""0 1"’t 0
0""0 1"’1 1""1 0-’-0 0""0 0
1111

Since this matrix is nonsingular, we can conclude that M’ is of rank n 2.
We finish this section by showing some facet-defining inequalities ofP(G), when G

is a subdivision of a wheel.
Let G be the graph of Fig. (a); it is well known that the inequality

, x(j) + 2x(6) < 2
j=l

defines a facet of P(G). By applying Theorem 2.3 to the star of node 6 and then to the
star of node 5, we obtain the graph of Fig. l(b) and a facet-defining inequality; the
coefficients different from appear in the figure. The fight-hand side is 7. Again, if we
apply Theorem 2.3 to the stars of nodes 1, 2, 3, 4, and 5 in Fig. (a), we obtain a facet-
defining inequality whose fight-hand side is 12 and whose coefficients different from
appear in Fig. (c). Finally, ifwe apply Theorem 2.3 to the star of 6 in Fig. (a) and then
Theorem 2.4 to subdivide some edges, we also obtain the graph in Fig. (c) but a different
inequality whose fight-hand side is 10 and whose coefficient different from appears in
Fig. l(d).

5

(a) (b)

(c) (d)

FIG.
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3. Compositions of graphs. Let G (V, E) be a graph such that V V t_J V2,
I4/= V f3 V_ : and (W, E(W)) is a clique and (V\ W, E(V\W)) is disconnected.
Chvfital [5] proved the following.

THEOREM 3.1. IfG (V, E(V1)), G2 (V2, E(V2)), then a system that defines
P(G) is obtained by taking the union ofthe systems that define P(G) and P(G_).

This theorem applies to the case where G has a one-node cutset or a two-node cutset
{ u, v} with uv E; we refer to this as Case 1.

In the remainder of this section, we assume that
(i) V V t.J V2,
(ii) V f’l V2 {u, v},
(iii) G\{u, v} is disconnected,
(iv) The nodes u and v are not adjacent.
This will be called Case 2. We add a five-cycle to each piece. We shall see that we

can easily derive a description of the polytope for the original graph from the polytopes
of the modified pieces. Let Gk (Vk, E) be defined as follows:

(i) V V t_J {w, w2, w3},
(ii) E E(Vk) U {UWl, vw, uw2, WzW3, w3v} for k 1, 2. Let G (V, E) be the

union of ( and (72, i.e., I7 lPl U I72,/ =/l U/22.
The inequality

(3.1) , x(wi) + x(u) + x(v) <_ 2
i=1

defines a facet F(G) of P(G), k 1, 2 and a facet F(G) of P(G). Furthermore, the
polytope P(G) is the projection of F(G) along the variables {x(w;)}, i.e.,

P(G) {YI(Y, X(Wl), x(w2), x(w3)) F(G)}.
The next lemma gives a system that defines F(G).
LEMMA 3.2. Given two systems ofinequalities defining F((T1) and F(2), the union

ofthese two systems defines F(G).
Proof See Theorem 2.4 in [2].
Lemmas 2.1 and 2.2 show that the facet-defining inequalities ofP(G) can be classified

as follows, for k 1, 2:

(3.2a) E a}x(j) <_ i, I,
j Vk

(3.2b) , ax(j) + x(w,) < ci,
j Vk

(3.2c) , ax(j) + x(w2) + x(w3) -< a/,
jr Vk

(3.2d) x(u) + x(w) <_ 1,

(3.2e) x(u) + x(w2) < 1,

(3.2f) x(v) + x(w) <_ 1,

(3.2g) x(v) + x(w3) < 1,

(3.2h) x(w:z) + x(w3) < 1,

(3.2i)

(3.2j)

x(u) + x(v) + x(w) + x(w2) + x(w3) -< 2,

x(j) > O, j Vk.
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The set I consists ofthe inequalities whose support does not intersect { w, w2, W3}.
The set I contains the inequalities whose support includes {u, v, Wl } and has empty
intersection with {w2, w3}. The inequalities in I3 have a support that contains (u, v,
w2, w3} and does not include w.

Then F(G) is defined by both systems together with the inequality

(3.3) -x(u) x(v) x(w) x(w2) x(w3) < -2.

Now we project the variables {x(wi)} using the following result of Balas and Pul-
leyblank ].

THEOREM 3.3. Let Z {(w, x)lAw + Bx <_ b, w >_ O, x >_ 0} the projection ofZ
along the subspace ofthe w variables is

X {xl(vB)x <- vb, Vv extr , x >_ 0},
where extr denotes the set ofextreme rays of

{ylyA>O,y>-O}.

In our case, the rows ofA are of the following types:

0 0 0
0 0

0
0 0

0 0
0 0"

0 0
0

-1 -1 -1

The first nine rows correspond to inequalities (3. a)-(3.1 i), and the last row corresponds
to (3.3). The extreme rays of correspond to the extreme points of

{ylyA > O, , Yi 1, y > 0},

so we enumerate the extreme points of

{zlBz >- O, Z l, Z - 0},

where B is the matrix

i 0 0 0 -1]0 0 -1
0 0 -1

The extreme points are the columns of the matrix below:

-1 0 0 0 0 0-
00

0 0
o o
o 1/4 o
o o

_o o o 1/2_
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Therefore the inequalities given by Theorem 3.3 are obtained by performing the following
steps:

(i) Keep inequalities (3.2a)-(3.2i) but delete the variables {x(wi)},
(ii) Add three inequalities, one of type (3.2b), (3.2d), or (3.2f), one of type (3.2c)

or (3.2h), and (3.3),
(iii) Add four inequalities, one of type (3.2b), (3.2d), or (3.2f), one of type (3.2e),

one of type (3.2g), and (3.3),
(iv) Add (3.2i) and (3.3) (this gives the redundant inequality 0 _< 0).
The next lemma shows that some of those inequalities are redundant.
LEMMA 3.4. Let ax <_ a be an inequality that defines a nontrivialfacet ofP(G). If

Va c_ Vk, then this inequality also defines a facet ofP(Gk), k 1, 2.
Proof Let H be the graph obtained by replacing the edge UWl in G by the path us,

st, twl, where s and are new nodes. First, we prove that ax <_ a defines a facet of P(H).
It is clear that this inequality is valid for P(H).

By hypothesis, there are [V[ linearly independent incidence vectors of stable sets
ofG that satisfy ax a. Let us form a matrix Mwith them. Among these vectors, there
is one vector such that (u) 0 and one vector such that 2(v) 0. Consider the
matrix

0 0 0
0 0 0 !0 0 0
0 0 0 0

The last five rows correspond to s, t, wl, w2, and w3, respectively.
The columns of M’ are linearly independent incidence vectors of stable sets of H

and satisfy ax a. Now, by Theorem 2.5, we can replace the path us, st, tw by the edge
uwl and we have that ax <_ a defines a facet of the stable set polytope of G. [3

This lemma states that, if an inequality is essential in the definition of P(G) and its
support is included in Vk, then a multiple of this inequality already appears in (3.2a). So
when we apply (i) we should keep only the inequality (3.2a); in (ii) we should keep only
those constraints whose support intersects both Vl\{ u, v} and V2\{ u, v}; for the same
reasons the inequalities produced in (iii) are redundant. We can state the main result of
this paper.

THEOREM 3.5. The polytope P(G) is defined by (3.2a), together with x(j) >_ O, for
j V, and the mixed inequalities

(3.4)

E a}x(j)+ , ax(j)-x(u)-x(v)<a+a-2
j Vk j V

fork= 1,2;l= 1, 2; k 4: l; e I, s e I3.
To prove that this system is minimal, we introduce the following lemma.
LEMMA 3.6. Inequalities (3.2b) and (3.2c) definefacets ofF(G).
Proof First, we study inequality (3.2b). Let ax <_ a be one of them and let S

{Xl Xp} be the set of extreme points of P(() that satisfy ax .
Let xj. be a vector in S; ifx e F((), we define x} x; otherwise, we define x}(i)

x(i) if 4 w2, w3. We set to x}(w2) or x}(w3) to obtain an extreme point x} F(G).
Now let us assume that ax <_ a is inessential in the definition of F(Gk). This implies that
a )kib + 3’d, a > )ki "3v "}/,, with )k

___
O, where bix < i denotes an inequality
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of (3.2) different from ax <_ a and from (3.2i); dx e denotes the equation obtained
from (3.2i).

For each inequality bix <- i, there is a vector xj 6 S such that bixj < i and bix’j.
/3i. Hence biwj > 0 for j 2 or 3; then biw, 0. This implies 3’ and then some k <
0, a contradiction.

Now we consider an inequality ax < of the type (3.2c).
Since dim (F((k)) l?kl 1, we must show I? linearly independent vectors

in F(G) that satisfy ax c. Let S {x,..., Xp} be the set of extreme points of P(G)
that satisfy ax c. Let xj be a vector in S; ifx F(G), we set x xj.; otherwise, we set
x[i(i) xj(i), if 4: w, x’j.(w) 1. Since S contains Vkl linearly independent vectors
and we modified only one component of the vectors in S, the set S’ {x’ x)
contains IVy[ linearly independent vectors in F(G) that satisfy ax a. C]

So if ax < c is of type (3.2b) or (3.2c) and another inequality bx <_ 3 defines the
same face of F(G), then b ka + 3"d, where dx e denotes (3.2i) and k > 0. The
constraint bx <_ t3 cannot be in (3.2) because of the structure of the inequalities in this
system.

COROLLARY 3.7. Inequalities (3.4) definefacets ofP(G).
Proof Assume that k 1, 2. We show that there exists a vector P(G) that

satisfies this inequality and all others as strict inequalities.
For the inequality

a6x(j + x(w,) <_ ce, I,
j- VI

let S {x, xn} be the set of extreme points of F(G) that satisfy it. For
2 2 iI]aijx(j) + x(w2) + x(w3) -< ai,

j6 V2

let T {y, Ym} be the set of extreme points of F(G2) that satisfy it. First, for each
vector xi, we find a vector y; such that together they give a vector zi F(G), 1,...,
n. Similarly, for each vector Yi, we find a vector xi that gives a vector zn + F(G), 1,

m. Let {z Zr} be the set of vectors thus obtained, (r n + rn). Let z be the
vector obtained by dropping the components z(w), _< j _< 3 from zk; then

:-(z’ +... + z3

is the required vector.

4. Algorithmic aspects. The optimization problem can be also decomposed. The
following algorithm appeared in Boulala and Uhry [4] and Sbihi and Uhry [12].

Let G (V, E) be a graph and c: V-- + a weight function. Let us assume that
G is the graph of Theorem 3.1, let W { w,..., wl }, and let/3i be the maximum weight
of a stable set of G2 that contains wi for _< _< l. Let/30 be the maximum weight of a
stable set of G2 that does not contain any node of W. Let us redefine the weights in G
as follows:

c’(u) c(u) if u (t W,

e’(wi) max {0,/3i- /0} for _< < l.

Let a be the maximum weight of a stable set of G; then the maximum weight of a stable
set of G is a + 0.
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Now let us study Case 2 of 3. Let Y0 u, y w2, 322 W3, Y3 V, Y4 W1. For
0 < < 4, let i be the maximum weight of a stable set of G2 whose node set contains
and Yi+ 2 (indices taken mod 5); the weights of the nodes {We} are zero.

Let [3’0 ,3"4] be the solution of the system

0 0 0

(3"0,-.’, 3"4) 0 0
0 010 0

We have that

3"0

3"3

--0- 1 -- 2 - 3 -- 43"4 2

Let M min {3"i}; if the numbers {Bi} are integers, then 3"i- Mis a nonnegative integer
for 0 _< _< 4. Now we define

c’(j) c(j) ifj e V\{u, v},
c’(yi) 3"i- M for0_<i_<4.

Let a be the maximum weight of a stable set of G; then the maximum weight of a stable
set of G is a + 2M. Let us remark that one of the weights c’(yk) is zero; we can then
delete that node from G.

5. Application to series-parallel graphs. Boulala and Uhry [4] proved the following.
THEOREM 5.1. IfG g, E) is a series-parallel graph, then P(G) is defined by

0 <_ x(u) for all u e V,

x(u) + x(v) <_ for all uv e E,
(5.1)

ICI-x(u) < for all odd holes C.
2uC

They also gave a linear time algorithm to find a maximum weighted stable set in a
series-parallel graph. A short proof of Theorem 5.1 appears in [9].

A connected series-parallel graph can be decomposed into paths and triangles using
one-node and two-node cutsets. If G consists of a cycle and a path joining two nodes of
the cycle, then it is easily seen that P(G) is defined by (5.2). Thus Theorem 5.1 can be
derived from Theorems 3.1 and 3.5.

Since a series-parallel graph may have exponentially many odd cycles, the stable set
polytope may have exponentially many facets.
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Hassin and Tamir [7] proved that, if G (V, E) is a series-parallel graph, then it
contains a two-node cutset such that, when the decomposition of 3 is carried out,
Vii < 2/31 V + 2 for 1, 2. Hence we can recursively decompose a series-parallel

graph until each piece has at most fifteen nodes. By Lemma 3.2, we can describe a
polytope Q such that P(G) is a projection of Q. If G has n nodes, then the number of
inequalities and the number of variables in the system that defines Q is O(n). Such a
system is compact.

6. Graphs with no Ks\e minor. A graph G is said to contain a graph H as a minor
if a graph isomorphic to H can be obtained from G by repeated deletion and contraction
of edges of G. Let us denote by the class of all connected graphs that do not contain
Ks\e as a minor; this is the graph K5 minus one edge. Wagner 16] gave a characterization
of the graphs in .

If G1 and G2 are node-disjoint graphs with at least two nodes, vl a node of G1 and
v2 a node of G2 then the 1-sum of G1 and G2 (with respect to vl and v2) is obtained by
identifying the nodes vl and va. If el is an edge of G1 and e2 is an edge of G2, then the
2-sum of G1 and G2 (with respect to el and e2) is obtained by identifying e and e2 (and,
of course, the endnodes of el and e2).

Wagner proved that each maximal graph G in c (i.e., by adding a further edge to
G, the new graph will contain Ks\e as a minor) can be obtained by starting with the
graphs of Fig. 2 and taking repeated 1-sums or 2-sums. Equivalently, ifwe have a maximal
graph G c, we can decompose it into the graphs of Fig. 2. If the graph G c is not
maximal, then we may use also spanning subgraphs of the graphs in Fig. 2. In this case,
the nodes of the two-node cutset may be nonadjacent in G.

Let n be the number of nodes of G @ c; a two-vertex cutset can be found in O(n)
time. The pieces that we obtain are the graphs of Fig. 2, where some edges are replaced
by a five-cycle. The max stable set problem in a graph of this type obtained from a wheel
can be solved in linear time, so, using the procedure of 4, we can find a maximum
weighted stable set in G in O(n2) time.

FIG. 2
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FIG. 3

The development of a polynomial algorithm for combinatorial optimization prob-
lems has often been closely related to the characterization ofa system of linear inequalities
that defines the corresponding polytope. This is the case for the stable set polytope of
series-parallel graphs [4]. The missing piece here is a characterization of the polytope for
subdivisions of wheels; in 2 we gave procedures to produce some of these inequalities.
In [3] we used a tour de force to characterize the polytope for subdivisions ofK4. In what
follows, we present some examples of facet-defining inequalities of P(G) for G e c.

The graph of Fig. 3(a) has been obtained by subdividing one edge of the graph in
Fig. (a). Theorem 2.4 gives us a facet-defining inequality whose fight-hand side is 3 and
whose coefficient different from is shown in the figure. We can compose this graph
with the graph of Fig. (b) to obtain the graph in Fig. 3(b). By Corollary 3.7, we can see
that there is facet-defining inequality whose fight-hand side is 8 and whose coefficients
different from appear in the figure. Given any positive integer p, we can construct a
graph G c and an inequality that defines a facet of P(G) with coefficients 1, 2,
p. For this, it is enough to compose subdivisions of wheels of different sizes.

7. Composition of h-perfect graphs. A graph G is said to be h-perfect if P(G) is
defined by the constraints corresponding to cliques, odd holes, and the nonnegativity
constraints.

Let G be the graph of Theorem 3.5; we can derive h-perfectness of G as follows:
(a) If (1 and (72 are h-perfect then G is also h-perfect;
(b) If (2\{ Wl } is h-perfect, t is h-perfect and the set ofinequalities (3.2c) for P((

is empty then G is h-perfect;
(c) If G2\{w2, w3} is h-perfect, G is h-perfect and the set of inequalities (3.2b) for

P(G is empty then G is h-perfect.
Sbihi and Uhry [12] studied graphs G, which are the union of a bipartite graph G

and graph G2 having exactly two common nodes u and v and no edge in common. They
proved that the graph G is h-perfect if the graph obtained from G by replacing G by an
u v chain is h-perfect. They also proved that the graph obtained by substituting bipartite
graphs for edges of a series parallel graph is h-perfect. Their results follow from remarks
(a)-(c).

Gerards [6] studied graphs with not odd K4. Those graphs can be decomposed by
two-node cutsets as shown by Lovhsz et al. [8]. Gerards used compositions similar to
those of Boulala and Uhry [4] and Sbihi and Uhry [12].

Acknowledgment. We thank the referee for useful suggestions regarding the presen-
tation of this work.
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Abstract. The authors characterize the stable set polytope for graphs that do not have a 4-wheel as a minor.
The authors prove that the nontrivial facets are either "edge" inequalities or can be obtained by composing
"odd cycles" and "subdivisions of K4." By adding some extra variables, it is shown that the stable set problem
for these graphs can be formulated as a linear program of polynomial size.
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1. Introduction. Given a graph G (V, E), a set S
___
V is called a stable set if no

two nodes in S are adjacent. Given a stable set S, the incidence vector of S, xs v is
defined by

xS(u)={ ifu S,

ifuS.

The stable set polytope of G, denoted by P(G), is the convex hull ofincidence vectors
of stable sets of G. The maximum stable set problem is NP-hard, so it seems difficult to
find a complete characterization ofP(G) for general graphs. To our knowledge, the only
classes of graphs, besides perfect graphs, for which this polytope has been characterized
are line graphs [4], series parallel graphs [2], [13], almost bipartite graphs [5], and graphs
with no odd K4 [7]. The class studied by Gerards and Schrijver [7] contains the classes
studied by Boulala, Fonlupt, and Uhry. In this case, the only nontrivial facets correspond
to edges and odd holes. All the linear systems mentioned above consist of inequalities
with 0-1 coefficients.

In this paper, we characterize the stable set polytope for graphs that do not have a
4-wheel as a minor. The inequalities are more difficult to describe than in the preceding
cases, and they may have arbitrarily large coefficients.

Graphs in this class can be decomposed by two-vertex cuts 10]. We use this property
to prove that the nontrivial facets are either edges or can be obtained by composing odd
cycles and subdivisions of K4. A list of the facets for subdivisions ofK4 is also given. We
also show that, by adding some extra variables, the stable set problem in graphs with no
4-wheel minor can be formulated as a linear program of polynomial size. A polynomial
combinatorial algorithm for the stable set problem in this class can be easily derived ].

If G has a one-node or a two-node cutset, then G decomposes into G1 and G2. In a
companion paper ], we gave a technique to characterize P(G) starting from systems
related to G and G2. In this paper, we apply that technique.
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France.

372



STABLE SETS IN GRAPHS WITH NO W4 373

A connected graph G is said to have the graph H as a minor if H can be obtained
from G by deleting some edges and by a sequence of elementary contractions in which
a pair of adjacent vertices is identified and all other adjacencies between vertices are
preserved (multiple edges arising from the identification being replaced by single edges).

We denote a 4-wheel by W4; see Fig. 1.1.
This paper is organized as follows. In 2 we summarize our composition techniques.

In 3 we describe the decomposition of graphs with no W4 minor. In 4 we state our
main result. Sections 5 and 6 are devoted to the study of the subdivisions of K4.

We conclude this introduction with a few definitions.
The polytope P(G) is full-dimensional. This implies that (up to multiplication by a

positive constant) there is a unique nonredundant inequality system Ax <_ b such that
P(G) (x:Ax < b}. These inequalities define the facets of P(G). In many cases, we say
that the inequality ax <_ a is afacet instead of saying that it defines a facet. Ifthe inequality
has at least two nonzero coefficients, we say that it is a nontrivial facet.

If ax <_ a defines a facet of P(G), we denote by Va the set

Va {v av > 0}.

The subgraph induced by Va is denoted by Ga, and it is called the support of the facet.
We denote by uv the edge whose endnodes are u and v. If U V, then E(U) denotes

the set of edges with both endnodes in U, and (U, E(U)) is the subgraph induced by U.
An odd cycle with no chord is called an odd hole. A maximal complete graph is called
a clique.

IfK is a clique, then the inequality Zu/ x(u) _< defines a facet ofP(G) [14]. This
is called a clique inequality. If the clique is an edge, it is called an edge inequality.

IfH is an odd hole, then the inequality

x(u)<_
2urH

is valid for P(G); this is called an odd hole inequality. Under some conditions, these
inequalities define facets of P(G) 14].

The trivial facets of P(G) are x(v) >_ 0 for v V.
A graph G is called t-perfect if the only nontrivial facets of P(G) are the odd hole

and the edge inequalities. Chvfital [3] introduced this class of graphs and conjectured
that series-parallel graphs are t-perfect.

A graph is called series-parallel if it does not contain K4 as a minor. Boulala and
Uhry [2] proved that series-parallel graphs are t-perfect; i.e., they characterized P(G) for
graphs that do not have a 3-wheel as a minor. A short proof of this appears in 13].

FIG. 1.1
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2. Compositions of polyhedra. This section is devoted to survey the composition/
decomposition techniques that we need.

Let G (V, E) be a graph such that V V U V2, W--- V ["] V2 q/= j, (W, E(W))
is a clique, and (V\ W, E(V\ W)) is disconnected. Chvfital [3] proved the following result.

THEOREM 2.1. IfG1 (V1, E(V1)) and G2 (V2, E(V2)), then a system that defines
P(G) is obtained by taking the union of the systems that define P(G1) and P(G2) and
identifying the variables associated with the nodes in W.

This theorem applies to the case where G has a one-node or a two-node cutset
{ u, v } with uv E. This is called Case 1.

Now we must treat Case 2, i.e., when G has a two-node cutset { u, v} and uv E.
In the remainder of this section, we assume that
(i) V= V to V2,
(ii) V f’l V2 {u, v},
(iii) uv E, and
(iv) G\ { u, v is disconnected.
We decompose into two pieces and add a 5-cycle to both of them; see Fig. 2.1. For

k 1, 2, we define (Tk (l?k,/) as
(i) V V tO {Wl, w2, w3 },
(ii) E E(Vk) tO {uw, vw, uw2, WzW3, w3v}.
To study the facets of P(G), we present two lemmas. Their proofs appear in [13].
LEMMA 2.2. Let ax < be afacet ofP(G). IfGa has a path with vertices p, u, v, q,

where u and v have degree 2 in Ga, then a, av.

FIG. 2.1



STABLE SETS IN GRAPHS WITH NO W4 375

LEMMA 2.3. Let ax <_ c be afacet ofP(G). IfGa is differentfrom an odd hole, then
it does not contain between two given nodes p and q two paths such that each node of
them, differentfrom p, q, has degree 2 in Ga.

Lemmas 2.2 and 2.3 imply that the facets of P(Gk) for k 1, 2 can be classified in
the following ten types:

(a) Zj vk a}x(j) < ci, I,
(b) vk a}x(j) + x(w,) < ai, I,
(c) v a}x(j) + x(w2) + x(w3) < a, e I3,
(d) x(u) -k- X(Wl) < 1,
(e) x(u) + x(w) <_ 1,
(f) x(v) + x(w) <_ 1,
(g) x(v) + x(w3) < 1,
(h) x(w2) -I- x(w3) 1,
(i) x(u) + x(v) + x(w) + x(w_) + x(w3) -< 2,
(j) x(j) > O, j Vk,

where I is the set of inequalities whose support has empty intersection with {w, w2,

w3 }, I is the set of inequalities whose support contains w and has empty intersection
with { w2, w3 }, and I3 is the set of inequalities whose support contains (w2, w3 } and
not w

Now we can present the necessary polyhedral composition theorems.
Let G (V, E) be the union of G and G_, i.e.,

V= V t..J V2, E= E U E2.

The equation

(2.1) x(u) + x(v) + x(w) + x(w) + x(w3) 2

defines a facet F(G) of P(G); it also defines a facet F(Gk) of P(G) for k 1, 2. The
polytope P(G) is a projection of F(G) along the variables {x(wi)}.

Now we state two theorems that appear in [1 ].
THEOREM 2.4. The facet F(G) is defined by the union of the systems that define

F(G1 and F(Gz).
THEOREM 2.5. The polytope P(G) is defined by (a), together with x(j) > 0 and the

mixed inequalities

(2.2)
E a.x(j) + , ax(j) x(u) x(v) < a + Cs-
j Vk j V

fork= 1,2;/= 1,2;k4:l;i6Iz,SI3.

Moreover, all these inequalities definefacets ofP(G).

3. Graphs with no W4 minor. Graphs with no W4 minor can be easily decomposed
[10]. Gan and Johnson [6] used this property to study the Chinese postman problem in
these graphs. More precisely, if G has no W4 as a minor and has at least five nodes, then
G has a one-node or a two-node cutset where one ofthe pieces is a path or the Wheatstone
bridge; see Fig. 3.1.

Now it is clear how to apply the decomposition techniques of 2. If the cutset is
{ u, v} and uv E, then we just separate the two pieces. If uv E, then we separate the
two pieces and add a 5-cycle to both ofthem. In what follows, we formalize this procedure.
Let us denote by n the number of nodes of G; we prove that the total number of nodes
after decomposing is O(n).
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FIG. 3.1

We recursively apply the procedure below.
(a) If G has at most four nodes, stop.
(b) If G has a one-node cutset, we decompose it into the two blocks.
(c) Suppose that G has a two-node cutset u, v}, where the second block is a path

with two edges or the Wheatstone bridge.
(i) If uv E, we decompose G into the two blocks, we add the edge uv to

both blocks, and we label these two new edges as "artificial." This corresponds to Case
2 of {}2. Artificial edges represent the 5-cycles that are added to both pieces.

(ii) If uv E (where uv is not artificial), we decompose into the two blocks.
This corresponds to Case of {}2.

(iii) If uv E and uv is artificial, we decompose into the two blocks, we leave
the artificial edge uv only in the first block (if there are parallel artificial edges between
u and v, we leave them all in the first block), and we add a new artificial edge uv to each
block. This corresponds to Case 2 of {}2.

Note that a two vertex cutset could be used several times in this decomposition and
that that would create parallel artificial edges. The number of nodes of the larger block
decreases each time we decompose, so the number of artificial edges is bounded by 2n.
The resulting pieces are single edges, sets of parallel edges, triangles, or copies of K4.
Therefore, after applying this procedure, the total number of edges is O(n). These pieces
may have parallel artificial edges.

Figure 3.2 shows an example ofthis decomposition. Dashed lines represent artificial
edges. The set { u, v} has been used twice in the decomposition.

Now we must treat the blocks that have parallel artificial edges. Given a block with
more than two nodes and parallel artificial edges between u and v, we decompose into
two blocks. One of them consists of all those parallel edges. We add a new artificial edge
to each block. Figure 3.3 shows the result of this for the example in Fig. 3.2.

Now let us assume that we have a block that consists of two nodes and p parallel
edges, p >_ 4. The following procedure is applied recursively. We separate into two blocks,
the first with [p/2] edges and the second with the remainder. We add one artificial edge
to each block. We can prove by induction that this procedure creates less than 2p new

FIG. 3.2
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FIG. 3.3

FIG. 3.4

artificial edges. Therefore the total number of edges is O(n). Now the pieces are single
edges, triangles, copies ofK4, and sets of at most three parallel edges. The first three types
do not have parallel edges. Finally, Operation C, given below, is applied to every arti-
ficial edge.

Operation (9(uv). Remove the edge uv. Add the nodes Wl, w2, and w3; add the edges
uw1, vWl, uw2, w2 w3, and w3 v.

Figure 3.4 shows the result of applying this to the pieces in Fig. 3.3.
Let us remark that the final pieces are series-parallel graphs with at most eleven

nodes (like the second block in Fig. 3.4) and graphs obtained by applying (9 to K4.

4. On the stable set polytope of graphs with no W4 minor. In this section, we state
our main result. The facets of P(G) are not described in a simple way as "odd holes" or
"cliques." We present a combinatorial procedure that produces all of them. We first
present three theorems to derive "facets from facets." To make the notation less cum-
bersome, we use a(u) instead of au to denote the coefficients of the inequalities.

THEOREM 4.1 (subdivision of an edge [15]). Let G V, E) be a graph and let uv
be an edge ofG and G G\uv. Let ax <_ be afacet-defining inequality ofP(G) different
from x(u) + x(v) <_ 1. If z max {ax x P(G)} has a solution with
x(u) x(v) 1, then ax + f3x(w) + f3x(y) <_ z defines a facet ofP(G’), where G’ is the
graph obtainedfrom G by replacing the edge uv by the path (u, w, y, v), and f3 z .

THEOREM 4.2 (contraction of an odd path [1 ]). Let G V, E) be a graph and let
ax <_ be a facet-defining inequality ofP(G). Suppose that G contains a path (pu, uv,
vq) such that u and v are ofdegree 2. Assume also that a(p) a(u) a(v) f3. Let G’
V’, E’) be the graph obtainedfrom G by replacing that path by the edge pq. Let

d(u) a(u) for u V’,

then 6x < defines a facet ofP(G’).



378 FRANCISCO BARAHONA AND ALI RIDHA MAHJOUB

THEOREM 4.3 (subdivision of a star [1 ]). Let G be a graph and let ax <_ a be a
nontrivialfacet that is not an edge inequality. Let v be a node ofG and let N { Vo,
Vk-} be its neighbor set. Suppose that, for each vi, there is a stable set Si such that
axsi a and Si f) N vi, vi + , vi +p- }, where p >_ is a fixed integer and the
indices are numbers modulo k. Suppose also that p and k are relatively prime and
a(lo) a(Vk) a(v)/p. Let G’ (V’, E’) be the graph obtainedfrom G by adding
on each edge vvi a new node vfor 0 <_ <_ k 1. Set

6(u) a(u) for u V\(v},

6(v) a(v)(k p)/p,

(v) a(v)/p for 0 <_ <_ k- 1,

g c + a(v)(k- p)/p.

Then 6x <_ g defines a facet ofP(G’).
It follows from Lemma 2.3 that, if we apply Operation (9 of 3 to K4, the only

nontrivial facets with support different from odd holes and edges, have as support a
subdivision of K4. Now we characterize those facets.

THEOREM 4.4. If G is a subdivision of K4, then the nontrivial facets ofP(G) are
either odd holes or edges or have been obtained by applying Theorems 4.1 and 4.3,
startingfrom the clique inequality ofK4.

The proof of this is the subject of the next two sections. We prove that there are 16
cases to study and we give an explicit list of the facets for each case. We call them K4
inequalities.

Now let G be a graph with n nodes that has no W4 minor. Suppose that it is decom-
posed, as described in {}3. For each piece, we have an explicit list of the facets; the total
number ofthem is O(n). The facets ofP(G) are obtained by composing those inequalities
according to Theorem 2.5.

Our main result can be stated as follows.
THEOREM 4.5. IfG is a graph with no W4 minor, then the nontrivialfacets defining

inequalities ofP(G) are either edge inequalities or can be constructed by composing in-
equalitiesfrom thefollowing twofamilies: (i) odd hole inequalities and (ii) a set of 19 K4
inequalities.

This last theorem gives a system that may have exponentially many inequalities.
Suppose now that we use Theorem 2.4 instead of Theorem 2.5; i.e., we do not project
the extra variables associated with the extra nodes. Then we can describe a polytope
Q {(x, y) :Ax + By <_ b} such that P(G) {x there is a vector y, with (x, y) e Q};
i.e., P(G) is a projection of Q. The decomposition of 3 gives a set of pieces that are
series-parallel graphs with at most 11 nodes and copies of K4 with some edges replaced
by a 5-cycle. The total number of nodes is O(n). Thus the number of variables and the
number of inequalities in the system that defines Q is O(n). Moreover, the coefficients
in those inequalities are integer numbers of absolute value at most 2.

Therefore, for this class of graphs, the stable set problem can be formulated as a
linear program of polynomial size.

For a polytope P the so-called separation problem is: Given a vector 2, decide
whether a7 P and, if not, find a hyperplane that separates 7 from P.

Grrtschel, Lovgtsz, and Schrijver [8], [9] have shown that, ifthe optimization problem
can be solved in polynomial time, then the separation problem can also be solved in
polynomial time by means of the ellipsoid method.
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In our case, by the Farkas lemma, if.g t P(G), there is a vector 7r such that

7rB=0, 7r>0, and 7r(b-A)<0.

So rAx < "xb is the required inequality. Thus, the separation problem can be solved
in polynomial time by means of any polynomial algorithm for linear programming; cf.
Khachiyan [12] and Karmarkar [11 ], for instance.

Solving the stable set problem with a cutting plane approach based on this separation
algorithm is equivalent to applying Benders decomposition to the linear program

maximize wx s.t. Ax + By < b.

5. Technical lemmas. In this section, we present a series oflemmas that lead to the
characterization ofP(G), when G is a subdivision ofK4. First, note the following remarks.

Remark 5.1. It follows from the results of 2 that it is enough to characterize the
polytope for graphs that are obtained by replacing some edges of K4 by paths with two
or three edges.

Remark 5.2. It is enough to consider the case where the four faces of the graph are
odd (a planar graph has an even number of odd faces). If only two ofthem are odd, then
there is a node that covers them; i.e., the removal ofthis node will leave a bipartite graph.
In this case, the graph is t-perfect, as shown by Fonlupt and Uhry [5].

Remark 5.3. Suppose that we have a graph that has been obtained from K4 by
replacing some edges by paths of two edges, with the additional condition that every
original node has at least one incident edge that has not been replaced. Since we should
have four odd faces, the only graph of this kind to be studied is the graph of Fig. 5.1.
This has been shown to be t-perfect by Gerards and Schrijver [7].

Remark 5.4. Consider a graph G (V, E) that is a subdivision of K4 and let
ax <_ a with a > 0 be a facet ofP(G) whose support is not a clique or an odd hole. Since
G\v is a series-parallel graph, we have that a(v) > 0 for all v e V.

From the first three remarks, it follows that we must study the 16 cases shown in
Fig. 5.2. We first state a lemma that will be used in this section.

LEMMA 5.5. Let ax <_ t be a facet ofP(G). Let u be a node ofdegree 2 in Ga and
let v, w be the neighbors ofu in Ga. Then a(v) >_ a(u) < a(w).

Proof The equation

(5.1) ax a

defines a hyperplane different from those of x(v) + x(w) 2 and x(v) x(w) 0. So
there is a stable set S such that axs c and IS f3 {v, w}l 1. Assume that v e S. Since
(S\{v}) t_J {u} is a stable set, we can conclude that a(u) <_ a(v).

Since (5.1) also defines a hyperplane different from that of x(u) + x(v) 1, there
is a stable set T such that axr a, and T f) { u, v, w} { w}. This implies that a(u) <
a(w). [3

FIG. 5.1
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FIG. 5.2

The following lemma will be used to solve nine cases.
LEMMA 5.6. Let G (V, E) be a graph and let (u, w, y, v) be a path in G, where

the nodes w and y have degree 2. Let G’ be the graph obtainedfrom G by replacing this
path by one edge; see Fig. 5.3. Let N(u) and N(v) be the neighbor sets of u and v in G,
respectively. Suppose that ax < a is the only facet-defining inequality of P(G’) whose
support is G’ and let bx < [3 be thefacet ofP(G) obtainedfrom ax < a by the procedure
described in Theorem 4.1. Suppose that, for everyfacet dx < ofP(G) whose support is
G, there exists a stable set S ofG such that xs and either S f3 (N(u)\{w}) or
S f) (N(v)\{y}) . Then bx <_ [3 is the onlyfacet ofP(G) whose support is G.

Proof Let 6x _< a be a facet of P(G), whose support is G. Lemma 5.5 implies that
6(w) 6(y) < min {6(u), 6(v)). If there exists a stable set S of G such that 6xs and
S fq (N(u)\{w}) , say, then w S and S’ (S\{w}) t3 {u} is also a stable set in G.
Hence (u) < 6(w) 6(y) _< 6(u). From Theorem 4.2, we have that the inequality

(5.2) a’x < a’

G

FIG. 5.3
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defines a facet of P(G’), where

a’(i) d(i)

and

for i V(w, y)

.’= a- a(u).

Since the support of (5.2) is G’, we have that a’ a and c’ c. Thus a b and
& ft. The proof is complete.

The next lemma will allow us to solve two cases.
LEMMA 5.7. Let G be a graph obtained from K4 in such a way that at least two

edges have not been subdivided. Let G’ be the graph obtainedfrom G by replacing one of
those two edges by a path ofthree edges; see Fig. 5.4. Ifax <_ is the onlyfacet ofP(G)
having G as support, then the only facet ofP(G’) having G’ as support is the inequality
a’x < a’ obtained by applying the procedure of Theorem 4.1 to ax <

Proof Let bx < be a facet of P(G’) whose support is G’. Let C be the odd hole
of G’ defined by the edge 1, 3 } and the paths 1-2 and 2-3. Since bx < is different
from the facet associated with C, there is a stable set S such that bxs =/3 and C fq SI <
(ICI- 1)/2.

If CI 3, then Sf) C . If ]C] 5 or ]C] 7, then Scan be chosen so that
S fq C Z, where Z is the set of nodes of C adjacent to the node 2 and different from
nodes and 3. In these three cases, we have that S f-) (N( 1)\ w}) . From the previous
lemma we have that b oa’ and/3 0a’, for some

The next three lemmas will enable us to solve four cases.
LeMMA 5.8. Let v be a node ofG. Let N(v) be the neighbor set ofv. Let ax < a be

afacet-defining inequality ofP(G) whose support is not an edge; then

a(v) < a(N(v)\{u})

for all u N(v).
Proof Let u N(v). Since ax <_ c is a facet not associated with an edge, then there

is a stable set S such that

axs o

and {u, v} 71S .
Then (S\(N(v)\{u})) tO {v} is a stable set in G. This implies that

a(v) <_ a(N(v)\ { u}).
LEMMA 5.9. Let G be a graph as in Fig. 5.5, where the dashed lines represent paths

with one or more edges, and v (respectively, w) is a node adjacent to v3 (respectively, v
in the path that replaces the edge v3 v4 (respectively, v v4) ofK4. Ifax < defines afacet

S
S

sS
SSSS

-_-_’_ 222::
FIG. 5.4
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FIG. 5.5

ofP(G) whose support is G, then we have thefollowing:
(a) Either (i) a(v a(v) + a(vv) and a(v3) a(v6) + a(v8), or (ii) a(v2)

a(vv) + a(v8), a(v a(w), and a(v3) a(v);
(b) Ifthe edge v2 v4 is subdivided and u is the node adjacent to v2 in this path, then

(bl) Either (i) and a(v2) a(u) hold, or (ii) holds,
(b2) Ifthe path between u and v4 is (uy, yv4) and a(v2) a(u), then ax <_ c is

obtainedfrom afacet ofP(G’) using the procedure ofTheorem 4.1, where G’ is the graph
obtainedfrom G by contracting the edges uy and yl)4.

Proof (a) Let C denote the cycle (v, v, v6, v3, v8, v2, Vv, v). Since ax <_ c has
as support the graph G and C is an odd hole, there is a stable set S in G such that
Sf’)CI <3andaxs=.

Case 1. {v, v3) S.
Thus S f-) C {v, v3 }. Since (S\{v }) to {vs, vv ) is a stable set, it follows that

a(l) >_ a(vs) + a(l7). From Lemma 5.8, we have that a(v a(vs) +
Since (S\ { v3 )) to v6, v8 } is also a stable set in G, we obtain a(v6) + a(vs) a(v3)

in a similar way.
Case 2. {v, v3 } S.
We should have that {v, v3 ) f3 S . If, for instance, v S and v3 t S, then

{v2, v6 } S or {Vs, v6

_
S, and IS f) CI 3, which is a contradiction.

Therefore S must contain v2 and a node from {vs, v6 }, say v6. Then (S\{v2 }) tO
v7, v8 } is a stable set, which implies that a(v2) > a(v7) + a(v8), and, from Lemma 5.8,
we have that a(v2) a(t7) + a(v8).

Furthermore, w S; otherwise, v S, which is a contradiction. So (S\{ w}) to {
is a stable set. Then a(v < a(w), and, from Lemma 5.5, we have that a(v a(w). Also,
we have v S. If not, (S\{v6 }) to {v3, v5 } is a stable set. Since a(vs) a(v6) and
a(v3) > 0, we have a contradiction.

Since (S\{v, v6 )) to {vs, v3 } is a stable set, we have that a(/)3) -< a(v), and hence
a(/93) a(v).

We now prove (b).
(b l) If {v, v3 )

___
S, then (i) holds. Since S f) C {vl, v3 }, we should have that

u S; otherwise, v2 S, which is a contradiction. Since (S\{ u}) to {v2 } is a stable set,
we have that a(v2) < a(u) and, from Lemma 5.5, we can deduce that a(v2) a(u).

(b2) Since a(v2) a(u) a(y), the statement follows from Theorem 4.2.
LEMMA 5.10. Let G be a graph as in Fig. 5.6, where the dashed lines represent paths

with one or two edges and u (respectively, v, w) is a node adjacent to v (respectively, v2,
v3 in thepath that replaces the edge v v4 (respectively, v2 v4 v3 v4 ofK4. Ifax <_ a defines
a facet ofP(G) whose support is G, then either

(i) a(vl a(vv) + a(v8), a(vz) a(vs) + a(v6), and a(v3) a(vl0) + a(v9), or
(ii) a(v) a(u), a(v_)= a(v), and a(v3) a(w).
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FIG. 5.6

Proof Let C denote the cycle (v, v8, 1)9, 1)3, 1)10, 1)5, 1)2, 1)6, 1)7, 1)1). Since ax <
has as support the graph G and since C is an odd hole, there is a stable set S in G such
that IS fq C < 4 and axs c.

Case 1. S fq C {v, v2, v3 }.
Let

s, s\{v, }) {v, v },

32 (3\{1)2 }) [,-J {1)5, 1)6 },

33 (s\{1)3 }) [,-) {1)10, 1)9 }.

Clearly, S1, S2, and $3 are stable sets in G. Thus we should have

a(v >_ a(vT + a(v8 ),

a(v2) > a(vs) + a(1)6),

a(1)3) >- a(vlo) + a(1)9).

From Lemma 5.8, it follows that these inequalities should be equations.
Case 2. v, v2, v3 } S.
CLAIM 1. We have that v, v2, v3 } fq S .
Let us assume, for instance, that v E S. If {v2, v3 } fq S , then {1)6, v9 } C

and {vl0, v5 f3 SI 1; hence IS fq CI 4, a contradiction.
Suppose that {vz, v3 fq S 4: and let us assume, for instance, that {v2, 1)3 } f3

S {v }; then we should have that {vl0, v9 }
_
S and IS f) CI 4, a contradiction,

which proves Claim 1.
CLAIM 2. We have that u, v, w}

_
S.

Assume, for instance, that u S. Since we can assume that S fq C {1)6, 1)9, v },
we would have that 1)1 E S, which is a contradiction. This proves Claim 2.

Let

SI (S\{u, 1)7, 1)8 }) [,-j {1)1, 1)6,

$2 (S\{1), 1)10, 1)9 }) [,.-j {1)3, 1)5, 1)8 },

& (S\{w, 1)5, 1)6 }) [,-j {1)2, 1)10, 1)7 }.

These node sets define stable sets of G. Since a(1)7) + a(1)8) a(1)6) + a(1)9), we have
that a(1)l <- a(u). It follows from Lemma 5.5 that a(vl a(u).

In a similar way, we can prove that a(v2) a(w) and a(1)3) a(1)). []
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6. The stable set polytope of a subdivision of K4. The purpose of this section is to
prove Theorem 4.4.

First, we can apply Lemma 5.6 to prove our claim for the graphs of Cases 1-9 in
Fig. 5.2. In each case, there is a unique facet whose support is the whole graph, obtained
by applying Theorem 4.1 starting from the clique inequality of K4. Now consider the
graph of Case 10. It has seven nodes and seven maximal stable sets. Then there is a
unique facet that may have this graph as support; this is the facet obtained by applying
Theorem 4.3 to the clique inequality of K4. Starting from this graph, we can apply
Lemma 5.7 to prove our claim for the graphs in Cases 11 and 12. Now we must study
the graphs of Cases 13-16. In all these cases, we denote by ax < c a facet whose support
is the whole graph. We begin with the graph of Case 13; see Fig. 6.1.

Lemma 5.9 implies that either (i) a(/)2) a(/)5 + a(/)6) and a(v3) a(v8) + a(/)9),
or (ii) a(v a(vs) + a(/)9) and a(v2) a(vT). It also implies that either (iii) a(v2) a(/)6)
+ a(v7) and a(v3) a(v8) + a(vo), or (iv) a(v4) a(Vv) + a(vo), a(v2) a(vs), and a(/)3)

a(v9). Thus we have that either (i) and (iii) hold or (ii) and (iv) hold.
Consider the cycle C (v, /)4, /)7, /)2, vs, v). Since ax < a has as support the

graph G and C is an odd hole, there is a stable set S in G such that IS N C < 2 and
axs a. Then S C {v2 }; therefore S {v2, v8, /)9, /)10). Since (S\{/)9 }) [’-J {/)1 }
and (S\{vo }) U {v4 are stable sets, we have that a(v) <_ a(/)9) and a(v4) _< a(vo).
Lemma 5.5 implies that (v) a(v a(/)9) and (vi) a(v4) a(vo).

In the same way, by considering the cycle C (v3,/)9, v,/)4, Vo,/)3), we can prove
that (vii) a(v a(vs) and (viii) a(v4) a(v7).

Consider (i), (iii), and (v)-(viii). This implies that

and

a(v) a(/)4)= a(v): a(/)7)= a(/)9): a(vo)

a(v_) a(/)3) a(/)6) + a(vT).

Since the inequality x(v) + X(/)6) %- X(/)8) %- X(/)3) 2 is valid for P(G), there is a
stable set T such that axT c and xT satisfies x(/)2) + x(v6) + x(/)8) + x(v3) < 2. We
can choose T {v, Vv,/)8, v9, v0 }.

Consider the set S defined above. Since axs ax T, we have that a(vs) a(v8)
a(/)6). Therefore ax < c represents the inequality

10

2x(vz) + 2x(/)3) + x(/)) + x(/)j) <_ 5.
j=4

Condition (v) implies that (ii) and (iv) cannot hold.
Now we study the graph of Case 14; see Fig. 6.2.

FIG. 6.1
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FIG. 6.2

Lemma 5.9 implies that either (i) a(v) a(vs) + a(vT), a(v3) a(v6) + a(v8), and
a(1)2) a(1)9), or (ii) a(v2) a(1)7) + a(1)8), a(1)3) a(1)o), and a(v a(1)3). It
also implies that either (iii) a(v4) a(v + a(v9), a(1)3) a(v8) + a(Vo), and a(v2)
a(1)7), or (iv) a(v2) a(v8) + a(v9), a(1)3) a(v6), and a(v4) a(v2), and that either
(v) a(1)4) a(vl2) + a(1)9), a(v) a(1)7) + a(vl3), and a(v2) a(v8), or (vi) a(v2)
a(1)7) + a(1)9), a(vl) a(vs), and a(1)4) a(P).

We have that either (i), (iii), and (v) hold or (ii), (iv), and (vi) hold. Consider (i),
(iii), and (v). This implies that

a(vo)= a(1)6)= a(v)= a(vs)= a(v2)= a(1)3),

3" a(v2) a(vT) a(v8) a(v9),

fl + 3" a(v) a(1)4) a(1)3).

Lemma 5.8 implies that B >- 3". Consider the cycle C (v, vs, I)6, 1)3, 1)10, 1)11,/)4,

v2, v3, v). Since ax < has as support the graph G and C is an odd hole, there is a
stable set S in G such that IS N CI < 4 and axs c. Then S {v, v2, v3, v4 }. Since
(S\ { v4 }) to { vl, v2 is a stable set, it follows that/3 < 3’. Therefore we have the inequality

13

2x(v) + 2x(1)3) + 2x(v4) + x(v2) + x(vj) < 7.
j=5

Now consider (ii), (iv), and (vi). This implies that

a(v)= a(vs)= a(1)6)= a(1)3)= a(vo)= a(v)= a(1)4)= a(v2)= a(1)3),

3" a(v7) a(v8) a(v9),

23" a(v2).

Lemma 5.5 implies that/3 > 3". Consider the cycle C (v, vs, v6, v3, Vo, vl, 1)4,
v_, v3, v ). Since ax < has as support the graph G and C is an odd hole, there is a
stable set S in G such that IS f) CI < 4 and axs c. Then S {vs, VT, v8, v9, Vo, v3 }.
Since (S\{v9 }) tO {v4 ) is a stable set, it follows that /3 < 3". Therefore we have the
inequality

2x(v2) + x(1)j) <- 6.
j4:2

Now we study Case 15; see Fig. 6.3.
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FIG. 6.3

Lemma 5.10 implies that either (i) /= a(vj) for 5 < j < 16 and 2/= a(vj) for <

j < 4 or (ii) /= a(v), for < j < 16. In the first case, we have the inequality
4 16

2 , x(vj) + , x(vj) <_ 9.
j=l j=5

In the second case, we have the inequality

E x(v) < 7.

Now we study Case 16; see Fig. 6.4.
Part (b l) of Lemma 5.9 implies that either (i) a(/)2) a(/)7) + a(l)8), a(l)3) a(/96)

+ a(vl ), and a(vl a(v) or (ii) a(vl a(v6) + a(vv), a(v3) a(vlO), and a(v2) a(v9).
It also implies that either (iii) a(v) a(v) + a(vv), a(l4) a(l)9) + a(l12), and a(l2)
a(l)8) or (iv) a(v2 a(/)7 + a(/)9), a(ll a(/)6), and a(v4) a(vl0). We have that either
(i) and (iv) hold or (ii) and (vii) hold.

Consider (i) and (iv). This implies that a(vl a(v). It follows from Lemma 5.1
(b2) that the inequality ax < o is obtained from a facet of P(G’), using the procedure of
Theorem 4.1, where G’ is obtained from G by contracting the edges vs Vl2 and Vl v4. The
graph G’ is that of Case 13, which has already been studied. For this, P(G’) has only one
facet whose support is G’, which is the inequality

10

2x(v2) + 2X(V3) -t- X(/)I) -t- X(I)j) 5.
j=4

Then ax <_ o should be
12

x(v) + 2x(v2) + 2x(v3) -t- x(vj) <_ 6.
j=4

FIG. 6.4



STABLE SETS IN GRAPHS WITH NO W4 387

If (ii) and (iii) hold, then a(v2) a(v8). In a similar way, we can prove that ax <_ a is
12

2x(v) + x(v2) + x(v3) + 2x(/)4) + x(/))) _< 6.
j=5

It is easy to see that all the inequalities derived in this section can be obtained by
applying Theorems 4.1 and 4.3, starting from the clique inequality ofK4. This completes
the proof of Theorem 4.4.

The 18 inequalities derived in this section, together with the clique inequality of
K4, form a family of 19 K4 inequalities, referred to in Theorem 4.5.

7. Some examples. In this section, we apply the combinatorial procedure that de-
scribes the facets of P(G) for graphs with no W4 minor. Consider the graphs of Figs.
7.1(a) and 7.1(b).

The constraint

2x(u) + x(u2) + 2x(u3) -k- 2x(u4) + x(uj) <_ 7
j>5

defines a facet for the polytope of the first graph, and the constraint

X(Vl) + 2x(v2) + 2x(v3) + x(vj) <_ 5
j4

defines a facet for the second one.
By identifying the nodes { u, Vl } and { U4, /)2 ) and deleting a 5-cycle, we obtain the

graph of Fig. 7.2.

FIG. 7.1

FIG. 7.2
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FIG. 7.3

Theorem 2.5 gives a facet-defining inequality, whose support is the whole graph,
and its coefficients different from appear in the figure. The value of the fight-hand side
is 10. Here v5 plays the role of Wl, and Ul2 and u3 play the roles of w2 and w3, respectively.

Now consider the graph of Fig. 7.3. It has been obtained by composing the graph
of Fig. 7.2 with itself. Again, Theorem 2.5 shows that there is a facet-defining inequality
whose support is the whole graph and whose coefficients different from are in the figure.
We can state the following.

Remark 7.1. Given any integer p > 0, there exists a graph G with no W4 minor,
such that P(G) has a facet with coefficients 1, 2, p.

Acknowledgments. We thank the referees for their suggestions regarding the pre-
sentation.

REFERENCES

F. BARAHONA AND A. R. MAHJOUB, Compositions of graphs and polyhedra II: stable sets, Research
Report CORR 87-47, University of Waterloo, Canada, 1987; SlAM J. Discrete Math., 7 (1994), pp.
359-371, this issue.

2 M. BOULALA AND J. P. UHRY, Polytope des indpendants d’un graphe srie-parallele, Discrete Math., 27
(1979), pp. 225-243.

3 V. CHVTAL, On certain polytopes associated with graphs, J. Combin. Theory, Ser. B, 18 (1975), pp. 138-
154.

[4] J. EDMONDS, Maximum matching and a polyhedron with (0, )-vertices, J. Res. National Bureau of
Standards, 69B (1965), pp. 125-130.

[5] J. FONLUPT AND J. P. UHRY, Transformations which preserve perfectness and h-perfectness ofgraphs,
Ann. Discrete Math., 16 (1985), pp. 83-95.

[6] H. GAN AND E. L. JOHNSON, Four problems on graphs with excluded minors, Math. Programming, 45
(1989), pp. 311-330.

[7] A. M. H. GERARDS AND A. SCHRIJVER, Matrices with the Edmonds-Johnson property, Combinatorica,
6 (1986), pp. 365-379.



STABLE SETS IN GRAPHS WITH NO I4/4 389

8 M. GRTSCHEL, L. LOVSZ, AND A. SCHRIJVER, The ellipsoid method and its consequences in combinatorial
optimization, Combinatorica, 1981), pp. 169-191.

9] ., Geometric Algorithms and Combinatorial Optimization, Springer, Berlin, New York, 1988.
10] R. HALIN, Graphentheorie II, Wissenschaftliche Buchgesellschaft, Darmstadt, 1981.

[11] N. KARMARKAR, A new polynomial-time algorithm for finear programming, Combinatorica, 4 (1984),
pp. 373-395.

12 L. KHACHIYAN, A polynomial algorithm in linear programming, Soviet Math. Dokl., 20 (1979), pp. 191-
194.

13 A. R. MAHJOUB, On the stable set polytope ofa series-parallel graph, Math. Programming, 40 (1988), pp.
53-57.

14] M. PADBERG, On the facial structure of set packing problems, Math. Programming, 5 (1973), pp. 199-
215.

15 L. WOLSEY, Further facet generating procedures for vertex packing polytopes, Math. Programming, 11
(1976), pp. 158-163.



SIAM J. DISCRETE MATH.
Vol. 7, No. 3, pp. 390-402, August 1994

(C) 1994 Society for Industrial and Applied Mathematics
O05

COMPOSITIONS OF GRAPHS AND POLYHEDRA IV:
ACYCLIC SPANNING SUBGRAPHS*

FRANCISCO BARAHONA*, JEAN FONLUPT*, AND ALl RIDHA MAHJOUB

Abstract. Given a directed graph D that has a two-vertex cut, this paper describes a technique to derive a
linear system that defines the acyclic subgraph polytope ofD from systems related to the pieces. It also gives a
technique to describe facets of this polytope by composition of facets for the pieces. The authors prove that, if
the systems for the pieces are totally dual integral (TDI), then the system for D is also. The authors prove that
the "cycle inequalities" form a TDI system for any orientation ofKs. These results are combined with Lucchesi-
Younger theorem and a theorem of Wagner to prove that, for graphs with no K3,3 minor, the cycle inequalities
characterize the acyclic subgraph polytope and form a TDI system. This shows that, for this class of graphs, the
cardinality of a minimum feedback set is equal to the maximum number of arc disjoint cycles. For planar
graphs, this is a consequence of the Lucchesi-Younger theorem.

Key words, polyhedral combinatorics, compositions of polyhedra, acyclic subgraph polytope

AMS subject classifications. 05C85, 90C27

1. Introduction. Given a directed graph D (V, A), we say that D’ (V, A’) is a
subgraph of D if A’

___
A. Given S

___
A, the incidence vector of S, xs NA is defined by

10 if(i,j) 6 S,
xS(i’ J)

if (i, j) e A \S.

The acyclic subgraph polytope ofD, denoted by P(D), is the convex hull ofincidence
vectors of arc sets S such that Ds (V, S) has no directed cycle. Given a weight function
w:A -- , the problem offinding a maximum weighted cyclic subgraph can be formulated
as the linear program

maximize wx s.t. x P(D).

The polytope P(D) is full-dimensional. This implies that (up to multiplication by a
positive constant) there is a unique nonredundant inequality system Ax <_ b such that
P(D) {x:Ax <_ b}. These inequalities define the facets of P(D). The acyclic subgraph
problem is NP-hard, so finding a complete characterization of P(D) seems to be very
difficult. On the other hand, Lucchesi and Younger [9] characterized P(D) for planar
graphs. Gr6tschel, Jfinger, and Reinelt [6], [7] characterized several facet-defining in-
equalities of P(D) and used them to design a cutting plane algorithm.

In this paper, we study directed graphs that have a two-vertex cutset. We show how
to derive a system that defines P(D) from systems associated with the pieces. This also
gives a technique to derive new facets defining inequalities by composition of known
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facets. We also prove that, if the two systems are totally dual integral (TDI), then the
new system is, also.

The most natural system of inequalities that we can think of is

(1.1) x(i,j)<_ ICI-
(i,j)C

for every directed cycle C,

(1.2) 0 <_ x(i, j) _< for every arc (i, j).

Inequalities (1.1) will be called cycle inequalities. Lucchesi and Younger [9] proved
that, for planar graphs, (1.1), (1.2) is a TDI system and defines P(D).

Wagner 10] proved that graphs with no K3,3 minor can be decomposed into planar
graphs and copies of Ks. We prove that, for any orientation of Ks, the system (1.1), 1.2)
is TDI. We combine Wagner’s theorem with the theorem of Lucchesi and Younger and
our composition techniques to prove that, for graphs with no K3,3 minor, the system
(1.1), (1.2) is TDI and defines P(D). This implies that, for this class ofgraphs, the cardinality
of a minimum feedback set is equal to the maximum number of arc disjoint cycles.

The present paper should be considered as a revision of[3]; this type ofcomposition
was studied there, but the results on dual integrality are new.

If G (V, E) is an undirected graph, we say that G contains H as a minor ifH can
be obtained from G by a sequence of deletions and contractions of edges. An orientation
of G is a directed graph that contains exactly one of the arcs (i, j) or (j, i) whenever
ij E. The symmetric digraph D(G) (V, A) associated with G has the arcs (i, j) and
(j, i) whenever ij E. Given a directed graph D (V, A) and S

___
V, we denote by

6+(S) (respectively, 6-(S)) the set of arcs that enters (respectively, leaves) S. We write
cycle instead of directed cycle.

This paper is organized as follows. Section 2 is devoted to the composition of poly-
hedra; 3 deals with the composition of facets; in 4 we study the algorithmic aspects of
this composition; in 5 we study compositions of TDI systems; 6 is dedicated to the
study of the orientations of Ks; in 7 we study graphs with no K3, minor.

2. Compositions of polyhedra. In this section, we assume that D (V, A) is a
connected digraph having a two-node cutset u, v}, i.e.,

(i) V: Vlt-J
(ii) V,A V2= {u,v},
(iii) D\{u, v} is disconnected.
For k 1, 2, we define Dk (Vk, A), where

Ak A(V) t.J {(u, v), (v, u) },

and D (V, A) with A A t_J {(u, v), (v, u)}. Note that we could create parallel arcs in
this way; this is not a problem in any of the treatments that follow.

We explain how to describe P(D) from systems defining P(D) and P(D2).
The inequality

x(u, v) + x(v, u) <_

defines a facet of P(D); it is easy to see that this is the only facet-defining inequality that
has nonzero coefficients for both x(u, v) and x(v, u). Therefore the facets of P(D), for
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k 1, 2, can be classified into the five types below:

(2.1a) a[(i, j)x(i, j) <_ a,
(i,j)-Ak

(2.1b) a(i, j)x(i, j) + x(u, v) < a,Z lff2,
(i,j)Ak

(2.1c) Z al(i, j)x(i, j) + x(v, u) < a, l I,
(i,j)aAk

(2.1d) x(u, v) + x(v, u) < 1,

(2. e) x(i, j) > 0 for (i, j) e A,

where I is the set of inequalities with zero coefficients for x(u, v) and x(v, u); I2 is the
set of inequalities with a nonzero coefficient for x(u, v) and a zero coefficient for x(v, u);
I is the set of inequalities having a zero coefficient for x(u, v) and a nonzero coefficient
for x(v, u).

The equation

x(u, v) + x(v, u)

defines a facet F(Dk) ofP(Dk) and a facet F(D) ofP(D). The polytope P(D) is a projection
of F(D) along the variables x(u, v) and x(v, u). The following theorem lets us find a
system that describes F(D).

THEOREM 2.1. The polytope F(D) is defined by the union ofthe systems that define
F( and F(2).

Proof Let Q denote the polytope defined by the union of these two systems. Let x
be a vector in Q. Let xl (respectively, x2) be the restriction ofx to A1 (respectively, A2);
we have that

Xl Z OiYi, Oi >" O, Z Ogi 1,

X2 E iZi, i >-" O, Z i-- 1,

and

where {Yi} and {Zi} are integer vectors in F(D1) and F(O2), respectively.
Since

Z {ailYi(u, v)- 1}- x(u, v)= Z {ilzi(u, v)-- 1},

Z {oei[Yi(V, u)-- 1} x(v, u)-- Z {iilzi(v, u)- 1},

we can match vectors in {Yi} with vectors in {z;} to write x as a convex combination of
integer vectors in F(D). V1

We now need a way to project x(u, v) and x(v, u); this is given by the following
result of Balas and Pulleyblank [2].

THEOREM 2.2. Let Z {(w, x)lAw + Bx <_ b, w >_ O, x >_ 0}; the projection ofZ
along the subspace ofthe w variables is

X {xl (vB)x .<_ vb, Vv extr Y, x >_ 0},

where extr Y denotes the set ofextreme rays of

Y= {yIyA >- 0}.
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In our case, the rows of the matrix A are of the types below:

0 0
0

0 1"

By observing the extreme rays of the set Y, we can deduce the next theorem.
THEOREM 2.3. Thepolytope P(D) is defined by the inequalities (2. a), together with

x(i, j) > 0 and the mixed inequalities
2(2.2) , al(i, j)x(i, j) + , ap(i, j)x(i, j) < a) + ap

(i,j)eAl (i,j)eA2

for (l, p) 6 (I I) U (I I2).
COROLLARY 2.4. IfP(D and P(D2) are defined by (1.1), (1.2), then P(D) is, also.
A constraint with coefficients 0 or is called a rank inequality. It also follows from

Theorem 2.3 that, ifP(D and P(De) are defined by rank inequalities, then P(D) is, also.
When we add the arcs (u, v) and (v, u), we could create parallel arcs in D and De.

If this is the case, for every inequality of type (2.1 b) or (2.1c), we would have a similar
inequality in (2.1a). This observation and Theorem 2.3 imply the next corollary.

COROLLARY 2.5. The polytope P(D) is defined by (2.1) and (2.2).

3. Compositions of facets. The purpose of this section is to prove that Theorem
2.3 gives a minimal description of P(D).

LEMMA 3.1. Inequalities (2.1b) and (2.1c) definefacets ofF(Dk).
Proof Consider (2. b). Let ax < a be one of them and let S {x,..., xt, } be the

set of extreme points of P(/k) that satisfy ax a. There are I1 linearly independent
vectors in S.

Since dim (F(Dk)) IAI 1, we need the same number of linearly independent
vectors that satisfy ax a. Let X be a vector in S; ifxr F(Dk), we set X’r Xr; otherwise,
we set X’r(i, j) x(i, j) for (i, j) 4: (v, u), and x’r(v, u) 1. Since we have modified only
one component ofthe vectors in S, the set S’ {x’ x contains I1 linearly
independent vectors in F(Dk) that satisfy ax a.

Because of the structure of system (2.1) and the lemma above, we can see that, for
any inequality (2.1 b) or (2.1 c), there is no other constraint in (2.1) that defines the same
face of F(Dk).

THEOREM 3.2. Inequalities (2.2) definefacets ofP(D).
Proof Assume (l, p) 6 I I3. We show that there exists a vector P(D) that

satisfies this inequality as equation and all others as strict inequality.
For the inequality_, a](i,j)x(i,j) + x(u, v) <_ a], e I,

(i,j)A

let S {x Xr} be the set of extreme points of F(/) that satisfy it as equation.
For

2Z a2p(i, j)x(i, j) + x(v, u) <_ at,, p I,
(i,j)A2

let T {y,..., y be the extreme points of F(/2) that satisfy it as equation.
Each vector xt can be matched with a vector Yt’ to give a vector in F(/). Let

{z, Zd} be the set thus obtained. Let z’t be the vector obtained by deleting the
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FIG. 3.1

components z’t(u, v) and z’t(v, u) from zt. Then

+... +

is the required vector.
We conclude this section with one example of this composition of facets. Denote

by D (V, A1) and O2 (V2, A2) the graphs in Fig. 3.1(a) and 3.1(b), respectively. Let
D (V, A) be the graph in Fig. 3.1(c). Let Ol and 2 be defined as in 2. Gr6tschel,
Jtinger, and Reinelt [7] proved that

(3.1) x(i,j)<7
(i,j)eAl

and

x(i,j) < 11
(i,j)A2

define facets of P(D) and P(D2), respectively; these inequalities also define facets of
P(/) and P(/), respectively. Theorem 3.2 implies that_, x(i, j) <_ 17

(i,j)A

defines a facet of P(D).

4. Algorithmic aspects. The problem of optimizing a linear function over P(D)
can be decomposed in a similar way as shown in this section.
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Let w’A 92+ be a weight function. To simplify the notation, we denote by al
(respectively, a2) the arc (u, v) (respectively, (v, u)). Let w, be the maximum weight of
an acyclic subgraph of Di that contains a..

Define

=wl-o, X=max{0,}, =
Let r 6 92 such that

(4.1)

Define w" z2 "-- 92+ as

w’(i, j) w(i, j) for (i, j) A2,

w’(al) ,
w’(a2)

THEOrEM 4.1. The maximum weight ofan acyclic subgraph ofD with respect to w
is X + r, where is the maximum weight of an acyclic subgraph of O2 with respect
t0 W.

Proof The maximum weight of an acyclic subgraph ofD is

max {wl + w- w(a), + w22- w(a2)};
it follows from (4.1) that this is equal to

a + max {x + w- w(a),

5. Total dual integrality. A system Ax < b is called total dual integral (TDI) if the
dual problem of

maxwx s.t. Ax<b

has an integer optimal solution for every integer vector w such that the maximum exists.
If the system is TDI and b is an integer vector, then {x lAx < b) has integer extreme
points. In this section, we prove that, if systems (2.1) are TDI, then the system given by
Corollary 2.5 is also TDI. For k 1, 2, we denote by the linear program

max wx s.t. (2.1).

The dual problem of is ,
minimize Yl a! + Yo

p 1,2,3 l Ip

s.t. E Z a(i, j)y >_ w(i, j) for (i, j) e A,
p 1,2,3 le Ip

Z + y0 >- v),
lk

Z + >- w(v, u),
lk3
k k

Yl >_0, Yo>O.
We denote by the linear program

max wx s.t. (2.1) and (2.2).
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Below is the dual 3.
minimize , yl

q .qt_

q 1,2 p 1,2,3 lIqp

s.t. _, Z a)(i, j)y] +
p= 1,2,3 leI

(k,/) (I X 1])0 (I I)
(a) + a- 1)z, + y0

(k,l) (121 I)LJ (I 122)
a(i, j)Zk,! > w(i, j)

Z Z a(i,j)y + E
p= 1,2,3 leZ2p (k,l)e(I{ 1) U(I{ I22)

for (i, j) e A,

a(i, j)Zk,l w(i, j)

for(i,j)A2,

E E yT+y0>-w(u,v),
q 1,2 le I- Yq -1- YO > W(1), U),
q= 1,2 lI

y>_O, yo>_O, zk,>_O.

Suppose that systems (2.1) are TDI and that the weights w are integer. To prove
that 3 has an integer optimal solution, we must study four cases; we present one of
them; the others are similar.

Suppose that we apply the algorithm of 4. Let 12 be the maximum acyclic arc
set in/2 with respect to w’. We consider the case where a > 0 and (v, u) 12. Thus
X a, K 0. We can assume that (u, v) e 12. There is an integer optimal solution fi2
of 2. Complementary slackness implies that

E +
lI

Now let us associate the weights Wl to the arcs in D, where

w(i,j)
w(i, j)

{w(v, u) + a

if (i, j) 4: (v, u),

if (i, j) (v, u).

Since w is integer, there is an integer vector 371 that is an optimal solution of 1. Thus
we have

which implies that

ll

Suppose that jT < a (the case where 37 >_ a is similar). There is a set J
_
I such that

and
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where s e I\. Let J U {s}. Define c (E. 37) + 37). Consider now the
system of equations

This matrix is totally unimodular; actually, it is a network flow matrix. Therefore the
above system has a nonnegative integer solution.

Now consider the vector defined below:

for e II U I{ U (I\3),

for e J,

if/= s;

for I U I,
for e I;

p0=6,

forke,leI,

otheise.

The vector 07, ) is a feasible solution of 9 and its value is X + r as defined in
Theorem 4.1.

The remaining cases can be treated in a similar way, they are
(1) c >_ 0 and a2
(2) c < 0 and a2
(3) c < 0 and a2

Therefore the system defined in Corollary 2.5 is TDI.

6. Orientations of Ks. In this section, we prove that system (1.1), (1.2) when as-
sociated with D(Ks) is TDI. This has been conjectured by Jtinger [8].

Define the linear program

(6.1) Sot.

maximize wx

x(i,j)<_ [CI-
(i,j)C

for every directed cycle C,

0 <_ x(i, j) _< for every arc (i, j)
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and its dual

minimize yc( cI 1) +

(6.2) s.t. yc + ’ti,j) >- w(i, j) for each arc (i, j),
C :(i,j)

y>O,.>O.

Here ;,) denotes the set of cycles that contain (i, j).
Let us denote by and problems (6.1) and (6.2) when they are associated with

D(K). We construct D’ (V’, A’) as follows:
(a) If w(i, j) > w(j, i) > O, then (i, j)6 A’ and w’(i, j) w(i, j) w(j, i);
(b) If w(i, j) w(j, i) > 0, then (i, j) A’ or (j, i) A’ but not both, say (i, j) A’

with w’(i, j) 0;
(c) If w(i, j) >_ 0 > w(j, i), then (i, j) e A’ and w’(i, j) w(i, j);
(d) If w(i, j) < 0 and w(j, i) < 0, we do not put any arc between and j.
Denote by ’ and ’ problems (6.1) and (6.2) when they are associated with D’.

Let and (37, ) be optimal solutions of ’ and ’, respectively; we can construct
optimal solutions of and as shown below.

Set (i, j) 2(i, j), (j, i) (i, j) if (a) or (b) holds; (i, j) 2(i, j),
(j, i) 0 if (d) holds; (i, j) (j, i) 0 if (d) holds; fc fc if C is a cycle of D’;
Y-c 5’(i, j) + w(j, i) if C {(i, j), (j, i)} and (a) or (b) holds; )7c (i, j) if C {(i, j),
(j, i)} and (c) holds; JTc 0 otherwise; and i,9) 0 for all (i, j). Therefore, instead of
studying D(Ks), we study the different orientations of Ks.

In the remainder of this section, D (V, A) denotes an orientation of Ks. We first
prove that (6.1) defines a polytope with integral extreme points. Let be an extreme
point; the following remarks allow us to rule out many cases.

Remark 6.1. If there is an arc (i, j) that does not belong to any cycle, then is
integer-valued.

Proof If (i, j) does not belong to any cycle, then the nontrivial inequalities of(6.1)
are associated with D\(i, j), and this is a planar graph.

Remark 6.2. If (i, j) 0 for an arc (i, j), then is integer-valued.
Proof Consider D’ D\(i, j) and let x’ be without the component associated

with (i, j). Since D’ is planar, we have that x’ P(D’) and x’ is a convex combination of
a set of vectors {x incidence vectors of acyclic subgraphs of D’. For each vector x, we
can add a zero component and obtain the incidence vector of an acyclic subgraph of D.
We have then that is a convex combination of them.

Remark 6.3. For any set S, 4: S C V, there is at least one arc (i, j)
6-(S) with 2(i, j) 1.

Proof If 0 < 2(i, j) < for every arc (i, j) e/+(S) U 6-(S), define x’ as

"(i, j) + e if (i, j) e i+(S),

x’(i, j) 2(i, j) e if (i, j) 6-(S),

2(i, j) otherwise.

For e sufficiently small, x’ satisfies (6.1), and, if some of these inequalities hold as
equation for , they also do for x’. This contradicts the assumption that is an extreme
point.

Remark 6.4. It follows from Remark 6.1 that we can assume that D is strongly
connected.



ACYCLIC SUBGRAPH POLYTOPES 399

Remark 6.5. It follows from Remark 6.3 that we can assume that there is a tree
of arcs (i, j) with (i, j) 1.

Remark 6.6. For every variable x(i, j) with 0 < 2(i, j) < 1, we can assume that it
appears in at least two tight cycle constraints.

Proof If 0 < 2(i, j) < and x(i, j) appears in only one tight constraint, we can set
x(i, j) 0; this new vector is also an extreme point, and, from Remark 6.2, we can
conclude that it is integral. This gives a contradiction.

Remark 6.7. If there is a node v that covers every cycle, then 2 should be integer-
valued.

Proof Consider D’ (V’, A’), where V’ V\{v} U {s, t} and A’ is defined below:

(i,j) 6A, i4:v, j4:v(i,j) 6A’,

(v, i) A (s, i) A’,

(i, v) 6A (i, t) 6A’.

Let Mbe the incidence matrix of all directed paths from s to in D’; it is well known
that, for any w >_ 0, the problem

minimize wx s.t. Mx > 1, x >_ 0

has an integer-valued optimal solution 2. Since M is also the incidence matrix of the
cycles in D, the vector A defined by

A(i,j)- -5(i,j) for(i,j) 6A

is an optimal solution of (6.1).
Now we can prove the following result.
THEOREM 6.8. All the extremepoints ofthepolyhedron defined by (6.1) are integral.
Proof There are three cases to study.
Case 1. The tree " contains a directed path with two arcs; i.e., suppose that

2(1, 2) 2(2, 3) 1. We have that (1, 3) 6 A. Consider the cycle inequalities that are
tight for 2; if there is a cycle that contains (1, 3) and goes through 2, it should be C
(1, 3, 4, 2, 5, 1). Since

we have that

2(2, 3) + 2(3, 4) + 2(4, 2) _< 2,

2(2, 5) + 2(5, 1) + 2(1, 2) _< 2,

2(1,3)< 1,

2(1, 3) + 2(3, 4) + 2(4, 2) + 2(2, 5) + 2(5, 1) _< 3,

a contradiction.
Therefore we should assume that every cycle containing (1, 3) does not go

through 2.
Let C be a cycle that contains 1, 3); if the constraint associated with C is tight, then

2(1, 3) 1; otherwise, the constraint

x(i,j) <_ IC’I
(i,j)C’

would be violated, where C’= C\{(1, 3)} tO {(1, 2), (2, 3)}. Then we must only study
the case where Y(1, 3) 1.
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Now consider the graph D’ D\(1, 3). Let 2’ be the restriction of ? to the arc set
of D’. We have that 2’ y/-, ; > 0, Z 1, where the vectors {Yi are incidence
vectors of acyclic subgraphs of D’.

Now define 37i as follows:

f(k, l) yi(k, l) if (k, l) 4 (1, 3),

i(1, 3) for all i.

The vectors {JTi } are incidence vectors of acyclic subgraphs of D, and 2-- Xi37i; then
2 should be an integer vector.

Case 2. The tree #- is {(1, 2), (3, 2), (3, 4), (3, 5)}. We can assume that (4, 5) E A.
We should assume that (1, 3) E A; otherwise, there is no cycle going through 3. We also
assume that (5, 1) A; otherwise, 4 covers every cycle. For the same reasons, we assume
that (4, 1) A. Also, we should have that (5, 2) and (2, 4) are in A; otherwise, would
cover every cycle. See Fig. 6.1.

We have that

92(2, 4) + 2(4, 1) + 2(1, 3) < 2,
(6.3)

92(2, 4) + 92(4, 1) + 2(1, 3) + 2(5, 2) _< 3.

Thus (6.3) holds as equation only if 2(5, 2) 1; then, however, we would be in
Case 1. If (6.3) does not hold, we would have that (5, 2) only appears in one tight cycle
inequality; then we can apply Remark 6.6.

Case 3. The tree W is {(1, 2), (3, 2), (3, 4), (5, 4)}. We can assume that (2, 4) e A.
Therefore (4, 1) e A; otherwise, there is no cycle going through 4. Then every cycle
containing (2, 4) also contains (4, 1). Consider the cycle C {(2, 4), (4, 1), (1, 2)}; we
have that

92(2, 4) + 92(4, 1) < 1.

Thus, if there is any other tight cycle inequality containing (2, 4), all its variables
different from 2(2, 4) and 2(4, 1) should take the value 1; this is Case 1. This concludes
Case 3 and the proof of the theorem.

It remains to prove that (6.1) defines a TDI system. This has been proved by Ap-
plegate, Cook, and McCormick using an algorithm that tests whether a system is TDI.
We present here a proof that does not involve computer calculations.

Suppose that, for every integer vector w _< #, w 4 , problem (6.1) has an integer
dual solution and let z(w) be its value. Now we study the weights w /s; we should

FG. 6.1
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assume that > 0. If one component ofu is zero, then the associated arc can be removed
yielding to a planar graph. Consider the set of inequalities that are tight for every optimal
solution of (6.1).

Case 1. Assume that

(6.4) x(i, j) <

is tight; then we can define w’ as

w(k, l) if (k, l) 4 (i, j),
w’(k, l)

w(i,j) if(k,l)=(i,j).

We have that z(w’) z(w) 1, and there is an integer dual solution for the objective
function w’. We increase by the value of the dual variable associated with (6.4) and we
have a dual integer solution for the vector w.

Case 2. Consider now a cycle C oflength 3, C= {(1, 2), (2, 3), (3, 1)} say. Assume
that the constraint associated with C is tight. Define w’ by subtracting from the costs
coefficients of the arcs in C.

LEMMA 6.9. The value ofthe new optimum is z(w’) z(w) 2.
Proof If z(w’) z(w), there is an optimal solution for the new objective function

that does not contain any arc of C. However, we can always add one of the arcs of C to
that solution without creating a cycle. This gives a solution for the original problem with
value z(w) + 1, which is a contradiction.

If z(w’) z(w) 1, there is an optimal solution for the new problem that contains
one of the arcs of C. This is also an optimal solution for the objective function w, which
is impossible because the constraint associated with C is tight for every optimum of the
original problem. V?

Given an integer optimal dual vector for the objective function w’, we increase by
the value of the dual variable associated with C and we obtain a dual optimal solution

for w.
Case 3. A cycle of length 4 is tight. In this case, it is easy to see that there is always

a cycle of length 3 that is tight, and we are in Case 2.
Case 4. A cycle of length 5 is tight. In this case, there is also a cycle of length 3 or

4 that is tight.
We can then state the main result of this section.
TttFORFM 6.10. For D(Ks), system (6.1) is TDI.

7. Graphs with no K3,3 minor. Gr6tschel, Jtinger, and Reinelt [7] proved that, if D
is a subdivision of the graph of Fig. 3. l(a), then an inequality analogous to (3.3) defines
a facet of P(D). Therefore, if G contains K3,3 as a minor, then system (1.1), (1.2) is not
sufficient to define P(D(G)). Wagner [10] proved that, if an undirected graph G has no
K3,3 minor, then either it is planar, it is Ks, or it has a two-vertex cut. We know that, if
G is planar or it is Ks then P(D(G)) is defined by (1.1), (1.2), and this is a TDI system.
This and the result of 5 imply the following result.

THgORgM 7.1. Given a graph G, system (1.1), (1.2) defines P(D(G)) and is TDI/f
and only ifG does not contain K3,3 as a minor.

An immediate consequence is the result below.
COROLLARY 7.2. IfD is a directed graph that does not contain a subdivision of.K,3

then the cardinality ofa minimumfeedback set is equal to the maximum number ofarc-
disjoint cycles.

For planar graphs, this follows from the theorem of Lucchesi and Younger [9].
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Let A be a matrix with nonnegative entries. Let P {xlAx > 1, x > 0} and let us
assume that this system is not redundant. If B is the matrix whose rows are the extreme
points of P, then the pair (A, B) is called a blocking pair; see Fulkerson [4]. Actually,
extreme points of Q {xlBx > 1, x > 0} are the rows of A.

Theorem 7.1 implies the next corollary.
COROIIAR’ 7.3. Given an undirected graph G, let A be the incidence matrix ofthe

directed cycles ofD(G) and let B be the incidence matrix ofall minimalfeedback sets of
D(G). We have that (A, B) is a blocking pair ifand only ifG has no K3,3 minor.
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THE ALL-PAIRS MIN CUT PROBLEM AND THE MINIMUM
CYCLE BASIS PROBLEM ON PLANAR GRAPHS*

DAVID HARTVIGSEN AND RUSSELL MARDON$

Abstract. The all-pairs min cut (APMC) problem on a nonnegative weighted graph is the
problem of finding, for every pair of nodes, the min cut separating the pair. It is shown that on

planar graphs, the APMC problem is equivalent to another problem, the minimum cycle basis (MCB)
problem, on the dual graph. This is shown by characterizing the structure of MCBs on planar graphs
in several ways. This leads to a new algorithm for solving both of these problems on planar graphs.
The complexity of this algorithm equals that of the best algorithm for either problem, but is simpler.

Key words, networks flows, min cuts, cycle bases, graph theory

AMS subject classifications. 90, 05, 68

1. Introduction. In this paper we consider two optimization problems on

graphs: the all-pairs min cut (APMC) problem and the minimum cycle basis (MCB)
problem. Our results are both structural and algorithmic. On the structural side, we
show that these problems are "dual equivalent" on planar graphs (hence one problem
can be transformed into the other in linear time) and we present several equivalent
characterizations of their solutions. On the algorithmic side, we exploit these char-
acterizations to present a new algorithm that solves both problems on planar graphs
with nonnegative edge weights. Polynomial-time algorithms already exist for both
problems, the fastest of which is for the APMC problem. The time complexity of our
algorithm (O(n2 log n + m), where n is the number of nodes and rn is the number of
edges) is equal to that of the fastest algorithm for the APMC problem, but our algo-
rithm is simpler (it requires no complex data structures), and, in contrast, it explicitly
solves the MCB problem.

In this section we present the two optimization problems. We follow this with a
brief history of related work and then outline our results.

We consider graphs that are undirected, finite, and may contain loops and mul-
tiple edges. Let (7 (V, E) be a connected graph with edge weights and let s, t E V.
C c_ E is called an s-t cut if G (V, E \ C) contains no path from s to t and if C is
minimal with respect to this property. The weight of the s-t cut C is the sum of the
weights of its edges. The all pairs rain cut (APMC) problem on G is the problem of
finding a minimum s-t cut for every pair of nodes s and t in G. An all-pairs minimum
cut collection of G, abbreviated APMC(G), is a minimal collection of cuts that solves
the APMC problem on G.

Let us consider the second problem. A typical definition of a cycle in a graph is a
minimal subgraph such that every node has degree 2. (These cycles are often referred
to as "node simple.") However, we use the term "cycle" to refer to the edge sets of
such subgraphs.

* Received by the editors January 24, 1990; accepted for publication (in revised form) April 28,
1993.
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:Florida Agency for Health Care Administration, 325 John Knox Road, Tallahassee, Florida
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To each cycle C in a graph G (V, E) we associate an incidence vector z, indexed
on E, where z 1 if e E C and z 0, otherwise. A collection of cycles is called
independent if their incidence vectors are independent over GF(2). The vector space
over GF(2) generated by these vectors is called the cycle space of G. A maximal
independent collection of cycles is called a cycle basis.

Consider a graph G with edge weights. The weight of a cycle is the sum of the
weights of its edges, and the weight of a collection of cycles is the sum of the weights
of its cycles. A minimum cycle basis of G, abbreviated MCB(G), is a cycle basis of
minimum weight. The minimum cycle basis (MCB) problem is the problem of finding
an MCB(G).

In this paper, we consider these two problems on planar graphs. We next survey
the history of these problems, which is almost entirely algorithmic. Let us begin with
the APMC problem.

Gomory and Hu (see [11], [9], and [15]) first considered the APMC problem.
(For an application to communication networks, see [16].) They showed that these
cuts can be found by solving just n- 1 min cut (or max flow) problems. Note that
the APMC problem is NP-hard if negative weights are allowed, since an APMC of a

graph contains a min cut in the graph. However, when edge weights are nonnegative,
this method takes polynomial time and is the fastest known method for solving this
problem.

Quite a bit of work has been devoted to the related problems on planar graphs
of finding max flows (see [12], [13], [17], and [19]), min cuts (see [27] and [10]), and
APMCs when the edge weights are all 1 (see [28]). In particular, Reif [27] gave an

O(n(log n)2) algorithm for finding a single pair min cut in a planar graph, which uses
Dijkstra’s algorithm [7] as a subroutine. Frederickson [10] showed that the complexity
of Reif’s algorithm can be improved to O(n log n) when Frederickson’s shortest path
algorithm is used as a subroutine. Hence the fastest known algorithm for solving the
APMC problem in planar graphs is a combination of the algorithms of Gomory and
Hu, Reif, and Frederickson, which runs in O(n log n) time. We observe that the last
two algorithms require the use of fairly sophisticated data structures. (An algorithm
in [28] for finding APMCs when the weights are all 1 takes O(n(logn)) time.)

Let us next consider the history of cycle bases and the MCB problem. Perhaps
the best-known class of cycle bases comes from the work of Kirchhoff [21] in 1847
on electrical circuit theory. For a graph G (V, E), let T (V, E’) be a maximal
spanning forest of G. Then the unique cycles in e U E for each e E E \ E constitute
a (strictly fundamental) cycle basis for G.

Another well-known class of cycle bases appears in MacLane’s (1937) characteri-
zation of planar graphs (see [24]). If G is a plane graph, then the cycles corresponding
to the (interior) faces are a cycle basis for G.

A brief survey of applications of cycle bases appears in [14]. For example, applica-
tions occur in the areas of electrical circuit theory [21] and the analysis of algorithms
[22] (see also [4], [5], [6], [8], [25], [26], and [29]).

Applications and the history of the MCB problem are also surveyed in [14]. (For
an application in electrical circuit theory, see [3].) Another area of application is
in structural engineering (see [1] and [20]), where minimum-weight cycle bases are
computed to efficiently analyze the flexibility of structures. Important examples arise
on both planar and nonplanar graphs.

The MCB problem is NP-hard if negative weights are allowed (an MCB must
include the shortest cycle in the graph). However, when the weights are nonnegative,
Horton showed in 1987 [14] that the MCB problem can be solved in polynomial time.
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The idea of Horton’s algorithm is to first produce a polynomial length list of cycles that
must contain an MCB and to then find the MCB by applying the greedy algorithm
(see, e.g., [23]) to this list. This is the only known polynomial algorithm for the MCB
problem, and its time complexity is O(rn3n), or O(n4) on simple planar graphs. The
expensive part of this algorithm is the greedy step that requires repeated applications
of Gaussian elimination.

The paper is organized as follows. In 2 we state and prove the main theorem,
which is two equivalent characterizations of MCBs in planar graphs. It follows im-
mediately from this theorem that solving the APMC problem on a planar graph is
essentially equivalent to solving the MCB problem on its dual. This theorem also leads
to an algorithm for solving the MCB problem in a simple planar graph (hence it solves
the APMC problem in the dual). We present this algorithm in 4. Our algorithm is a
modification of Horton’s algorithm: The idea is to shorten the list of candidate cycles
and then extract the MCB from this list without using Gaussian elimination. The
complexity of our algorithm is O(n2 log n), which is the same as the complexity of the
fastest planar APMC algorithm described above. However, our algorithm is simpler--
it does not require Frederickson’s shortest path algorithm as a subroutine nor does
it use any complex data structures. Our algorithm is faster than the straightforward
application of Horton’s algorithm, which is O(n4). In the final section, we show how
our algorithm can be modified to work on general planar graphs in O(n2 log n + rn)
time.

2. Preliminaries and the main theorem. In this section we state our main

theorem, which consists of two equivalent characterizations of MCBs in planar graphs.
We precede the statement of the theorem with some important definitions and follow
it with a brief discussion of the relationship between the MCB and APMC prob-
lems. This allows us to discuss only the MCB problem in the remainder of the paper.
Also, after reading the material presented in this section, the reader may skip to the
algorithm in 4 (thus skipping the proof in 3).

Let us refer to a planar graph that has been embedded in the plane as a plane
graph. A plane graph G divides the plane into maximal open connected sets of points
that we refer to as the regions of G. Each cycle C of G divides the plane into two
maximal open connected sets of points. Let interior(C) denote the bounded set. If
/1 and R2 are regions of a plane graph G, then a cycle C separates R1 and R2
if 11

_
interior(C) or R2 c_ interior(C), but not both. A cycle C of a plane graph G

is called an internal face if C bounds a bounded region of G. For simplicity, we refer
to "internal faces" as "faces."

A collection of cycles C in a plane graph is called nested if, for each pair C, C E C,
either

(2.1)
interior(C) c interior(C’);
or interior(C’) c interior(C);
or interior(C) C interior(C’) 0.

For a graph with arbitrary edge weights, we use the term path to refer to simple
paths (no repeated nodes). We use c and D to denote proper inclusion and proper
containment, respectively.

Let C be a collection of cycles and let Fc be the set of faces of G not in C. We
construct a directed graph De D(C U Fe, A) as follows (note that zy denotes an
arc directed from node z to node y): zy E A if and only if interior(z) D interior(y)
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and there exists no z E C J Fc such that interior(x) interior(z) interior(y).
Observe that De is acyclic but may or may not be a forest.

We use the following terminology in reference to Dc. If xy A, then we call x a
parent of y, and y a child of x. If nodes x and y have the same parent, then we call
them siblings. A node of in-degree 1 is called a leaf.

The main theorem follows. We emphasize that, in this paper, cycles are "node
simple." If we relax this assumption, then we must restrict ourselves to nonnegative
weights in the statement of Theorem 2.1.

THEOREM 2.1. Let G be a plane graph with edge weights and let C be a collection

of nested cycles in G. Then the following are equivalent:
(i) C is an MCB(G);
(ii) C is a minimal set with the following property: For every pair of regions, C

contains a minimum-weight cycle that separates the pair;
(iii) C is a minimum-weight collection of cycles that satisfies the following three

conditions:
(a) Dc iS a forest;
(b) Every nonleaf in Dc has a unique child in Fc;
(c) Dc has no isolated node in Fc.

Let us now discuss the relationship of the MCB and APMC problems. If G
(V, E) is a plane graph, let Gd (R, E) denote the dual plane graph of G, where R
is the set of regions of G. (That is, Gd has a node associated with each region of G,
and two nodes of Gd are connected by an edge if and only if the corresponding regions
of G have a common edge in their boundaries.) Since there is a 1-1 correspondence
between the edge sets of G and Gd, we denote both edge sets by E; hence E C_ E
denotes a set of edges in both G and Gd. An edge weighting on G induces an edge
weighting on Gd. For C c_ E, it is well known that

C is a cut in G iff C is a cycle in (d.

It is easy to see that if G is a connected plane graph, then there is a natural
1-1 correspondence between the nodes of G and the regions of Ga. (In particular,
G (Gd)d.) It easily follows from (2.2) that if G is connected, C is an s-t cut in G
if and only if C separates the regions corresponding to s and t in Gd. The following
corollary follows immediately from these observations and the above theorem (i.e., (i)
if and only if (ii)).

COROLLARY 2.2. Let G be a connected plane graph with edge weights and let C
be a collection of nested cycles in Gd. Then C is an APMC(G) if and only if C is an

In 4 we easily show that every plane graph has a nested MCB. Thus it follows
from the above corollary that we can find an APMC(G) by finding a nested MCB(Gd).
(Since the dual of a simple plane graph can be found in O(n) time, the complexity of
this algorithm for finding an APMC(G) is the same as the complexity of finding an

MCB(G). See Proposition 4.22 and Observation 4.20.) Section 4 contains an algorithm
that finds a nested MCB of a simple planar graph. In the remainder of the paper, we
address only the MCB problem.

3. Proof of Theorem 2.1. This section is devoted to proving Theorem 2.1.
We do so in parts, introducing useful definitions and propositions as necessary.

PROPOSITION 3.1. Let C be a collection of independent cycles in a plane graph
G. Then C is a cycle basis for G if and only if the number of nonfaces in C equals
the number of faces not in C.
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Pro@ The faces of a planar graph form a cycle basis, hence (the number of faces
not in C) + (the number of faces in C) dim(G). Equivalently, (the number of faces
not in C) + [Icl- (the number of nonfaces in C)] dim(G). The result follows.

The following proposition is key to proving Theorem 2.1.
PROPOSITION 3.2. Let C be a collection of cycles of a plane graph G. Then C is

a nested cycle basis for G if and only if C satisfies items (a)-(c) in Theorem 2.1.

Proof. (=) Since C is nested, De is a forest. Let z be a nonleaf node in De. If z
has no child in Pc, then z equals the sum of its children, contradicting our assumption
that C is a cycle basis. So every nonleaf node has at least one child in Pc. If any
nonleaf node has more than one child in Fc or if De has an isolated node in Fe, then
we contradict Proposition 3.1. The result follows.

() Since C satisfies (a), it is nested; hence we must show that C is a basis.
Since the number of cycles in C equals the number of faces of G, C has the correct
cardinality. To show independence, it sutfices to show that every face of G (the faces
of G are a cycle basis) can be expressed as a sum of cycles in C. Let C be a face
of G not in C. Then C is the sum of its parent and siblings in Dc, all of which are
in C.

Proof that (i) if and only if (iii). This proof follows immediately from Proposition
3.2. S

For the remainder of the proof, we use the following simple propositions. For
G (V, E), if V c_ V, then the edges of E with exactly one node in V are called the
coboundary of V.

PROPOSITION 3.3. Let G (V, E) be a graph with edge weights. Let E’ c_ E
be the coboundary of a node set V C_ V and let El, E2 be a nontrivial partition of
E’. If there exists a cycle C such that IE1 CI C and IE2 C C are odd, then such a
minimum-weight cycle is contained in every MCB(G).

Proof. Let us color, with red, blue, and white, the edges in El, E2, and E \ E,
respectively. Observe that since E is the coboundary of a node set, each cycle in-
tersects E in an even number of edges; hence each cycle has the property that the
numbers of red and blue edges in the cycle have the same parity. Let us call a cycle
odd or even according to this parity. Observe next that

(3.1) no odd cycle can be expressed as a mod-2 sum of even cycles.

We can obtain an MCB(G) by applying the greedy algorithm to the cycles in G.
(For a description of the greedy algorithm, see, e.g., [23].) By assumption, there exists
an odd cycle, and by (3.1) we must, at some point of the greedy algorithm, first choose
an odd cycle, call it C. Again by (3.1), no odd cycle can be expressed as a mod-2 sum
of the cycles chosen before C. Hence C must be a minimum-weight odd cycle. The
result follows.

Let C1 and C2 be two cycles that bound regions of a plane graph G with edge
weights (that is, C1 and C2 are faces or the cycle bounding the exterior region).
A C1-C2 path is a path P with one endnode on G(CI), one endnode on G(C2),
and no other node on G(C1) or G(C2). Let E’ be the coboundary of the node
set of such a path. Then there exists a cyclic ordering of the edges in Er, say,
a,b, xl,...,x,c,d, xr+l,...,xr+t, where a,b E CI and c,d C2 (see Fig. 3.1). Note
that it is possible that b c or a d, however, a b and c : d. We call {b, Xl,...,
xr, c}, {d,x+,... ,x+t,a} the (C1, C2)-partition of P. We immediately have the fol-
lowing proposition.

PROPOSITION 3.4. Let G be a plane graph with edge weights. Let C and C2 be
two cycles of G that bound regions R and R2, respectively, and let P be a C1-C2
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path. Then a cycle C separates R,1 and R2 if and only if C intersects each set in the

(C1, C2)-partition of P an odd number of times.

PROPOSITION 3.5. Let G be a plane graph with edge weights. If C is an MCB(G),
then for every pair of regions in G there ecists a cycle in C that separates the two
regions and is a minimum weight such cycle in G.

Proof. The result follows immediately from Propositions 3.3 and 3.4.
PROPOSITION 3.6. Let G be a plane graph with edge weights. Let C be an inde-

pendent collection of cycles of G. If C is a cycle that separates two regions that are

not separated by any cycle in C, then C U {C} is an independent collection of cycles.

Proof. The result follows immediately from (3.1) and Proposition 3.4.
PROPOSITION 3.7. Let G be a plane graph with edge weights. If C is a nested

cycle basis, then for each C E C there ezists a pair of regions such that C is the only
cycle in C that separates these regions.

Proof. Let C be an arbitrary cycle in C. We produce a pair of regions separated
only by C.

We have shown in Proposition 3.2 that De satisfies (a)-(c) in Theorem 2.1. If
C is an isolated node in De, then C is the only cycle in C that separates the region
interior to it from the unbounded region. If C is a root node of De (and not isolated),
then it is the only cycle in C separating its child in Fe from the unbounded region.
Otherwise, let C be the parent of C in De. If C is a leaf node of De, then C is the
only cycle in C separating the region interior to it from the child of C in Fe. If C
is not a leaf, then C is the only cycle in C separating the child of C in Fc from the
child of C in Fe. [3

PROPOSITION 3.8. Let G be a plane graph with edge weights. Let C be a nested
independent collection of cycles of G. If C is a cycle such that C (2 C is independent,
then C separates some pair of regions not separated by any cycle in C.

Proof. Consider the tree Dc for the given collection C. C need not be a basis;
hence a node, say Cr, in De may have more than one child in Pc. However, the sum
of the children in Fe of such a cycle C is given by the sum of C and the children of
C in C.

Suppose that the cycle C separates no pair of regions that is not already separated
by a cycle in C. Then, if it contains a face in Fe, it must contain all siblings of this
face in De. Since C is the sum of the faces it contains, it follows from our remarks
above that C can be expressed as a sum of cycles in C. Hence C t_J C is dependent,
and the result follows. [3

Proof of (i) if and only if (ii). (=) Assume that C satisfies the conditions of (ii)
of the theorem. We show that if we apply the greedy algorithm to the set of all cycles
in G, then we can produce precisely C. Suppose that by applying the greedy algorithm
to the cycles in G, we have chosen C c C and we are considering the cycles from G
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that we can add in the next iteration of the greedy algorithm. By Proposition 3.8,
any candidate cycle must separate two not-yet-separated regions. By Proposition 3.6,
any cycle that separates two not-yet-separated regions is independent of C/. Hence,
the minimum-weight cycles that separate two not-yet-separated regions are precisely
the candidate cycles. However, such a candidate must exist in C, by its definition.

(0) Assume that C is an MCB(G). By Proposition 3.5, for every pair of regions
in G, C contains a minimum weight cycle that separates the pair. In addition, by
Proposition 3.7, every C E C separates a pair of regions that is separated by no
other cycle in C. Hence C also satisfies the minimality requirement of part (ii) of the
theorem. This completes the proof.

4. An MCB algorithm for simple planar graphs. Our main objective in
this section is to present an algorithm that finds an MCB of a simple planar graph
with nonnegative weights in O(n2 log n) time. Before giving the algorithm, we present
some useful results on MCBs and four simple algorithms, which serve as subroutines in
the main algorithm. One of our first objectives is to prove a slightly different version
of Theorem 2.1 (i.e., Theorem 4.7) that will be more useful algorithmically.

Let G (V, E) be a graph. In the remainder of the paper, we assume that
V {Vl,..., Vn}. If V’ C_ V, then min(V’) is defined to be the minimum subscript of
a node in V/. For any subgraph G of G, we let V(GI) denote the node set of G. If w
is a vector of edge weights for G and P is a path, then we let w(P) denote the sum
of the weights of the edges in P and we let len(P) denote the number of edges in P.
We may refer to a path as a u-v path if it has endnodes u and v. We use the term
shortest path to refer to a path that has the minimum weight of all paths with the
same endnodes.

PROPOSITION 4.1. Let G- (V, E) be a simple graph with edge weight vector w.
Then, for every pair of nodes, u, v V, there exists a unique u--v path, call it P, that
satisfies exactly one of the following three conditions with respect to any other u-v
path PI"

(4.1) w (P) < w (P’),

(4.2) w (P) w (P’) and len (P) < len (P’),

(4.3)

w(P) -w(P’), len(P) -len(P’), min(V(P) \ V(P’)) < min(V(P’) \ V(P)).

Proof. Consider the set P of all shortest u-v paths P* for which len(P*) is a
minimum. It suffices to show that for every P1, P2 P, V(P1) : V(P2). (It follows
immediately that V(P1) \ V(P2) 0 and V(P2) \ V(P1) : 0, since P1 and P2 have
the same number of nodes.)

Assume that V(PI) V(P2). Let us rename the nodes so that P contains the
nodes u1,..., uk, in this order. At some point, P2 must differ in this sequence from
P1. Let j be the smallest subscript such that uj is not the jth node in P2. Consider
the path that consists of P from Ul to uj plus P2 from uj to uk. This path consists of
a shortest path from Ul to uj plus a shortest path from uj to uk. Hence it is a shortest
path from u to uk. However, it contains fewer edges than P1 or P2, which contradicts
our choice of P.
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If G is an edge-weighted graph, then we let P(uv) denote the unique u-v path
described in Proposition 4.1. We immediately obtain the following simple proposition.

PROPOSITION 4.2. Let G (V, E) be a simple edge-weighted graph and let u, v E
V. Then

(4.4) P (uv) is a shortest u-v path;

(4.5) if an x-y path P is a subpath of P (uv), then P P (xy).

Suppose that w is a vector of edge weights for a graph G. Then a vector of edge
weights w’ is called a perturbation of w if, for any two-edge subsets, say E1 and
E2,w(E1) < w(E2) implies that w’(E1) < w’(E2). Hence, if C is an MCB(G) hnder
w’, then it is an MCB(G) under w.

PROPOSITION 4.3. If G (V, E) is a simple graph with edge weight vector w,
then there exists a perturbation w’ of w such that every path P(uv) under w is the
unique shortest u-v path under w’.

Proof. Let w(uv) denote the original weight of edge uv. Let g, el,..., en be very
small numbers, where g >> el >> g2 >>’’" >> n- We define w’(vivj) w(vivj) + -ej. Since the e’s are small, any shortest path under w’ is a shortest path under w.
Adding g to each edge weight insures that condition (4.2) is satisfied, and subtracting
the ei and ej terms insures that condition (4.3) is satisfied. [q

The key to making the main algorithm more efficient is to considerably limit the
set of candidate cycles. Let C be a cycle of a graph G with edge weights and let G(C)
be the subgraph of G with edge set C (and no isolated nodes). Then C is called a
short cycle if, for every pair of nodes x, y on G(C), a shortest path from x to y in G
is contained in G(C).

PROPOSITION 4.4 (see Horton [14]). Let G be a graph with edge weights. If C is
contained in some MCB(G), then C is a short cycle.

If G is a simple edge weighted graph, then we call a cycle C lexicographically
short (lex short) if, for every pair of nodes x, y in C, P(xy) is contained in C. Hence,
by Proposition 4.2, if a cycle is lex short, then it is short.

PROPOSITION 4.5. Let G be a simple graph with edge weights. Then the collection

of lex short cycles contains an MCB(G).
Proof. The proposition follows immediately from the two above propositions.
We next present two useful results concerning the lex short cycles.
PROPOSITION 4.6. Let G be a simple plane graph with edge weights. Then the

collection of lex short cycles is nested.
Proof. We observe that, if two cycles C and C’ are lex short, then G(C) C G(C’)

is a path or empty (otherwise, we contradict the definition of lex short cycles), which
is true if and only if C and C’ are nested. [

In addition, we immediately obtain the following version of Theorem 2.1.
THEOREM 4.7. Let G be a simple plane graph with edge weights; let C be a

collection of lex short cycles. Then (i)-(iii) of Theorem 2.1 are equivalent.
Proof. This theorem follows immediately from Propositions 4.5 and 4.6. rq

In the algorithm for finding an MCB of a plane graph, we generate all the lex
short cycles and then extract a subset C that satisfies (iN) and (iii) of Theorem 2.1. We
generate these cycles in a subroutine called Algorithm: Lex Short Cycles. As we next
show, this collection of cycles has cardinality O(n) for a simple planar graph, which
makes this list of candidates small and gives us our desired complexity. Actually, we
show this for any collection of nested cycles.
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PROPOSITION 4.8. Let C be a nested collection of cycles in a simple plane graph
G and let f be the number of (internal) faces of G. Then ICI <_ 2f- 1.

Proof. Assume, without loss of generality, that C contains all the (internal) faces
of G. It follows that Dc is a forest with f I{leaves and isolated nodes}l and that
every node, which is neither a leaf nor isolated, has at least two children. By a
straightforward induction on f, we can show that the number of nodes in such a
directed graph is less than or equal to 2f- 1. The result follows.

COROLLARY 4.9. Let G be a simple plane graph with edge weights. Then

(4.6) the cardinality of the collection of lex short cycles of G is O(n).

Proof. The proof follows immediately from Propositions 4.6 and 4.8. V1

The first step in generating the lex short cycles is generating the short paths
P(uv), which we do in Algorithm: Lex Short Paths. The following notation is used
in this algorithm. T denotes a partial shortest path tree grown from node r, where,
if there is a path from r to u in T, then this path is P(ru). For each u : r in
T, sub(u) _-- the smallest subscript of a node on the path in T from u to r, excluding
r. sub,(r) the subscript of r. For each u :/- r in T, edg%(u) the edge incident
with r on the path in T from u to r. edge,.(r) _-- 0. d(u, v) the weight of a shortest
path (i.e., the distance) from u to v. L denotes an ordered list of the node pairs in
nondecreasing order of the distances between the pairs (ties are broken arbitrarily).

The idea of the algorithm is that, at iteration k, the algorithm processes the kth
pair on L, say (u, v), by adding u to Tv and adding v to T so that P(uv) occurs in
both trees.

Algorithm: Lex Short Paths
Input: Simple graph G (V, E) with nonnegative edge weights w.
Output: Shortest path trees T for each node r, where each shortest path from

r to u in Tr is P(ru).
Step 0: Add > 0 to the weight of every edge.
Step 1: Using any shortest path algorithm, construct the list L as described

above. Initialize T := r, sub(r):= the subscript of r, edg%(r):= , for each node r.

Step 2: For k 1, 2, 3,..., ILl, do the following:
Let (u, v) be the kth pair on L. Let ui,..., Up be the nodes such that (i) u is

incident with v and is contained in Tu and (ii) the path P(uu)U uv has weight
d(u, v). Similarly, let vl,..., vq be those nodes such that (i) v is incident with u and
is contained in Tv and (ii) the path P(viv))viu has weight d(u, v).

(a) Identify node pairs {ui, vj} such that edge(ui) vju and edgev(Vj) uiv;

or uivj the edge uv.

(b) Pick that pair {u’, v’} for which min(sub(ui)t sub(vj)) is a minimum.

(c) Add the edges u’v and v’u to Tu and T, respectively.
(d) Update the sub() and edge( functions.
End.

PROPOSITION 4.10. Algorithm: Lex Short Paths works.

Proof. Note that we need not actually pick a number in Step 0, but can simply
add this symbol, which represents an arbitrarily small positive number, to the weight
of each edge. Under this new weighting, each path has a weight with two terms, one
of which is its original weight and one of which is an term. Observe that under this
new weighting we may assume, as under the original weighting, that additions and
comparisons of two numbers can be performed in constant time; thus Step 0 will have
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no effect upon our complexity arguments. The effect of adding e > 0 to every edge
weight is that if two paths had the same weight but different lengths under the original
weights, then the path with fewer edges has less weight under the new weights. Hence
P(uv) is the same under both weight vectors. Also, all edge weights become effectively
positive, which is important in the remainder of the proof.

The proof proceeds by induction on k in Step 2. Assume inductively that the
algorithm has correctly constructed the partial shortest path trees Tr for the first
k- 1 entries on the list L. Let us consider the kth node pair (u, v) in Step 2. If there
is an edge uv and d(u, v) the weight of nv, then the algorithm adds uv to both Tu
and Tv. So let us assume this is not the case. Consider the path P(uv). Let ui and vj
be the nodes of P(uv) incident with v and , respectively. Then, since all edge weights
are positive, d(ui, ) < d(u, v) and d(vj, v) < d(u, v). Hence, by inductive hypothesis,
P(uu) and P(vjv) must be contained in Tu and Tv, respectively. Since P(uu) and
P(vjv) are contained in P(uv), the node pair {ui, vj} is picked in Step 2 (b). Since
both T and T are trees, it is easy to see that all other node pairs identified in Step 2
correspond to u-v paths that are internally node disjoint from P(uv) and each other.
Hence Step 2 picks the pair {ui, vj }. [-]

PROPOSITION 4.11. Algorithm: Lex Short Paths can be implemented in time

O(n2 log n) for simple planar graphs.
Proof. Step 0 can be accomplished in O(n) time (see the discussion in the first

paragraph of the proof of Proposition 4.10). Step 1 can be implemented in time

O(n log n), since it takes O(n2 log n) time to compute the d(u, v)s (e.g., using the pla-
nar shortest path algorithm in [18]), of which there are O(n2), and another O(n2 log n)
time to sort them to obtain L.

In Step 2, Ul,..., Up and Vl,..., Vq can be found in O(n) time by scanning the
neighbors of u and v. The node pairs {ui, vj } can be found by examining edg% (ui),
for 1,...,p, checking if each such edge contains a node in vl,..., Vq, and then
repeating the process by examining edg%(vj) for j 1,..., q. This also requires O(n)
time. Hence Step 1 dominates the complexity of this algorithm, and the result fol-
lows.

It will be useful to keep track of another piece of information when Algorithm:
Lex Short Paths is run. In particular, we want to know, for each pair of nodes u and
v, which edge is in the "middle" of P(uv). Recall that we denote the number of edges
in P(nv) by len(P(uv)). First, let halfnode(v) the node w on P(uv) such that
len(P(uw)) len(P(wv)), when len(P(uv)) is even; halfnode(v) the node w on

P(uv) such that len(P(nw)) len(P(wv))- 1, when len(P(uv)) is odd. Suppose that
we are in Step 2 of the algorithm and considering a pair of nodes u and v. Then it
is easy to see that halfnodeu(v) and halfnode(u) can be computed in constant time
from halfnode(u’) and halfnode(v’), where u’ and v’ are defined as in Step 2.

Finally, let and v be two nodes and assume, without loss of generality, that the
subscript of u is less than the subscript of v. Then halfedge(uv) the edge between
halfnode(v) and halfnodev(u), when len(P(uv)) is odd; halfedge(uv) the edge in

P(uv) incident with halfnode (v) (= halfnode(u)) and closest to u, when len(P(uv))
is even. Again, we can compute, in constant time, halfedge(uv) for each uv when it is
considered in Step 2 of the algorithm.

The first step in the algorithm for generating the lex short cycles is to generate
a superset of these cycles described in the following elementary proposition, which
follows immediately from a simple proposition of Horton [14]. Let us call a cycle C
in a simple edge-weighted graph G a lez edge-short cycle with respect to a node x if,
for a node x in G(C), there exists an edge yz in G(C) such that G(C) P(xy) U
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P(xz) U yz. Note that, by their definition, P(xy) and P(xz) share only the node x.
As a shorthand, a lex edge-short cycle C as just described is sometimes referred to as

Due to the following proposition, we can use the lex edge-short cycles as a first
step in obtaining the lex short cycles. This idea is due to Horton [14].

PROPOSITION 4.12 (see Horton [14]). Let G be a simple graph with edge weights.
Then C is a lex short cycle if and only if C is alex edge-short cycle with respect to
every node in C.

Proof. This result follows immediately from Theorem 4 in [14].
The following proposition proves useful. We leave its proof to the reader.
PROPOSITION 4.13. Let G be a simple edge-weighted graph. If C is alex edge-

short cycle with respect to a node x, then there exists a unique edge yz in G(C) such
that G(C) P(xy) P(xz) U yz, where P(xy), P(xz), and yz are edge disjoint.

OBSERVATION 4.14. In a simple planar graph, there are O(n2) lex edge-short
cycles, since there are O(n2) node-edge pairs.

To extract the lex short cycles from the list of lex edge-short cycles, we use a simple
data structure defined in and constructed by the following algorithm. A directed tree
rooted at r, say T (V, A), is a directed tree whose arcs are oriented away from the
node r. As before, if xy E A, we say y is a child of x; also, a leaf of T is a node within
degree 1. If there exists a directed path from node a to node b, then we say b is a
descendent of a.

Algorithm: Interval
Input: A tree T (V, A) with root node r.

Output: A closed interval for each node in V.
Step 1: Orient the edges of T to obtain a directed tree D rooted at r.
Step 2: Perform a depth first search on the nodes of D beginning at r. Label the

leaves of D in the order they are scanned with 1, 2, 3,
Step 3: For each v E V, set intervalr (v) := [a, b], where a is the smallest label of

a leaf that is a descendent of v and b is the largest label of a leaf that is a descendent
of V.

End.

We easily obtain the following proposition.
PROPOSITION 4.15. Suppose that Algorithm: Interval is applied to a tree T

(V, A) with root node r. Let x, y V. Then x is on the path of T from r to y if and
only if intervalr(y) C_ interval(x).

Hence, if we have the above data structure for a particular tree T, then we can
answer, in constant time, the question "Is y a descendent of x in T?"

PROPOSITION 4.16. For a tree T- (V, A) with root node r, Algorithm: Interval
can be implemented in O(n) time.

Proof. Steps 1 and 2 can be performed in O(n) time. Step 3 can also be per-
formed in O(n) time as follows. For each node v in T, we determine a and b, where
interval(v) [a, b], as follows. When v is first scanned in the depth first search, note
this, and let a be the next number attached to a leaf. When v is last scanned, let b
be the last number attached to a leaf. cl

In the algorithm for generating the lex short cycles, we use the following algorithm.
It takes as input a lex edge-short cycle and tests an obvious necessary condition for
the cycle to be alex short cycle. When the cycle passes this test, it also returns a
"canonical" representation for the candidate cycle.
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Algorithm: Lex Short Cycle Test
Input: A simple graph G- (V, E) with edge weights and alex edge-short cycle

c {v, xy}.
Output: Yes, if C is lex edge-short with respect to z, where z is the node of C

with smallest subscript; otherwise output no. If yes, then also output {z, ab}, where
{z, ab} C.

Step 1: Find the node z in C with the smallest subscript.
Step 2: If z v, then output yes and {v, xy}. If z = v, then, for each edge ab

in C, check if P(za) P(zb) P(ab) G(C). If yes for some ab, then output yes and
{z, ab}. Otherwise, output no.

End.

The validity of the algorithm follows immediately from the above propositions.
The obvious implementation takes linear time, but with a little care we can implement
it faster as follows.

PROPOSITION 4.17. If interval(v) and halfedg%(v) for every pair of nodes u
and if v of G is included in the input to Algorithm: Lex Short Cycle Test, then it can
be implemented in time O(log n).

Proof. Let C {v, xy} and z be as in the algorithm. Suppose that z v and,
without loss of generality, suppose that z occurs on P(vx). Since P(zv) and P(zx) are
subpaths of P(vx) (by Proposition 4.2), we need only check if ab xy or ab occurs
on P(vy). Suppose that ab xy. Then we need only check if v occurs on P(zy). (This
can be done in constant time by checking if intervalz(y) c_ intervalz(v).) If the answer
to this is yes, then (by Proposition 4.2) C P(za) P(zb) ab.

Suppose that ab occurs on P(vy). We perform a binary search for this edge as
follows. Let halfedge(vy) abl. Suppose that al is closer to y than v (we can deter-
mine this in constant time by checking, for example, if a is contained in P(bly)).
Finally, we must check (i) if x and y occur on P(zal) and if P(xy) xy; and (ii) if
v occurs on P(zbl). If both are true, then albl ab, and we are done. If neither is
true, then C is not lex short. If (i) is true and (ii) is false, then we can restrict our
search for ab to P(aly). If (i) is false and (ii) is true, then we can restrict our search
for ab to P(blv). Each of these checks can be performed in constant time (using the
data structure defined in Algorithm: Interval and discussed in Proposition 4.15). We
then apply the same procedure to this subpath of P(vy). The total work is bounded
by O(log n).

In the algorithm for generating the lex short cycles when the weights are nonneg-
ative, we first generate the lex edge-short cycles (Horton in [14] generates the same
collection but starting from an arbitrary collection of shortest paths). However, there
are O(n) such cycles; hence it requires O(n3) time to write their incidence vectors.
Since our algorithm for finding the MCB runs in O(n21ogn) time, we do not
write out the entire list (as Horton does). The idea is to find these cycles without
explicitly writing them out. This is what we do in Step 3 of the following algorithm.
Then, in Steps 4 and 5, we identify and explicitly write out just the lex short
cycles.

Algorithm: Lex Short Cycles
Input: Simple planar graph G- (V, E) with nonnegative edge weights w.
Output: The incidence vectors of the collection L of lex short cycles.
Step 1: Set L, L, and L"-- 0.
Step 2: Apply Algorithm" Lex Short Paths. Let T (V, E) be the shortest

path tree rooted at r.
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Step 3: Generate the lex edge-short cycles:
For each r E V, do the following:

For every uv E \ Er, let C(r, uv) refer to the unique cycle in uv
Er; if C(r, uv) contains r, then add ({r, uv},len({r, uv})) to L’, where
len(r, uv) denotes the number of edges in {r, uv}.

Step 4: For each ({r, uv},len(r, uv)) in L’, apply Algorithm: Lex Short Cycle
Test to {r, uv}. If the output is yes, then replace ({r, uv},len(r, uv)) with ({w, xy},
len(w, xy)) on L/, where xy are ordered so that x has smaller subscript than y.

Step 5: Sort the members of L lexicographically (say, from left to right in
ascending order on the subscripts of the three nodes in the node and edge that define
it). For every ({w, xy},len(w, xy)) on L’, if it occurs len(w, xy) times in L’, then add
it (once) to L".

Step 6: Write out in L the incidence vectors of the cycles on
End.
PROPOSITION 4.18. Algorithm: Lex Short Cycles works.

Proof. Clearly, we generate, in Step 3, the lex edge-short cycles. By Proposition
4.12, each short cycle is generated in Step 3 once for each node in the cycle. Also,
any cycle that is generated this number of times must be a short cycle. Hence the
short cycles are characterized by how often they appear in L. This is what we test
for in Step 5, since in Step 4 we find a unique representation for each short cycle in
L. Hence the algorithm works.

PROPOSITION 4.19. Algorithm: Lex Short Cycles can be implemented in

O(n2 log n) time for simple planar graphs.
Proof. By Proposition 4.11, Step 2 requires O(n2 log n) time. Let lent(v) be the

number of edges on the path in Tr from r to v. Then, for every r, v V, we can also
record lent(v) in Step 2. Observe that in Step 3, C(r, uv) contains r if and only if
edger(u edger(v). Hence we can check if C(r, uv) contains r in constant time, and,
if the answer is yes, we have len(r, uv) lent(u)+ lent(v)+ 1. Since G has O(n) edges,
the complexity of Step 3 is O(n2). The key idea in this step is not explicitly to write
out the incidence vectors of the cycles generated, which would require O(n3) time.

By Proposition 4.17, Step 4 can be implemented in time O(n2 log n) since L has
length O(n2).

Step 5 is dominated by the sorting, which requires O(n2 log n) time.
By Corollary 4.9, O(n) cycles are added to L in Step 6, each of which requires

O(n) time to write out. Hence Step 5 requires O(n2) time.
So the overall complexity is dominated by Steps 2, 4, and 5, which proves the

result.

Algorithm: MCB
Input: A simple planar graph G with nonnegative edge weights.
Output: An MCB(G).
Step 1: Embed G in the plane and find Fc, the list of its faces.
Step 2: Apply Algorithm: Lex Short Cycles to G to get a list of candidate cycles

L (i.e., L contains an MCB(G)) and sort L in ascending order by cycle weights.
Step 3: Set C 0 and Dc := (Fc, A), where A := 0.
Step 4: If there exist C1, C2 Fc with the same parent in Dc, then set R1 :--

interior(C1) and R2 interior(C2); otherwise, let C1 be an isolated node of Dc in

Fc and set/1 interior(C1) and R2 exterior region.
Step 5: Find a minimum weight cycle C L that separates R and Ru. Set

c .= {c u c}.
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Step 6: If ICI < dimension of G, then update De with a node for C and go to
Step 4. Otherwise, C MCB(G).

End.

OBSERVATION 4.20. If we wish to drop the condition that G be simple, then we
can apply Algorithm: Reduction to G, which appears in the last section. This algorithm
outputs a simple planar graph G plus a collection of cycles C such that the output of
Algorithm: MCB applied to G plus the cycles in C is an MCB(G). Note that if we are
solving the APMC problem on a simple plane graph G, then Gd may not be simple.
However, the number of edges in Gd is still O(n); hence first applying Algorithm:
Reduction to Gd and then applying Algorithm: MCB still requires O(n2 log n) time.

PROPOSITION 4.21. Algorithm: MCB works.

Proof. This follows immediately from equivalent conditions (ii) and (iii) in The-
orem 4.7.

PROPOSITION 4.22. Algorithm: MCB can be implemented in time O(n2 logn).
Proof. Let us observe that it is sufficient that Fc consists of pointers to the faces

of G.
Step 1 takes O(n) time (see, e.g., [2]). Step 2 is dominated by Algorithm: Lex

Short Cycles and the sort, each of which takes O(n2 log n) time.
Step 3 takes O(n) time. Step 4 requires a breadth-first scanning of Dc. By

Proposition 4.8, De has O(n) nodes; hence this step requires O(n) time.
Step 5 can be performed in O(n) time as follows. First, at the end of Step 2, it

is easy to construct, in O(n2) time, the incidence matrix of cycles in L versus interior
regions (i.e., aij 1 if and only if cycle contains region j). Then, in Step 5, by
scanning the two columns of this matrix that correspond to/1 and R2, the minimum
weight separating cycle can be found in O(n) time.

We finally consider the complexity of updating De in Step 6. Let C be a new
cycle found in Step 5. From the output of Step 2, we know the regions/faces interior
to C. These faces each have a corresponding leaf node of Dc. Let V be this set of
leaves. If C1 and C2 have the same parent P in De, then C becomes a child of P, and
all branches of the tree that descended from P to a node in V now descend from C.
If C1 is isolated, then, again, all maximal branches of Dc that descend to a node in
V now descend from C. Hence Step 6 can be performed in O(n) time.

So Step 2 dominates the complexity of the algorithm, and the result follows.

5. Extension to general graphs. The following algorithm allows us to reduce
the MCB problem on general graphs to the MCB problem on simple graphs. Hence,
with this algorithm and Algorithm: MCB, we can solve the MCB problem on general
planar graphs in O(n2 log n + rn) time (see Observation 4.20).

Algorithm: MCB Reduction
Input: A graph G- (V, E) with nonnegative edge weights w.
Output: A subgraph G (V, E) of G with nonnegative edge weights and a

collection of cycles C such that G is simple and an MCB(G) together with C is an

CB(a).
Step 1: Let C’-0,G-(V,E) whereV’’-VandE’-E.
Step 2: Let L c_ E be the loops of G. Set C C t2 L. Set E E \ L.
Step 3: For each maximal collection in G of parallel edges e,..., ep, p > 2, with

the same endnodes, do the following"
(i) Rename the edges so that w(el) <_ w(e), _> 2.

(ii) SetE’’-E’\{ei’i>2}.
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Step 4: For each pair of nodes u and v of V, find Path(u, v), a shortest u-v path
in Gt.

Step 5: For each maximal collection in G of parallel edges el,..., ep, p > 2, with
the same endnodes, say u and v, do the following"

Set C’ C’ U {E (Path (u, v)) U ei}, for each _> 2.

End.

PROPOSITION 5.1. Algorithm: Reduction works.
Proof. Let w be obtained from w as follows" For each maximal collection in G of

parallel edges el,..., ep,p > 2, add 5 > 0 to w(ei), > 2. Clearly, an MCB(G) under
w’ is also an MCB(G) under w.

From the definition of cycle basis, it immediately follows that each edge of G is
contained in at least one cycle of any MCB. Let e uv be an arbitrary edge whose
weight has been altered in constructing w. By our choice of w, e is not a shortest
path. Hence, by Proposition 4.4, each cycle in an MCB that contains e must consist
of a shortest u-v path in G together with e. Suppose that there are two such cycles,
say C1 and C2, through e in some MCB(G) under w. Call it C. Let C C1 + C2. By
our above observation, w’(C) < w’ (Cj), j 1, 2. By our definition of C, either C1 or

C2 can be replaced by C in C to yield a new basis, say Ct, for the cycle space with
less weight than C. (If C is not a cycle, then it is the sum of edge disjoint cycles and
therefore it can be replaced in C by one of these cycles to yield a cycle basis of the
same weight. For a further discussion of this idea, see [14]. Hence we may assume
that C contains only cycles.) However, this contradicts our choice of C. Hence any
MCB(G) under w must contain exactly one cycle through each edge whose weight
we have altered; this cycle must be of the form we identify in Step 5. The result fol-
lows.

PROPOSITION 5.2. IfG is planar, then Algorithm: Reduction can be implemented
in time O(n2 log n + m).

Proof. Steps 2 and 3 each require O(m) time. Step 4 requires O(n2 log n) time,
using any planar shortest path algorithm (e.g., see [18]). Note that writing out the
cycles in Step 5 may take O(mn) time if there are more than O(n) parallel edges
and if the shortest paths in these cycles are O(n) in length. However, there are O(n)
shortest paths in G between endnodes of edges, and, for parallel edges, a pointer
may be used to the corresponding shortest path, rather than writing the cycle out
completely. Hence, the collection C may be compactly written out in O(rn) time. So
the complexity of the algorithm is O(n2 log n + m). [:]
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RANDOM SET PARTITIONS*
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Abstract. For random partitions of In], let Ln and t:n, respectively, denote the maximum block
size and its multiplicity. The average multiplicity is E(Rn) H({mn}) + o(1) as n c, where
H is an explicitly given analytic function and {mE} is the fractional part of a certain implicitly
defined root. The cumulative distribution function of Ln also depends on {rnn}. The sequence

({mn}}nC=l is dense in (0, 1). This establishes both the nonexistence of a limit distribution for Ln
and the nonexistence of a limiting value for E(Rn).

Key words, random set partitions, blocks
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1. Introduction. Several authors have studied random set partitions. We do
not review this literature but instead refer the reader to the references ([1]-[4], [6],
[10]-[12], [15], [16]). Here we study the maximum block size of random set partitions.

To state the results, we need some notation. If is a partition of In], let Ln() be
the cardinality of the largest block of u. Let u Un be the positive solution to ze n
and let rnn eu- logx/. Finally, let #n rnn -log((e- 1) 2x/). The asymptotic
distribution of the maximum block size was determined by Sachkov [16].

THEOREM 1 (Sachkov). As n

Prob (Ln <_ tn + X) exp (-exp (-x / {n + x})) (1 + o (1))

uniformly for Ixl <_ log(v/-).

Sachkov did not state his theorem correctly. Nevertheless, he did prove
Theorem 1.

The condition Ix _< log(v/-) is too stringent for our purposes. We need the
following two bounds for the tails of the distribution.

THEOREM 2. Let a be a fixed real number and let x -aloglogn. Then, as

Tt---O()

Prob (Ln _< tn - X) --exp (-(log It)e{ttn+X}+(1)) (1 + o (1)).

THEOREM 3. Let b > 0 be a fixed positive constant and let x b log n. Then, as

Prob (Ln _< tn + X)

(e + b)c+("’+x}
=exp

V/27r(b+e)(b+e-1)
(log n) (e+l/2) log(l+b/e)-b )/t(b+e) log(l+b/e) (1 + o (1)),

where co log((e- 1) 2x/).

* Received by the editors August 27, 1990; accepted for publication (in revised form) June 3,
1993. This research was supported by National Science Foundation grant DMS-8901610.

Department of Mathematics and Computer Science, Drexel University, Philadelphia, Pennsyl-
vania 19104.

419



420 WILLIAM M. Y. GOH AND ERIC SCHMUTZ

Both these results are needed to determine the average multiplicity of the largest
block size.

Let Rn(r) be the number of blocks of size Ln(r) that has. Let

H(y)- ey E e-exp ey-
=_ 2x/ (e 1)

Remark. H is analytic on a horizontal strip containing the real axis. It is also
clear that H is periodic with period 1.

The average multiplicity is given by the following theorem.
THEOREM 4. E(Rn) H({rnn}) + o(1).
Because of Theorems 1 and 4, we wanted to know more about the sequence of

fractional parts. This led to the following result.
THEOREM 5. The sequence of fractional parts ({rnn}}n=l is dense in (0, 1).
Some interesting corollaries are obtained when Theorem 5 is coupled with Theo-

rems 1 and 4.
COROLLARY 1. For any fixed x,

limsup Prob (Ln <_ #n + X) exp (--e-X),
n--o

liminf Prob (Ln <_ #n + X) exp (--e-x+l).

COROLLARY 2. We have

limsup E (Rn) max H (y) 1.719398...,
n--- 0_y<_l

liminfE(Rn)- min H(y)-l.717164..-.
0_y_l

2. Preliminary estimates. Both Theorems 2 and 3 are proved by coupling the
saddle point method with SzegS’s approximations for partial sums of the exponential
series. This section contains the proof of Theorem 2. First, we use Evgrafov’s formu-
lation of the saddle point method to derive a not-yet-explicit asymptotic formula for
Prob(Ln <_ #n + x).

Let (n, rn) be the number of partitions of the set In] with block sizes that are
all less than or equal to rn. By the exponential formula [18],

(1) E (n, m__)zn 1
exp (Sm (z))n! e

where Sin(z) ,k=O zt/k!, the ruth partial sum of the exponential series. Given a

fixed real number a > 0, let x- -a log log n, and let

(1)M-#n-aloglogn-eu- a+ log logn-

co- log ((e- 1)2x/-).
c0+o(1), where

The case when a < 0 can be treated in a similar fashion.
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By Cauchy’s theorem,

Prob (L < #n + Z)= (n, [MJ) n! exp (S[Mj (z))(2) dz,B (n) 27reiB () J-C zn+l

where [MJ is the greatest integer <_ M; i.e., [MJ M-{M}, C is a contour encircling
the origin, and B(n) is the nth Bell number.

The integral in (2) can be estimated by the saddle point method. Let

h (, t) stj (t) og t,

and define p to be the positive solution to

(3) Oh(n,t)
Ot

O.

By Theorem 4 of [7, pp. 21, 4611,

1 fc exp (h (n, p))(z))exp
(4)

27rei Zn+l iN’p 7r
02h(n’p)

Dt

We omit the technical details (see the Appendix). Using (3), we obtain

p[MJ
(5) h (n, p)

n
1 H n log p.

p LMJ!
Similarly,

02h (n, p) n p[MJ-1 ft
(6) Ot p ([MJ 1)! pB"

Putting (5) and (6)into (4), we obtain

(7)
n! a( exp (S[M (Z))

dz
B (n) 2rei ]c z’+l

n, exp ( -1+)
B(Tt) pn+li27r (r pLM,J -,, _1_.(LMj-1)! -It is well known [5] that

n ex/r exp (-e + ueu log u + u/2 + log u).

Putting this into the right side of (7), we obtain

<_ M) exp
/[nProb (L
P

+ n log u n log p + fl[MJ

Beware of typographical errors.
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log(n/p p[MJ-1 Tt/p2))where A exp(u/2 + logu- logp- /([MJ 1) +
3. SzegSs approximations. The right side of (8) contains the quantities p

and u. It is well known [5] that

(9) u log n log log n + o (1).

We need similar estimates for p.
PROPOSITION 1. We have

e loga+ n
exp ({#n + x} - o (1)).

Proof. First, we prove a weaker result,

(10) P- u- o (lga+l n)
Let f(t) t[MJ-1 (t), where M- #n- a log log n. By the mean value theorem, there
is a E (u, p) such that

(11) p-u- f (p) f (u)

The tool that enables us to estimate the right side of (11) is the following approxima-
tion theorem of Szeg5 [17].

THEOREM 6 (SzegS). As rn

Sm (rnw) e" (1 v/2:rml (Wl_w) (wel-w)m(l+O(1/m)))’
uniformly for Iwl _<

Recall that ue n. By taking w u/(bMJ 1) and rn LMJ 1 in Theorem
6, we obtain

(12)

1 ( )V/2r ([MJ 1) [MJ 1

U
el-u/(LMJ 1) / LMJ-1

LMJ 1
(1 + o (I/M))

From the definition of p, f(p) n. To estimate (11), we still need a lower bound
for f’().

Note that

(13) f’ (t) [MJ-1 (t) -F XLMJ-2 (t).

For each rn, Sm(t) is an increasing function of t. Hence

(14)
f’ () LMJ-1 (u) -F ’LMJ-2

(1 -F u) S[Mj_ (u) LMJ/(LMJ 1)!.
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It is easy to check, using (9) and Stirling’s formula, that

(15) [MJ/(LMJ 1)! O (logl+a n)

ett )
[MJ-1

(16) [MJ 1
=exp +a loglogn+c0+l+{M}+o(1)

Now (12) implies that

(17)

SLMj_ l(u)
n (1 1 ( )v/2(LMJ 1) LMJ 1 u

t el_u/([M]_l) (1 + 0 (l/M))x
[MJ 1

Then, using (14)-(16) and some elementary calculations, we find that

(18) f’ () > cn

(19) f (p)- f (u) O (loga+l n)

for some c > 0 and all sumciently large n. Combining (11), (lS), and (19), we obtain
(10). This rough bound will be needed to prove the more precise estimates that follow.
From the equations

n PSkMJ-1 (P), n uexpu,

we obtain

log -u 9-log (O[MJ_l (p)).

By Theorem 6, S[MJ-I(P) eP. A, where

A--l-
1 ( )V/2r(LMJ 1) LMJ 1-p

( el_p/(LMj_I)) LMJ-1
(1 + O (l/M)).

Hence

(20) p-u--logA+log

By (10), however, we have

(21) log -log 1+
P P

P 9- 0 (log2a n/n2) 0 (log n/n).
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Because -log(1 x) x + O(x2) as x --+ 0+, we have

(22)

1 ( )-log A
V/2r (LMJ 1) [MJ 1 p

( P el-p/(LMj-1))
LMj-1

e loga+l n
exp ({M} + o (1)).

n

(I+O(1/M))

Combining (20), (21) and (22), we obtain

p--+
e loga+ n

exp ({#n + } + o (1)).

With Proposition 1 at our disposal, it is straightforward to make (8) explicit.
First, from (9), (10), and (15) we see that A exp(o(1)). Furthermore, we have

p u pu
O (loga-1 n).

Also, n log u n log p n(u p)/p + O(log2 n/n). By Proposition 1, this is

-e loga n exp ({M} + o (1)).

Finally, Stirling’s formula, formula (9), and Proposition 1 imply that

p[M]/ [M] (e- 1)(loga n)exp ({M} + o (1)).

Putting all these into (8), we obtain

Prob (L, _< #, aloglog n) exp (-(loga n)e{ttn-alglgn}+(1)) (1 + o(1)).

We omit the proof of Theorem 3 because it is essentially the same as that of
Theorem 2. Sachkov’s formula can also be proved this way. Our asymptotic estimates
are not, however, uniform in x.

4. Nonexistence of a limit distribution for maximum block size. We
claim that it is impossible to choose constants/n and n SO that (Ln -/,,)/5 has a
nondegenerate limit distribution. Suppose that there were constants/, and ’n and
a nondegenerate F such that, at any continuity point x,

(23) Prb ( Ln _. x) --- F(x) as n-+ c.

We nust show that this leads to a contradiction.
Since F is nondegenerate, we can choose continuity points 1 2 such that

0 < F(i) < 1. Then by (23)

(24) Prob (L, < [in -- (n [-tn _qt_ i(Yn)) ---+ F(i) as n --+ oo.
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Comparing (24) and Theorem 1, we see that fn #n -- in is bounded (i 1, 2).
Hence (n- #n) and ?n are both bounded. We can therefore use (24) to conclude
that

(25) F (x) exp (-exp (/t -/ X6"n + {/n + x6"n})) + o (1).

Let gn(X) #n fn Xn - {fn - X(n}. By (23), gn(X) converges. Hence
{gn(x)} must either converge or accumulate at 0 and 1. To obtain the sought-after
contradiction, we prove that, in fact, {gn(X)} is dense in (0, 1). Toward this end, let
an fin + X(n. Then gn(x) #n (an {an}) #n + kn for some kn E Z. Thus
{gn(x) } {#n}. It therefore suffices to prove the following result.

LEMMA 1. The sequence of fractional parts {{#n}}n-1 i8 dense in (0, 1).
Proof. Let 0 < a < b < 1 be given. We must show that for some no, {#no } E (a, b).

Let H(t) eU(t) -logt) -log((e- 1) 2V--), where U(t) is the positive solution
to z exp z t. Both H(t) and U(t) are continuously differentiable, strictly increasing
functions of t. In fact,

U’ (t) 1/(eU(t) + U (t) eU(t)) and H’ (t) eU’ (t)
u’ (t)

(To see that H is increasing for t > some to, recall that U exp U t.) Now let K be
the inverse of H; K(H(t)) t H(K(t)). It is not difficult to see that K exists and
is differentiable. Furthermore,

K’ (t) 1/H’ (K (t)) oc as t --. oc.

It follows by the mean value theorem that

K(b+l)-K(a+l)--+oc as 1--cx.

In particular, K(b + l)- K(a + l) > 1 for sufficiently large, so there are positive
integers lo and no for which K(a + lo) < no < K(b + lo). Then, however,

H (K (a + lo)) < H (no) < H (K (b + lo)),

i.e., a + lo < #no < b + lo. Since lo is an integer, it follows that {#no} G (a, b). This
proves Lemma 1, thereby completing the proof of Theorem 5 as well.

5. Multiplicity of the largest block size. This section is devoted to a proof
of the following theorem.

THEOREM 7. For any fixed positive integer

Prob (Rn rn)
(2r) -’/2 ( ( 1)) ( -e )rn’

exp m {?Tin} E exp e{m,}-( rn + o(1)
=-oo 2x/ (e 1)

Note the presence of the fractional part {rnn } in the limit of Prob(Rn m). (For
results closely related to Theorem 7, see Fristedt [8].)

Let P(n, l, m) be the number of partitions of In] with exactly m blocks of size
and no blocks larger than I. There are (z) ways to choose the elements of the largest
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blocks and (lm)!/l!mm! ways to partition them into m blocks of size 1. Hence, for
/>1,

(26) P (n, l, rn) ( n ) (lm)!
lm l!m! (n- lm, 1),

and consequently

(27)

n! (n- lrn, -1)ProD (Rn m) B (n)
/=2

l!mrn! (n- lrn)!

eB (n) E
It 5.,n

t=2
l!mm! B (n)

5mn

where
1 / exp (St-1 (z))

dzII zn_lm+

and 5m,n 1 if m n, zero otherwise.
This integral can certainly be estimated by the saddle point method. However,

we cannot simply plug these estimates into (27); there appears to be a problem with
uniformity. However, this problem can be circumvented via Proposition 2.

PROPOSITION 2. For any c > 0, there is a We such that for all m E Z+ and all

ProD (Rn rn) E P (n, l, rn)

If--real<W
B (n)

Proof. We have

ProD (Rn lrt) E P (n, 1, m)

II-mnl<We
B(n)

<_ l)

By Theorem 1, we can choose We sufficiently large so that for all large n,
Prob([L- toni >_ We) < e.

By Proposition 2, we need only estimate It for in an interval around rn of
bounded (n-independent) width. Uniformity is therefore not an issue.

We emphasize that the procedure to estimate It is very similar to that of
Theorem 2.

Let g(z) Sl-1 (z) (n- lm) log z so that

1/ dz
It i exp (g (z))

z

Let c c(n, l, m) be the positive solution to

(28) &-2(a) -n-lm.
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Then the saddle point method yields

(29) h
OZn-lm+ V/27rg’t

(1+o(1)).

To simplify the right side of (29), observe that

n lm Off -1
il--1 (0)- +

a (/- 1)!

Similarly,
n lm Ol-1 n- lm

+
c (/- 2)! a2

Putting these back into (29), we obtain

otl_ )exp n-tin + q-l)!
(30) It (1 + o(1)).

On-lm+ /27 n--lm o-2

a (/--2)!. + n--lmav

To make this more explicit, we must estimate c.
LEMMA 2. Let l- [mnJ. Then, for I1 < W,

c u+
(e 1)

exp({mn} )u emlogn
n n n

The proof of Lemma 2 is omitted because it is almost the same as the proof of
Proposition 1.

The following estimate is well known [5]"

(31) B (n)
exfl exp -eTM + neun logun + ltn + 1OgUn (1 + O(1)).

Together with Lemma 2, this enables us to simplify each term in the exponent of (30).
Thus

n It--eexp((- -)lmo
+ (n log u n log a) + m log a +

ol--1 )(l-l)! (1+o(1)),

where

and

n n
o(1),

C U

lm
-me + o(1),

n log u n log a e{’n}- + em + o (1),

(/- 1)!
e{mn}-(+l

+o(1).
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Hence

(32)
n! --e2
Il --eexp

2x/-- (e 1)
1e{mn}- + 2Vf2Vf2Vf2Vf2V/

e{mn}-+1 +/rnloga + o(1)

Observe that

(33)
1 (2)-’/2 (m )exp -- -lm log u + m {ran} m + 0 (1)

Putting (32) and (33) into (26), we obtain

E P(n,l,m)
B

----(27)-m/2rn, exp (rn({mn}--l))- E exp ( -e

Il<_w (e 1)
e(rnn}- m) +o(1).

Note that the series

( )E exp e{mn}- m
=_ 2x/r (e 1)

converges. Theorem 7 now follows from Proposition 2. [

It is probably possible to give a different proof ofTheorem 7 using the results in
[8]. Uniformity would again be the major issue.

6. The average multiplicity. The average multiplicity is

(34) E (Rn) E m Prob (Rn m)
m=l

We would like to use Theorem 7 to estimate rn Prob(Rn rn) and then sum. This,
however, can only be justified if we truncate the sum after a finite (n-independent)
number of terms. Therefore, uniformity is a major issue here. Thus, to prove Theorem
4, we must show that all but a bounded number of terms can be neglected. That is
the purpose of Proposition 3.

PROPOSITION 3. Let w(n) -+ c arbitrarily slowly. Then

rn>_co(n)

m Prob (/n /n) o (1).

The proof of this key proposition is surprisingly difficult. We have

mProb(Rn --m)- E E
/=1 m>_w(n)

(m Prob (Rn m andL 1)).
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log

()

0

(n,n)

D7

D D

l.tn Ig
bt I Ixn I0 Ig Ix log

FIG. 1. Seven domains of summation.

The double sum on the right of (35) is broken up into seven domains as shown schemat-
ically in Fig. 1. Let lgk n denote the k-times-iterated natural logarithm. Then

D1 {(/,rn)" w (n) _< rn _< log5 n andl _<l _< #n- lgn},
D2 {(/,m)" w(n) <_ rn <_ log5 nandn >_ l>_ .n -[- 101g2n},

D3 {(/,m)" w(n) <_ m <_ log nand#, lg n <l < .n -- 10192 n},
D4 { (1, rn)" log5 n _< rn _< n and 1 _< < #n 2 lg2 n and lm <_ n n/lg3 n},
05 {(1, m)" log5 n <_ rn _< nandn >_ > n -- lognandlrn <_ n n/lg3 n},

D { (1, m)" log n _< m _< n andn 2 lg n _< _< n -- log n

and lm <_ n n/lgan},

The proof of Proposition 3 therefore consists of seven lemmas" one for each do-
main. For i- 1,2,..., 7, let Si -(t,m)eD (m Prob(Rn -rn and Ln -1)).

LEMMA 3. It holds that $1 o(1).
Proof. We have

tn --lg32n

E E (log n)5 Prob (Rn -m and Ln -l)
/=1 m>l

(log n) 5 Prob (Ln <_ .n lg n)

Theorem 1 then implies that

(36) -o(1).

LEMMA 4. It holds that $2 o(1).
Proof. Using Theorem 2 with a- -10, we have

(37) S <_ (log n) 5 Prob (Ln >_ #, + 10 lg2 n)= 0(1).
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LEMMA 5. It holds that $3 o(1).
Proof. Our estimates for $3 begin with the observation that (see (26))

(3s)

1 (n)(lm)!B(n-lm)rn ProD (Rn m and nn l) m
B (n) lrn l!mm!

(q (n- lm, l))B (n- lm)

n! (n- lrn)

{ 1 }Prob(Ln-tm<l-l).l!m (m 1)!

Thensplit 5’3 into $3+S3 where S3
]in and -t[.nJ+l (*)""’ E1-’ttn--lggn ($) *-3 A-101g2n

Our immediate goal is to obtain upper bounds for each of the four factors in (38). To
yield a useful estimate for $3, these bounds must be uniform for Pn- lg n _< <_ n
and w(n) <_ m <_ log5 n. Let N g(n, l, m) n- lm. Recall the definition of UN in
the Introduction. As in 3, we use the mean value theorem to obtain

U UN
lm

for some E [UN, U].

Thus

lm
(39) u- UN < and

n l?Tt U--uN=O(lg6nn)
uniformly for and m in the range of summation S’3. Combining this with Theorem
1, we can estimate the fourth factor of (38),

ProD (Ln_t. _< l- 1) exp (-exp (-/+ #N + 1))(1 + o(1)).

Using (39), we obtain

(40) ProD (Ln_t. _< l- 1) exp (-exp (-/+ #n - 1))(1 + o (1)),

where the lowercase o constant holds uniformly.
By (31), there is an absolute constant c > 0 such that

(41)
B (n lm) < c exp (--uNeN loguN + ev

1 )(n lrn)! UN log UN

(for and m in the range of S’3). For the same reason, we have

(42) B(n)
-<cexp uelogu-e+u+logu

Combining (41), (42), and Stirling’s formula, we obtain

(43) rn ProD (Rn m and Ln l) <_ cexp (T1 + T2)
(2u)"/2 (rn- 1)!

ProD (Ln-lm <_ l- 1),
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where

T1--lmloguN-hnlog(l) 1
m log

T2 nlog
u ( 1 ) U--UN lm u

+ n + + log
UN UN 2 UN UN

Using (39), we can verify that the second term in the exponent of (43) is negligible,
as follows:

(44) T2 o (m).

To estimate T1, let x l- LttnJ and observe that -lg n < x _< 0. By (39), we have

(45)
T1- (lrnlgu-lrnlg(1))-e 1 mlog/+ O (lg1- n)

eu) rn m
logu + o(rn).=lm log - 2 2

However,

(46)

(eu) (((logu)/2-k-co-x+{IZn}))lmlog -/- =-lm log 1-
eu

/m(__< log - CO X + {n} + O (m)
eu

log+m(c0 + {n}) mx + o(m).
2

Combining (43)-(46), we obtain

m Prob (Rn mandLn l)
1 (1 [#nJ)+o(m))exp(-eUn-l+l)c exp (m (co + {.n}) m

for all large n. Because this bound is uniform (for and m in the range of S), we can
simply sum to estimate S. Recall co log((e- 1)2-). Thus

log n ttn
V’ X-" exp (re(log (e 1) + {,n}) m(l L#nJ) e,n-l+l + o(m))S c

(m- i)!
m=co(n)/=ttn--lg

( )exp (m (log (e 1) + {.n } + o(1)))
lg

exp (rex ex+l+{"n})C

m: x:0

Now let h(y) my ey+l+{u,}. Let xo be the point at which h attains its maximum,
namely, xo log rn- 1 {#n }. Then the inner sum above is

lg n xo lg n

(47) E eh(x)- E eh(x) + E eh(x)"
x--0 x--0 x-- [xo +
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Crude estimates suffice to bound the first sum in (47), as follows"

xo

Eeh(x) <_ (xo + 1)eh(x) <_ c logrnexp(rnlogrn- ?’n ({n} -- 2)).
x=0

For the second sum, we use the fact that h is nonincreasing, shown below:

ga
eh(x)

_
eh(y) dy < e--m(l+{tn}) ym--le--Y dy

xo]x=[xoJ+l

(48)

r (m) e-m(l+{un}).

Using (47), (48), and Stirling’s formula, we obtain

lg

E exp (rnz ex+l+{un}) O (log mexp (rn log rn m ({#n} + 2))).
x--0

Hence

\-=()

which is a tail of a convergent series. Thus S o(1).
A similar argument works for $3, below:

exp(-m(1-#n)))
Note that "n+llggnexp(-m(1- #n)) is uniformly bounded for all m > 1 Thusl=tt,

log
exp (rn (co + {n} + o (1)))

(xfl) (rn- 1)!
o (1).

This completes the proof of Lemma 5. [3

LEMMA 6. It holds that $4 o(1).
Proof. We have $4 E/</t,_21g2n Em>_l (*) n Prob(Ln < #n-2 lg2 n). Taking

a 2 in Theorem 2, we see that $4 o(1). [

LEMMA 7. It holds that $5 o(1).
Proof. Putting b 1 in Theorem 3, we obtain

(1)$5 < n Prob (Ln > #n -Jr- log n) O n--Tig o (1).
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LEMMA 8. It holds that $6 o(1).
Proof. We have

{ n, }{B(n-lm)}{ 1 }-<
(l,m)ED6

To estimate this sum, we use (41), (42), and Stirling’s formula. Thus

tN tN
U- UN lm u

+ + log
2 UN UN

+(lm log UN lm log (l/e) (m log/)/2))
1

(x/)m (m- 1)!’

(49)
n! B(n lm) 1 < K exp (n log

B(n) (n- lm)! l!m(m-1)!

where K is an absolute constant. To simplify (49), we note that

lm lm lm lg3 n(50) u- u < <
n-lm n-(n-n/lg3n) n

It is not too hard to see that

nlog
u ( 1 1) U--UN lmlog u

+ n + < Km lg3n,
UN UN U 2 UN UN

where K is absolute. Also,
lm log UN lm log (l/e) (m log l)/2 <_ 2m lg2 n.

Since summation with respect to produces at most a factor of log n + 2 lgu n, we have

exp (2m lg2 n)S6<_K(logn+21g2n) E
m_log

Again, by Stirling’s formula, we have

_<(o+:n) (-,(:-e:))-o(1).
m_log

LEMMA 9. It holds that $7 o(1).
Proof. To estimate $7 we note that the summation index may be confined to the

interval ttn 2 lg2 n _< _< tn -- log n. It therefore suffices to obtain an upper estimate
for

n! (n lm) 1
S:= E {B(n)}{B-(n-lm)!

(1,m)ED7
tn-2 lg n_l_n+log n

n! E B(n-lm)< K
B (n----

(1,m)eD7
(n lm)!

tt,-2 lg n<_/<_tt, +log n

(51)

( m )exp -ml log + ml - log m log m + m

(*)-K---(B,n
lm>n--n/lg n

m_(n--n/lg n)/(ttnTlogn)
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It is straightforward to see that, for n sufficiently large, we have

(52) -ml log + ml < 2ml
lg2 n
log n

and

(53) -rn log rn + m <_ -n/lO.

Putting (52) and (53)in (51)yields

n
K
B (n)

-( lg2n-n/lO)E B(n Y)
exp -ylogu+2Ylogn(n- y)!

n_y>n--n/lg n

( )t!
exp -(t-n) logu+2(n-t) lg2n-n/10

log n
O<_t<n/lg

Upon using (42) and the fact that

( 1B (t) < K exp -t log ut + eTM ut log ut

we obtain

S < Knexp( n u
+ + log u

u E exp(t+2nlg2nlogn -n/lO).
O_t<n/lg n

Because of the term -n/lO in the exponent of the above sum, we clearly have
o(1). Combining Lemmas 3-9, we obtain Proposition 3.

7. Conclusions. The asymptotic distribution of the maximum block size de-
pends on the fractional part of an implicitly defined root. This phenomenon is appar-
ently quite common in asymptotic combinatorics and discrete probability theory. Most
authors have simply assumed properties of the sequence of fractional parts, without
studying them carefully.

Appendix. Let (t) lit and let

re(n) 2(1 + e)log+
02h (n,p)

Ot2
02h (n,p)

Ot2
1/2

where log+(x)"- (log x +]log x])/2. To use Evgrafov’s theorem, we must verify the
following two conditions:

(t)
-1 asn--(A) (p)

uniformly for It- Pl < re(n);

(B)
02h (n, t) / 02h (n, p) --. 1

Ot2 / Ot2
ash --



RANDOM SET PARTITIONS 435

uniformly for It- Pl < re(n). Using (6), we obtain re(n) O(loga/2 n/x/-). Then,
however, for It- Pl < r(n), we have

(t) lit p
05(p) lip p + 0 (loga/u n/vial)

1 + o(1).

To verify (B), note that

02h (n, t) n

Ot2 oOLMj_2 (t) -{- t-
Using Theorem 6 and Proposition 1, we obtain

02h(n, t)
Ot2

=e 1
x/2(LMj 2) LMI 2- t

t
el_t/(LMj_2) (1 + O(1/M))x

[MJ 2

n
et (1 + 0 (log+1 n/n)) + nitu+g

for It- Pl < re(n). Hence

02h(n, t) / 02h(n, p)
Ot2 / Ot2

e (1 + O (loga+l n/n)) + nit2
eP (1 + O (loga+l n/n)) + nip2

1 + o(1),

uniformly for It- pl < re(n).
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STEINER DISTANCE-HEREDITARY GRAPHS*

D. P. DAY, ORTRUD R. OELLERMANN$, AND HENDA C. SWART$

Abstract. Let G be a connected graph and S C V(G). Then the Steiner distance of S in

G, denoted by dG(S), is the smallest number of edges in a connected subgraph of G that contains

S. A connected graph G is k-Steiner distance-hereditary, k >_ 2, if, for every S C_ V(G) such that

ISI k and every connected induced subgraph H of G containing S, dH(S) riG(S). It is shown
that if G is 2-Steiner distance-hereditary, then G is k-Steiner distance-hereditary for all k >_ 2.

Furthermore, it is shown that if G is k-Steiner distance-hereditary (k >_ 3), then G need not be
(k- 1)-Steiner distance-hereditary. An efficient algorithm for determining the Steiner distance of
a set of k vertices in a k-Steiner distance-hereditary graph is discussed, and a characterization of
2-Steiner distance-hereditary graphs that leads to an efficient algorithm for testing whether a graph
is 2-Steiner distance-hereditary is given.

Key words. Steiner distance, Steiner distance-hereditary graphs

AMS subject classification. 05C12

For graph theory terminology, we follow [1]. In particular, if G is a graph, then
V(G) and E(G) denote the vertex and edge sets of G, respectively; we refer to IV(G)I
and IE(G)I as the order and size of G, respectively. The distance riG(u, v) between two
vertices u, v of a connected graph G is the length of a shortest u- v path of G. The
eccentricity e(v) of a vertex v is max{d(v, u)lu E V(G)}. If G is a connected graph
and S c_ V(G), then the Steiner distance de(S) is the size of a smallest connected
subgraph of G that contains S. Such a subgraph is obviously a tree and is called a
Steiner tree for S. If T is a tree, then a vertex of degree 1 in T is an endvertex, while
all other vertices of T are called internal vertices of T.

Howorka [6] in 1977 defined a graph G to be distance-hereditary if each connected
induced subgraph F of G has the property that dE(u, v) de(u, v) for each u, v E

V(F). To state the characterizations of distance-hereditary graphs given by Howorka
[6], we need the following terminology. An induced path of G is a path that is an
induced subgraph of G. Let u, v V(G). Then a u- v geodesic is a shortest u- v
path. Let C be a cycle of G. A path P is an essential part of C if P is a subgraph of
C and -IE(C)I < IS(P)] < IE(C)I. An edge of G that joins two vertices of C that are
not adjacent in C is called a diagonal of C. We say that two diagonals el, e2 of C are
skew diagonals if C + el + e2 is homeomorphic with K4.

THEOREM A (Howorka). The following are equivalent: (i) G is distance-heredi-
tary; (ii) every induced path of G is a geodesic; (iii) no essential part of a cycle is

induced; (iv) each cycle of length at least 5 has at least two diagonals, and each 5-cycle
has a pair of skew diagonals; (v) each cycle of G of length at least 5 has a pair of skew
diagonals.

The definition of the Steiner distance of a set of vertices, together with the
concept of distance-hereditary graphs, suggests a generalization of Steiner distance-
hereditary graphs. A connected graph is k-Steiner distance-hereditary, k >_ 2 if, for
every connected induced subgraph H of G of order at least k and set S of k ver-

1993.
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FIG. 1

tices of H, dH(S) dG(S). Thus 2-Steiner distance-hereditary graphs are distance-
hereditary. Figure l(a) shows a graph G that is not 3-Steiner distance-hereditary,
since dF((U, v, w) dc((u, v, w), where F is the induced subgraph of G shown in
Fig. l(b). However, it is not dicult to show that the graph of Fig. 1(c) is 3-Steiner
distance-hereditary.

The problem of determining the Steiner distance of a set of vertices in a graph
appears to be diicult. In fact, the following related decision problem is NP-complete
(see [4, p. 208]).

7" Suppose that G is a weighted graph whose edges have positive integer weights.
Let S c_ V(G) and suppose that B is a positive integer. Does there exist a subtree T
of G that includes S and is such that the sum of the weights of the edges of T is no
more than B?

Furthermore, the problem remains NP-complete even if G is a graph. This sug-
gests solving the problem in certain special cases. If it is known that a graph is
k-Steiner distance-hereditary, then dG(S) can easily be determined for every set S of
k > 2 vertices of G as follows.

Let the vertices of G- 5’ be denoted by Vl, v2,..., vp-k. Let Go G. For each
(1

_ _
p- k), if the vertices of S belong to the same component of Gi-1 vi, then

Gi is defined to be Gi_l vi; otherwise, let Gi be Gi-1. Thus Gp_k is a connected
induced subgraph of G that contains S. Therefore dGp_k (S) dG(S). However, since
the deletion of any vertex of Gp_a separates at least two vertices of S, no subgraph with
fewer vertices than p(Gp_a) contains S and is connected. Thus Gp_a is a connected
subgraph of smallest order that contains S. Hence any spanning tree of Gp_a is a
Steiner tree for S.

Our first result shows that if G is a connected distance-hereditary graph, then
dG(S) can be determined by the above procedure for any set S c_ V(G) of at least
two vertices.

THEOREM 1. If G is 2-Steiner distance-hereditary, then G is k-Steiner distance-
hereditary for k

_
3.

Proof. Suppose, to the contrary, that there exists a graph G that is 2-Steiner
distance-hereditary, but not k-Steiner distance-hereditary for some k

_
3. Let k be as

small as possible and let H be a connected induced subgraph of G of smallest order,
n say, for which there is a set S of k vertices of H such that du(S) > dG(S). Let
S (x,x2,... ,xk. If IV(H)I- k, then there exists exactly one set of k vertices in
H, namely V(H). However, then every spanning tree of H is a Steiner tree for V(H) in
H and has size k-1. Since dG(V(H))

_
k-l, it follows that dG(V(H)) dH(V(H)) in

this case. This contradicts our choice of H. Hence IV(H)I >_ k + 1. If dH(S)

_
k-2, let

T be a Steiner tree for 5’ in H and let H (V(T))G. Then du,(S) du(S) > dG(S)
and IV(H)I < IV(H)I, which contradicts our choice of H. Hence dH(S) n- 1;
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i.e., a Steiner tree for S in H must contain all the vertices of H. By our choice of
k, dH(S- {xi}) dc(S- {xi}) for all (1 _< _< k).

We now show that no Steiner tree T’ for S in G contains any xi (1 _< _< k)
as an internal vertex. Suppose that T contains some xi as internal vertex. Let
T1, T2,..., Tm be the components of T xi. Let T be the subgraph of T induced by
V(T1) U {xi} and let T be the subgraph of T’ induced by ([Jj--2 V(Tj)) U {xi}. Let
1 CI V(T) and $2 S N V(T). Since 2 _< ISil < k for 1,2, it follows that
dH(Si) da(Si) for 1,2. Furthermore, IE(T[)I da(Si) for 1,2; otherwise,
we can find a tree with fewer than q(T’) da(S) edges that contains S. This is not
possible. Let T be a Steiner tree for S in H (i 1,2). Then dH(S) <_ dH(S1) +
dH(S2) IE(T)I + IE(T)I de(S). This again produces a contradiction to the
choice of S. Hence every Steiner tee for S in G has k endvertices that are precisely
the vertices of S. Thus d(S- {xi }) < dG(S) for all (1 _< i <_ k).

We prove next that every vertex of S has degree 1 in H and is therefore an
endvertex of every Steiner tree for S in H.

Let xi E S and note that every Steiner tree for S- {xi } in H does not contain xi;

otherwise, dH(S) dH(S--{xi}) da(S-{xi}) < dc(S), which contradicts the fact
that dH(S) > dG(S). Let T be a Steiner tree for S-{x} in H. Denote by Pi a shortest
path in H from xi to V(Ti) and note that every vertex in H occurs in V(Ti) U V(Pi)
for 1 _< _< k, since dH(S) ]V(H)I- 1. So Pi contains at least one edge. IfPi
contains an internal vertex, w say, and degH xi _> 2, then xi has a neighbour y in H
that is contained in V(T) and y

_
V(Pi), which produces a contradiction as x, y is

a path from xi to V(Ti), which is shorter than Pi. Hence, if degu xi _> 2, then Pi has
length 1. Therefore

d (S) d (S- {x}) +
=dG (S- {xi}) + 1

_< (s),

contrary to our assumption. Hence every x E S has degree 1 in H. Therefore every
Steiner tree for S in H has k endvertices.

Next, consider T, a Steiner tree for S in H. Let l be the length of a shortest path
Q (in H) from x to a vertex v of degree at least 3 in T for i 1, 2,..., k. Let W,l
be the vertex that precedes vi on Q and observe that, with the possible exception of
w,l, no internal vertex of Q has degree exceeding 2 in H. We now show that

dH (S {x}) + l if vi e V (T),(1) dH (S) dH (S- {x}) + l + l ifvV(Ti),

where Ti is a Steiner tree on S- {xi} and where, in the latter case, wi,1 has degree 2
in H.

We show first that dH(S- {xi}) _> dH(S) (li + 1). If this is not the case, then
dH (S {x}) <_ dH (S) li 2, and neither v nor any of its neighbours in T belongs
to Ti. Let wi,2 and wi,3 be two vertices distinct from wi,1 that are adjacent with vi in
T. Then T- viwi,2 must contain xi and wi,3 in the same component, and thus some
vertex xj xi such that the xi- xj path P in T contains wi,3. Then P, together
with Ti, produces a connected subgraph of H that contains S but not wi,2. However,
then dH(S) < p(H) 1, a contradiction. Hence dH(S- {xi}) _> dH(S) (li + 1).

If vi V(Ti), then the length of a shortest path from xi to Ti is at most li.
On the other hand, we know that it is at least li. Hence it is exactly li. So dH(S)
dH(S- {xi}) + li in this case. If vi V(Ti), then some neighbour of vi distinct from
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Wi,1 must belong to Ti. Furthermore, vi must be on a shortest path from xi to Ti.
Therefore wi,1 has degree 2 in H. Hence dH(S) dH(S- {xi}) + li + 1 in this case.

Let T’ be a Steiner tree for S in G and let H’ (V(T’)}o. Since T’ has k
endvertices, there is some pair x, xj of vertices of S for which the x xj path in T
contains exactly one vertex of degree at least 3 in T/, say y. Without loss of generality,
we may assume that x Xl and x x2. Let l dT,(Xl,y) and 12 dT,(X2,y).
Observe that do(xl,x) <_ l + l. Observe that dz(Xl,X) _> 11 + l- 1. Hence
do(xl,X2)

_
11 -t- 12 1. We now consider two cases.

Case 1. Suppose that dH(Xl,X2) ll + l.- 1. Then Wl, and w2,1 must be
adjacent in H, and, furthermore, v must belong to T for 1, 2, by (1). Thus
dH(S) dH(S- {x})+ l > do(S) >_ do(S- {x}) + l for i 1,2. Therefore
l.i _> l + 1 for i- 1, 2. Hence

dH (x, x) l + l 1 >_ l + l + 1 > do (x,x2),

a contradiction, since G is 2-Steiner distance-hereditary and because H is a connected
induced subgraph of G.

Case 2. Suppose that dH(x,x) >_ ll +12. Suppose first that dtl(Xl,X2) > Ii +l.+
1. Since dH(S-{x})+li+l >_ dH(S) > do(S) > da(S-{z})+l, it follows that l _> l
for 1,2. Hence dH(Zl,X2) >_ 11+/+1 > V +l >_ do(xl,X). This again contradicts
the fact that G is 2-Steiner distance-hereditary. Suppose thus that die(x1, x) l +12.
Then Wl, and W,l are not adjacent in H. If dH(S- {xi})+ li dH(S) for 1, 2,
then, by (1), vi is in the vertex set of Ti. Suppose that dH(S-{Xl})+ll d(S). Then,
as before, l >_ l + 1, and lu >_ l. Hence dH(x,x2) l + 12 > i + l >_ dG(xl,x2).
This is not possible, since G is 2-Steiner distance-hereditary. So we may assume that
dH(S) dH(S- {xi}) / li + 1 for 1,2. Thus, by (1), Vi

_
V(Ti) for 1,2. We

show next that w1,1 and w2,1 both have degree 2 in H. Suppose that Wl, has degree
at least 3 in H. Let w be a vertex adjacent with w, that does not belong to Q. Then
there is a path P in H from X to T1 that passes through w but does not contain Vl.
Thus T1, together with P, produces a connected subgraph of H that contains all the
vertices S but not Vl. Thus dH(S) < p(H) 1, a contradiction. Therefore w1,1 and
w2, both have degree 2 in H. Thus Vl v2. However, then necessarily Vl (=v2) must
belong to T1, so that du(S) dH(S-{xl })+ 11, which we have already shown cannot
happen. [?

Observe that for k > 3, the (k + 2)-cycle Ca+. is (k + 2)-, (k + 1)-, and k-Steiner
distance-hereditary, but not (k- 1)-Steiner distance-hereditary. Thus the converse of
Theorem 1 does not hold.

Several characterizations of distance-hereditary graphs that yield polynomial al-
gorithms that test whether a graph is distance hereditary have been established. To
state some of these characterizations, we define an isolated vertex to be a vertex having
degree 0, and two vertices v and v are twins if they have the same neighbourhood or
the same closed neighbourhood.

The following characterization of distance-hereditary graphs was discovered in-
dependently by Bandelt and Mulder [1], D’Atri and Moscarini [3], and Hammer and
Maffray [5].

THEOREM B. A graph G is distance-hereditary if and only if every induced sub-
graph of G contains an isolated vertex, an endvertex, or a pair of twins.

The result we establish next is another characterization of 2-Steiner distance-
hereditary graphs and also suggests an efficient algorithm for determining whether a
connected graph is 2-Steiner distance-hereditary. This result is also a direct conse-
quence of a characterization of distance-hereditary graphs obtained independently by
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Bandelt and Mulder [1] and D’Atri and Moscarini [3]. We need the following termi-
nology. Suppose that G is a connected graph and that u V(G). Let V, {x
V(G)lda(u, x) i} for 0 <_ <_ ca(u), where ca(u) is the eccentricity of u in G, and
let N_l(U, v)= N(v) C V,_ for 1 <_ <_ ca(u).

THEOREM 2. A connected graph G contains an induced path that is not a geodesic
if and only if there exists a vertex u and an integer >_ 2 such that, for some pair x, y
of vertices in V,i,

(1) xy e E(G) and Ni_(u,x) Ni-l(u,y); or

(2) xy E(G), Ni_ (u, v) Ni_ (u, y), and x and y are both adjacent with some
vertex z in Vu,i+

Proof. Suppose that there is some vertex u and an integer _> 2 such that, for
some pair x, y V,i, (1)or (2) holds. Suppose first that (1) holds. Since Ni_(u,x) 7a
Ni-l(U, y), so Ni-l(U, x) Ni-l(U, y) 7 0 or Ni-1 (u, y) Ni-l(U, x) 7 0. Suppose
that the former holds. Let Xl N-l(U,X) N-l(U, y). Let P1 be a shortest u- x
path that passes through x and let P2 be a shortest u- y path. Let a be the last
vertex that P1 and P2 have in common (possibly a u). Then the vertices on the
a- x subpath of P, together with y, induce an a- y path P that is longer than the
a- y subpath of P2. Hence G contains an induced path that is not a geodesic.

Suppose now that (2) holds. We may again assume that there exists a vertex
Xl E N-l(u,x)- N_l(u, y). Clearly, xly

_
E(G) and XIZ

_
E(G). As above, let P1

be a shortest u-x path that contains xl, P2 a shortest u- y path, and a the last vertex
that P1 and P2 have in common. The vertices on the a- x subpath of P1, together
with z and y, induce a path that has length two bigger than the a- y subpath of P2
(which is a geodesic). Hence G contains an induced subpath that is not a geodesic.

Conversely, suppose that G contains an induced path P (say a u-v path) that is
not a geodesic. Then d(u, v) > 1. Among the induced paths that are not geodesics, let
P be as short as possible. We show that P has length at most da(u, v)+2. Suppose that
IE(P)I > da(u, v)+2. Let P" u Ul, u2,..., un v. Then d(u, un-1) < da(u, v)+l,
and P’ Ul,U2,...,u-i is a path of length at least IE(P)I- 1 >_ dG(u,v) + 2 >
da(u, U-l). However, then PP is an induced path that is not a geodesic but has
length less than P. This contradicts our choice of P. Hence P has length da(u, v) + 1
or da(u, v) + 2. Note that the u- u-I subpath of P must be a geodesic; otherwise,
we have a contradiction to our choice of P.

Thus, if IE(P)[ d(u,v)+ 1, then da(u,u,-l) da(u,v). Since the vertex
that precedes un-1 on P is not adjacent with v, Ni_(u, Un-1) Ni-l(U, v), where

dG(u, v). If we let x u-i and y v, then it follows that (1) holds.
Suppose now that IE(P)I d(u, v)+ 2. Then d(u, un-1) d(u,u_l) + 1.

Let x be u-2 and let y v. Then xy

_
E(G), and the vertex that precedes x on

P is not adjacent with y. Thus, if da(u, v), then Ni-1 (u, x) Ni-1 (u, y). If we
now let z un--1, then z

_
V,i+l, and z is adjacent with both x and y. Thus (2)

holds.
This result suggests a polynomial algorithm, using a breadth-first search tech-

nique that has conplexity O(IV(a)l) for determining whether a (connected) graph
is 2-Steiner distance-hereditary. Spinrad [7] has developed an algorithm based on this
characterization, which has complexity O(IV(G)I2). Once this is done and the graph
has been tbund to be 2-Steiner distance-hereditary, we can efficiently determine, by
Theorem 1, the Steiner distance of any set of vertices, which was also shown indepen-
dently in [3].

In closing, we conjecture that, whenever G is k-Steiner distance-hereditary, then
G is (k + 1)-Steiner distance-hereditary for k >_ 3.
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AN UPPER BOUND ON THE DIAMETER OF A GRAPH FROM
EIGENVALUES ASSOCIATED WITH ITS LAPLACIAN*

F. R. K. CHUNGf, V. FABER$, AND THOMAS A. MANTEUFFEL$

Abstract. The authors give a new upper bound for the diameter D(G) of a graph G in terms
of the eigenvalues of the Laplacian of G. The bound is

D (G) < l csh-l (n-1)1_cosh-l(+_..) +l,

where 0 <_ A2 <_ <_ An are the eigenvalues of the Laplacian of G and where is the floor function.

Key words. Laplacian, diameter, eigenvMues

AMS subject classification. 05C

1. Introduction. Suppose that G is a connected graph (undirected or directed).
For two vertices u and v in G, the distance between u and v, denoted by d(u, v), is
the length of a shortest path joining u and v in G. The diameter of G, denoted
by D(G), is the maximum distance over all pairs of vertices in G. The diameter
is one of the graph variants that are not only of theoretical interest but also have
many practical applications. In many communication models, diameter plays a key
role in performance and cost optimization in network design when the time delay or
signal degradation is proportional to the number of links that a message must travel.
Numerous applications include circuit design, data representation, and parallel and
distributive computing.

Let A denote the adjacency matrix of G. That is, (A)ij 1 if there is an edge
between i and j (or from to j), and it is 0 otherwise. Let di denote the degree of the
ith vertex. When all di’s are equal to k, we say that G is k-regular. The Laplacian
of G is defined to be the matrix Q Q(G), where (Q) d and (Q)j -Aij if
: j. When a directed graph has the property that the in-degree is equal to the out-

degree at every vertex, we can define the Laplacian analogously. The smallest nonzero
eigenvalue, denoted by A(G), of Q(G) can be used to derive various properties of G. It
was shown in [12], [13] that A(G) provides useful bounds for the expanding properties of
G. Using the expanding properties, Alon and Milman [1] deduced the following upper
bound for the diameter for graphs with maximum degree k" D(G) <_ 2v/2k/log2 n.

This bound was later improved [3] to D(G) <_ [log(n- 1)/log(k/A), where A
denotes the second largest eigenvalue (in absolute value) of A. In this paper, we show
that D(G) <_ [cosh-l(n 1)/cosh-l(k/)] + 1, which is a special case of the following
bound for general graphs"

D (G) <_ [ csh--- (n-1) I +1csh-I ( An+A2))n
*Received by the editors June 19, 1991; accepted for publication (in revised form) March

23, 1993.
l Bell Communications Research, Morristown, New Jersey 07960.
: Los Alamos National Laboratory, Los Alamos, New Mexico 87545.
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where 0 _< A2 _< _< An denote the eigenvalues of the Laplacian of G.
Some diameter bounds for directed graphs are also derived. Although these

bounds are not as good as those for undirected cases, the techniques can be use-
ful for bounding the diameter for Cayley graphs or on the factorization of groups.
Namely, for a group H and a set S of generators, it is often desirable to find the
least integer rn Ds(H) such that every element of H can be written as the product
of no more than rn elements in S (repetitions are allowed). The upper bounds for
diameters can then be applied for bounding Ds(H) when the graph is considered to
be the Cayley graph on H determined by S.

2. Diameter of a graph. Let G be a directed graph and A its adjacency matrix.
Since the i, j entry of Ak is the number of directed paths from vertex to vertex j of
length k, the diameter D is the smallest natural number such that, given any and
j, one of the matrices in the set {A’I0 < rn < D} has a nonzero i, j entry. If a new
matrix A A- A is formed from A by subtracting any diagonal matrix A, the powers
of A still have the same significance as the powers of A. To see this, note that A
has a nonzero i, j entry only if there is a directed path of length at most rn in G from
vertex to vertex j; if the distance from vertex to vertex j in G is m, then fi.m has
a nonzero i, j entry. Thus, the diameter D is the smallest natural number such that,
given any j, one of the matrices in the set {AmlO <_ rn <_ D} has a nonzero i, j
entry.

We can now introduce polynomials into the definition of diameter. The statement
that the i, j entry of at least one of the matrices in the set {Am [0 <_ rn < D} is nonzero
is equivalent to the statement that there exists a polynomial Pm of degree rn less than
or equal to D such that the i,j entry of pm(A) is nonzero. Thus the diameter D is
the smallest natural number such that, given any j, there exists a polynomial Pm
of degree rn _< D such that the i, j entry of p,() is nonzero.

In fact, it can be easily seen that D is equal to the smallest natural number rn
for which there exists a polynomial Pm of degree rn such that all off-diagonal entries
of p,(A) are nonzero.

3. A fundamental inequality involving the Laplacian. In this section, it
is essential to assume that the in-degree of each vertex of G is equal to its out-degree.
We denote by di this common value for the vertex i. The Laplacian of G is defined to
be Q diag(di)- A. Note that Qtl Q*tl 0, where /,1 (1/v/)(1, 1,..., 1)*;
so QJ JQ 0, where J nulu is the matrix all of whose entries are 1. Let ei be
the unit vector in the ith direction.

LEMMA 3.1. Let B be an n x n matrix with the properties BUl B’u1 O.
Then

Pro@ Define fi ei- (1/v/)Ul. Then (fr,u) 0, (u,Bf) O, and II/11-
v/i- 1In. Thus

Iv,.,I- < IIf, ll II ll IIS ll- IIll (1- _1)
This proves the lemma.

T.EOaEM 3.2. Let pm(X) be a polynomial of degree rn with p,(O) 1 such that

P,, (Q)
J 1
n n-1
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Then D < rn.

Proof. Let B- pm(Q)- gin. We have

]1 pm (Q) ul ul p. (0) IUl Ul 0

and similarly B’u1 O. Thus Lemma 3.1 applies, and

(pm (Q))r, > ( J)-
1 (1)
1 1(> 1-
n n-1

Thus, by our earlier remarks on diameter, D _< rn. This proves the theorem.

4. The Chebychev polynomials. The Chebychev polynomials of the first kind
are given by

To (z) 1,

T ()= ,
Tn-t-1 (z) 2zTn (z) Tn-1 (z),

They may also be written as

Tn (z) cosh (n cosh-1 (z)).

n>l.

The Chebychev polynomials have the following interesting optimality property
[14]. Let Sn be the set of all polynomials, sn(x), of degree n such that s(0) 1.
Let [a, b] be an interval on the real line to the right of the origin. Then there exists a

unique tn E Sn such that

max Itn (x)l min max
xe[a,b] sn eSn xe[a,b]

and

Furthermore,

Tn( aWb-2x )
t (x)

b-o

Tn (a-t-b

max It (z)l- t (a)
xE[a,b] a+b

This result can be extended to a class of closed ellipses in the complex plane not
containing the origin with foci lying on the real line or foci that are a complex conjugate
pair. In particular, for 5 > 0 and 3’ > 0 real, if the ellipse E has center 5, foci 5 -t- 3’,
and semi-major axis of length c with 3’ _<. c < 5, then

tn (Z)
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has the property

max Itn (Z)I
zEE

Furthermore, if 7 <_ a <_ a* < 5, then

max [t (z)[ min max Isn (z)[.
zEE snSn zE

Here a* is close to 5 and depends on n in a complicated way. However,
limn--. a* 5, and thus the Chebychev polynomials are asymptotically optimal
[10], [6], [7]. If, on the other hand, the ellipse E has center 5, loci 5 + i7, and semi-
major axis of length a, 7 _< a < (52 + 72)1/2, then

has real coefficients and for n even satisfies

Tn[(l+({) 2)
max Itn (z)l.
zZ

Again, if 7 < a _< a*n < (52 + 72) 1/2, then

max tn (z) min max Sn (z)l
zE 8nES zE

where an* is close to (62 + 72)1/2 and limn--+oo an* ((52 q-7),2)1/2 [6], [7]. For n odd
and 7 G a < (52 + 72)1/2, we have

Note that for a > 7, we have lim-oo Tn(a//)/(T2n(a/7)- 1) 1/2 1, and thus the
Chebychev polynomials are asymptotically optimal for n odd as well. We only focus
on real loci or even n.

Using the definition Tn(Z) cosh(n cosh-l(z)) and the formula cosh-l(z)
ln(z + (z2 1)1/2), we may write

g (z) z + v/z2 1, f (z) z + v/z2 + 1;

then

g +g



AN UPPER BOUND ON THE DIAMETER OF A GRAPH 447

Tn g +g

Thus, once 5, 7, and a are known, these bounds can be readily computed. These ideas
have application to iterative rnethods for the solution of linear systems (see [10], [12]).

5. Bounding the diameter of an undirected graph from Chebychev
polynomials. Let Q denote the Laplacian matrix of an undirected graph on n ver-
tices. The following basic facts are summarized in [13].

Facts 5.1. Let G be an undirected graph. Then
(a) Q(G) has only real eigenvalues and a complete set of orthonormal eigenvectors,
(b) Q(G) is positive semidefinite,
(c) its smallest eigenvalue is A1 0, and a corresponding eigenvector is Ul

(1/x/-)(1, 1,..., 1)*. The multiplicity of 0 as an eigenvalue is equal to the number of
components of G.

We assume that the eigenvalues of Q(G) are ordered A1 < A2 < < An in
increasing order and repeated according to their multiplicity. Thus A1 0 and A2 > 0
if and only if G is connected. The following facts are known.

Facts 5.2. Let G have n vertices. Then
(a) A2 _< n/(n- 1)min{d(v)]v e V(G)},
(b) An _< max{d(u) + d(v)luv E E(G)}, and, if G is connected, equality holds if

and only if G is bipartite and semiregular.
(c) An <_ n with equality if and only if the complement of G is not connected.

(e) An >_ n/(n- 1)max{d(v)]v e V(G)}.
(f) An > max{v/(d(v) d(t)) 2 nt- 4]t, v e V(G), %t # v}.
THEOREM 5.3. For an undirected graph G, we have

D (G) - lcsh-l (n -1)InAn’3t-2COS._
-[- 1.

Proof. Let

Then

This can be rewritten as

cosh (n- 1)] + 1m<
cosh-1 A,+

m>
cosh-1 (n- 1)
cosh- An A-A.2.

/An "-[-A2/- cosh (mcosh-1 An -[-- A2 /Tm An A2 An A2
> n- 1.

We know by our discussion in 4 that if we let
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then pro(0)- 1, and

max IP- (A)I-
2<i<n

1 1

Tm (A,+A.) n-1

Now since Q is symmetric, we can write Q as

i--2

where the ui are orthonormal. Note that Ul is as defined in 3 and that Jl 0. Thus

n
i-2

and

P- (Q)-
J
n

1
max IPm (,k)l <
2<i<n Tt 1

Thus, by Theorem 3.2, we have D <_ rn, which completes the proof. U
Remark. Theorem 5.3 would be more asthetically pleasing if it yielded

cosh-1 An

This inequality fails only if D(G) rn + 1 with

m
cosh-1 (n- 1)
csh- ( An+A)An--A2

Does such a graph G exist? We easily see from the proof of Theorems 3.2 and 5.3 that
for such a graph G, the Laplacian has eigenvector decomposition

Q E Aiuiu

where 0- /1 < ,2

_
/3"’" < An. There is a set of rn + 1 eigenvalues {Ak[i-

1,..., rn+l} such that [Pm(Ak)[ 1/(n--1), where pro(A) is the Chebychev polynomial
defined in Theorem 5.3. That is,

,k
2

COS fori 1,...,m + 1.

Note that A2 Ak1, An /km+l" There is a unique pair of indices r # s such that
(er, QJes} 0 for 0,..., rn. Furthermore,

1 m+l

er- V/tl-- Z (jtk’
i--1

1 m+l

es- ul + E c (-1)i u,
i=1
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where

Finally, we have, for j 1,..., rn,

Eoi k_ E 2 JO Ak
odd even

which implies that d(r)- d(s), while

2_ 1 2EOi ’ E Oi
odd even

1 1

It is not known if graphs satisfying these conditions exist.
The following corollary is useful in conjunction with the estimates given in Facts

5.2.
COROLLARY 5.4. Let s2 and 8n be estimates of )2 and An, respectively, such that

0 < ’32 A2 An 8n.

Then

D(G) <_

Proof. It is easy to see that

(n 1) ]cosh-1 sn+s2 + 1.
8n --82

cosh_ An + A2 > cosh_ Sn "Jv 82
An A2 Sn 82

COROLLARY 5.5. Let A denote the adja_cency matrix of a k-regular graph G.
Suppose that A has second largest eigenvalue A (in absolute value). Then

! !

D (G) _< [cosh-1 (n 1) [ +1.
cosh-1 (]/X)

Proof. It is easy to see that

Therefore

D(G)( [csh-l(n-1)] +1< [csh-l(n-1)] +1
.X,,-X. cosh-1 k

We remark that
cosh-1 (n- 1) In (n- 1)
cosh-1 (k/) In (k/)

except for the complete graph; thus Theorem 5.3 yields an improvement over the
bound D(G)



450 F.R.K. CHUNG V. FABER, AND T. A. MANTEUFFEL

Remark. Chebychev polynomials have also been used to bound the diameter of
Ramanujan graphs by Lubotzky, Phillips, and Sarnak [9] and for general graphs by
Sarnak [16].

6. General directed graphs. In this section, we examine the estimates we can
make for the diameter of general directed graphs G. Our starting point is Theorem
3.2, and, as in that section, we assume that the in-degree of each vertex of G equals
its out-degree. (This holds if and only if G is Eulerian.) Again, Q(G) is the Laplacian
of G.

THEOREM 6.1. If p and are such that 1 >_ p )[[I- )Q- J/nil, then

D(G)< [ln(n-1) 1In

Proof. Let

ln (n 1)1/
In(n- 1)

Let Pm x (1 )x Then

p. (Q)
J (I Q j)m

SO

<_ [- AQ-
J m

tim e-rain(I/p)

1
e-- In(n--l)

rt-1

Thus, by Theorem 3.2, D <_ m. This proves the theorem. [3

From this theorem, we see that it would be useful to know that

(I) min I- AQ-
J

We can give an estimate of (I) to show that this minimum is less than 1 when G is
connected. If B is a matrix, we let Bs (B + BT)/2 be the symmetric part of B and
we let BA (B-BT)/2 be the antisymmetric part of B. If G is connected, then Qs is
the Laplacian of a weighted connected undirected graph (see [13]), so a =/a(Qs) > 0.
We let # IIQII. In the proof of Theorem 6.3, we show that (I) _< v/#a an/#, so (I) < 1
when G is connected. First, we need a technical lemma.

LEMMA 6.2. Let #a be the largest eigenvalue of BTB and a # be the smallest
eigenvalue of Bs. If there is a unit vector u such that

an- Bsu,
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t2U BTBu,

then there is a unit vector v orthogonal to u such that the span S of {u,v} is an

invariant subspace of B and the matrix of B relative to {u, v} is given by

M v/#2 a2

Proof. First, we show that

(BsBA BABs)u O,

B (: ).
We repeatedly use the fact that BA antisymmetric implies that (BAx, x) 0. We have

#2u BTBu (Bs BA) (Bs + BA)u
(B B2A)u + (BsBA BABs)u
( B)+ (Bs )B.

Since (BAu,/z2u) 0,

0 (BAU, (0-2I B2A)u + (BS 0-I)BAU)
(tAU, (Bs 0-I)BAU).

Since 0- is the smallest eigenvalue of Bs, the square root of Bs -0-I exists. Thus

so (Bs 0-I)BAu 0. This yields both of the claimed identities.
Now let a -IIBAull- v/(BAu, BAu) v/#2 -0-2 and v (1/a)BAu. Then

(v, u)- (BAu, u)- O. In addition,

Bsv-
1
BsBAu-

1
BABsu- 0-v

while

This proves the lemma. [:]

THEOREM 6.3. If G is connected and not complete or a directed 3-cycle,

In(n- 1) ]D(G)<_ In

where 0- is the smallest nonzero eigenvalue of Qs and #- IIQII.
Proof. Note that for a complete graph, # 0-, and for the directed 3-cycle,

a Thus the inequality fails for these cases.#- x/-, while 0- .
For any , we have

I AQ -Or max
((I AQ g), w g) w)

n #o (w,w)



452 F. R. K. CHUNG, V. FABER, AND T. A. MANTEUFFEL

Let w+/- w (w, tl)tl, where tl (1/v/)(1, 1,..., 1)*. Then (w+/-, tl) 0. Since
(I AQ (J/n))Ul 0 and (J/n)w+/- 0, we have

(I- AQ-((z ;) ((z Q) -, ( O))
(w-, wx) + (w,)

< ((I- 2AQs + A.QQ)w+/-, w+/-)

_< 1 2Ao. + A2#2.

Setting A o./#2 yields

Q_
J 2

O"2

_<1 <1,

since G is connected. Thus

lI- AQ- J
n

If this is a strict inequality, then the theorem follows from Theorem 6.1. Equality can
hold only if there is a vector u such that Qsu o.u and QTQu #2u. Let C I- AQ.
Let

ln(n- 1)
In u

If we examine the proofs of Theorems 6.1 and 3.2, we find that D(G) <_ [mJ + 1, and
that D(G) > rn can hold only if rn is an integer and if there exists r s such that

for 1 _< k_< rn and IIC-(J/n) ll v/#2 o.2/#. Thus we can take u- f,/I]fs]l
v/n/(n- 1)fs and B ( (Q restricted to the space orthogonal to Ul) in Lemma
6.2 and v l/v/#2 -o-2BAu. The action of C on S {u, v} is then given by

M_ (1-AO.-Ac 1 Ao.

and the action of C2 is given by

M2 ((1 o.)2 (a)2
-2a (1 a)

2Aa (1 Ao.) )(1 ). (a)

This yields the system

(f, Cu) (1 o.) (f, u) As (f, v),

(f,, C2u) [(1 Ao.)2 (c)2] (f, u) 2Ac (1 Ao.)(f, v).
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If we multiply these equations by V/(n 1)/n, we obtain

(f, Cfs) (1 Aa)(f, fs) A(in 1

If m >_ 2 and we use (f, f) -l/n, we obtain

1
(1 ha) Ac/n 1

(fr, v),
n n

1

Elimination yields
O-2

0,

which has no roots but O- 0 or #2 O-2.
Thus the only possibilities are O- # or m 1. If O- #, then all the eigenvalues

of Bs and all the singular values of B are equal to #. Thus every vector u satisfies
the conditions of Lemma 6.2. In particular, B 0, so B Bs #I and Q
#(I- (J/n)). Since the entries of Q must be integers, # n. Thus the graph is the
complete graph.

If m 1, then #2/(p2 O-2) (n 1) 2, and so IlI- AQ (J/n)l 1/(n 1).
Because of (f, (I- AQ (J/n))f) -l/n, we have, in this case,

( ) 1
I-AQ- f- n_lf.

This leads to
O- 1

#2
Qes AQes e +

n- 1
er

and so
it2 n-- 2

(e,Qes)-
O- n-1

If n > 2, then there is a t :/: r, s, and

n-1 W

O-n-1

Since the off-diagonal entries of Q are 0 or -1, we must have #2/o n- 1. Thus
(es, Qe) n 2. We may also solve for both # and o. to obtain # v/n(n 2) and
O- n(n- 2)/(n- 1). Let prime denote parameters relative to the complement of G.
We have

(,-
Also, note that

O-mx (Q) max (Qx, x) > m.ax (e,Qe) max d (G’).
ilxll=l
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Thus

n-1
o" O-max (Q)

_
n max d (Q),

so if n > 2,
1

maxdi(Q)<l+ <2.
n-1

Thus each vertex of G’ has degree 0 or 1, so G is the disjoint union of isolated vertices
and directed cycles Dk with ki <_ n. We need

1+
n-1

n a O’mx (Q) max O’max (Q ,r,,\,,[LIK,))S
1
max O’rnax (Q (Ck))

2
2 if some ki is even,

l-cos,k-maxiki if no ki is even.

However, we can never have -cos(27/k) 1/(n- 1) unless k 3 and n 3;
that is, G is a directed 3-cycle. This contradiction eliminates this case and completes
the proof of the theorem.

7. Normal matrices. If we compare the result of Theorem 6.3 with those ob-
tained from Theorem 5.3 for undirected graphs, we see a marked difference. We would
like to extend the method of 5 to directed graphs. We can do this fairly easily for one
class of directed graphs, namely, those whose adjacency matrix is normal. A matrix
A is normal if AA* A*A. We have the following well-known fact. (For the applica-
tion of normal matrices to iterative methods, see [5], which also includes some other
important properties of normal matrices.)

LEMMA 7.1. The following properties of a matrix A are equivalent:
(i) A*A AA*,
(ii) A* is a polynomial in A,
(iii) the eigenvectors of A form a complete orthonormal basis.
THEOREM 7.2. Suppose that a directed graph with n vertices has Laplacian Q

such that QQT QTQ and that all the eigenvalues of Q except 0 are contained in an

ellipse with center 6 > 0, foci 5 7, 7 > 0, and semi-major axis of length (, where

7 < c < . If m is the least integer such that

n--l’

then D(G) <_ m. Furthermore, suppose that all of the eigenvalues of Q except 0 are
contained in an ellipse with center > O, loci :l= i7, 7 > 0, and semi-major axis of
length (, 7 < ( < v/2 + 72. If m is the least even integer such that

1

then D(G) <_ m.
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Proof. The proof relies on the remarks of 4 and is similar to the proof of Theorem
5.3. We leave it to the reader.

The following lemma may be of some use in estimating the diameter of directed
graphs in conjunction with Theorem 7.2.

LEMMA 7.3. Let Q be the Laplacian of a connected directed graph with in-degree
equal to out-degree. Then the eigenvalues ofQ lie in a disk of radius A max{d(u)lu
G} with center at A. There is exactly one zero eigenvalue. Furthermore, if there are
k > 1 eigenvalues on the boundary of the disk Iz- A A, then these eigenvalues
have the form (1 -e(2m/k)i)A, and G is k-partite.

Proof. That the eigenvalues A satisfy A- A _< A follows from the Gershgorin
theorem. Now consider the nonnegative matrix B AI- Q. The Perron-Frobenius
theorem yields the result.

8. Estimating the ellipse which encloses the eigenvalues of a real nor-
mal matrix. It is easy to recognize when Theorem 7.2 applies. For example, if F
is a group and A {51, (2,... ,(d} are generators, the Cayley graph G(F, A) has a
normal adjacency matrix if and only if, for each g E F, the number of solutions (5, 5j)
to 5ig 5j is the same as the number of solutions (5i, 5y) to gSi 5j. Thus, if F is
abelian, Q is normal. We need a method for finding the ellipse in Theorem 7.2.

Suppose that the eigenvalues of Q are known. There are an infinite number of
ellipses symmetric with respect to the real axis that enclose the nonzero eigenvalues of
Q and exclude zero. We would like to choose the ellipse that minimizes rn in Theorem
7.2. Equivalently, given any rn, we would like to find the ellipse that minimizes the
bounds in Theorem 7.2. To our knowledge, this problem is unsolved. However, a
related problem has been solved and may be useful. Using the definition T,(z)
cosh(n cosh-l(z)) and making use of the formula cosh-l(z) ln(z + (z2 1)1/2), we
may write g(z) z + V/Z2 1, f(z) z + v/z2 + 1, and

l+g()
1+

for the case of real loci, and

5 + v/5e + l/f 5

for complex foci and m even.
The second term in each expression is bounded by 2 and rapidly approaches L

for large m. The problem of finding the ellipse symmetric with respect to the real axis
that encloses a given set of points and excludes zero that minimizes the first term in
the above expression is solved in Manteuffel [10]. The solution depends only on the
convex hull of the nonzero spectrum of Q. If the best such ellipse has real foci, then
the smallest rn that satisfies

Tm() 1

Tm() n-1
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can be found. If the best such ellipse has complex loci, then the smallest even m that
satisfies

Tm ( (5+2)1/ n -1

can be found. Application of Theorem 7.2 then yields the bound D(G) <_ m.

9. Estimating the spectrum of Q. The theorems in the above sections require
knowledge of the extremal eigenvalues of Q. If the eigenvalues of Q are not known,
they can be computed by a variety of methods. If the dimension of Q is not too large,
good algorithms exist for computing the entire spectrum. If the dimension is large,
it may be more practical to estimate the extremal eigenvalues by iterative methods.
If systems of the type (AI Q)x y are easily solved, then inverse iteration may be
employed (cf. Wilkinson [17]). If not, then methods based upon taking orthogonal
sections of Q may be used, for example, the Lanczos algorithm (cf. [8]). These
methods only require repeated matrix vector multiplication.

Suppose that Q is symmetric. The Lanczos algorithm requires an initial vector,
say r, and iteratively forms a tridiagonal matrix Ta that is the orthogonal section
of Q onto the Urylov subspace Ka(r, Q) sp{r, Qr,..., Qa-ir}. The eigenvalues of
Ta yield good approximations to the extremal eigenvalues of Q. If r is chosen to be
orthogonal to the null vector ul, then the extremal eigenvalues of Ta approximate
and . Estimates of the rate of convergence are available [4].

If Q is nonsymmetric then Arnoldi’s method [15], [2] yields an upper Hessenberg
matrix Ha instead of Ta as the orthogonal section of Q onto the Krylov space Ka(r, Q).
The eigenvalues of Ha again yield approximations to the extremal eigenvalues of Q. In
this case, however, the convex hull of the spectrum of Ha approximates the convex hull
of the spectrum of Q. Again, if r is chosen orthogonal to Ul, the approximations ignore
the zero eigenvalue. If Q is normal, the only case in which we seek the spectrum of a
nonsymmetric Q, the procedure yields good approximations. The adaptive methods
described in [11] simultaneously find the eigenvalues and the optimal ellipse.

For general Q, we are limited to Theorem 6.2. This requires #--IIQII, which can
be computed by applying the Lanczos procedure on QTQ to find # IIQTQII. The
value a (Q) can also be approximated by the Lanczos procedure applied to Q.
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RANDOM RESOURCE ALLOCATION GRAPHS AND THE
PROBABILITY OF DEADLOCK*

JAMES F. LYNCHt

Abstract. Resource allocation graphs are directed bipartite graphs satisfying certain con-
straints. The two partitions of the vertex set correspond to the processes and resources of a multi-
programming computer system, and the edges indicate resource allocations and requests. When all
the resources are distinguishable, existence of a cycle in such a graph is equivalent to deadlock in
the system. The main results here are exact and asymptotic formulas for the number of resource
allocation graphs and acyclic resource allocation graphs with m processes, n allocated resources,
and q edges. If a uniform probability distribution is taken on such graphs, then the proportion of
blocked processes, (q n)/m, determines the asymptotic behavior of the probability of deadlock: If
(q- n)/m O, then the probability of deadlock is asymptotic to 0, and if (q- n)/m c > O, then
the probability is asymptotic to a positive value. Similar formulas are also given in terms of m and
n only.

Key words, operating systems, resource allocation, random graphs, deadlock

AMS subject classifications. 68R10, 05C80

1. Introduction. Resource allocation graphs are directed bipartite graphs that
describe the state ofa multiprocessing computer system. The two partitions of the
vertex set, P and R, are called the processes and the resources, respectively. In this
paper we assume that all resources are distinguishable; a more general model would
allow several instances of a resource type. An edge from a resource to a process
indicates that the resource is allocated to the process. An edge from a process to a
resource indicates that the process has requested but not yet received the resource,
i.e., it is blocked. This occurs when the resource is already allocated to another
process. For example, in Fig. 1, rl is allocated to P2 and r2 is allocated to pl, but

Pl is blocked. We assume that processes request resources one at a time. Again, this
restriction could be relaxed.

With this interpretation, it is easily seen that a resource allocation graph must
satisfy the following conditions:

1. Every process has outdegree at most 1. (Once a process is blocked, it cannot
make any more requests.)

2. Every resource has outdegree at most 1. (A resource cannot be shared.)
3. If (p, r) is an edge of the graph for some p E P and r E R, then there must

be an edge (r, q) for some q - p. (If a resource is requested by a process and it is not
already allocated, then the request must be granted.)

Conversely, any directed bipartite graph satisfying these conditions corresponds
to a possible state of a multiprocessing system. Thus we take as our definition of
resource allocation graph a triple (P,R,E), where P and R are disjoint sets and
E c P R t2 R P is a set of edges satisfying conditions 1-3.

A cycle in a resource allocation graph is a sequence p, r, p2, r2, pk, rk, where
(p,...,p} C_ P, (rl,...,ra} C_ R, and ((pl,rl),(r,p2),(p2, r2),...,(pk,rk),
(rk,p)} C E. When there is a single instance of each resource type, existence of
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Pl ?1

P2 \ r2

FIG.

a cycle is equivalent to the condition of deadlock: the processes in the cycle are block-
ing each other indefinitely. In the example of Fig. 1, if p2 requests r2, then pl and p2

will be deadlocked.
Deadlock is a situation of considerable practical importance, and it is expected

that it will become even more pervasive as parallel computation and dynamic resource
allocation become more prevalent. Hofri [6] has written an annotated bibliography
that lists over 150 papers on deadlock, most of them describing ways of dealing with
deadlock. The two main approaches are: ensuring that it does not occur, or detecting
and recovering from it when it does occur. Either scheme is costly to implement, as
are the many variations that have been proposed.

Because of the difficulty of knowing when deadlock occurs, it would be desirable
to have some means of estimating the likelihood or frequency of deadlock. This
could help in determining the method used to handle deadlock, for example, deciding
how often a deadlock detection algorithm should be invoked. The results of this
paper show that the probability of deadlock is approximated by a simple function
of certain easily measurable parameters of the system. Of course, this depends on
the probability distribution of random resource allocation graphs. Since our aims
are rather general and theoretical, we assume all resources have equal probabilities
of being requested or allocated. Nevertheless, we believe that the techniques can be
extended to more complex models of random resource allocation graphs, where the
probability distributions need not be uniform.

The theory of random graphs, initiated by ErdSs and Rnyi [3], suggests several
models for random structures. The most widely used, the independent edge probabil-
ity model, is not appropriate because the edges in a resource allocation graph are not
independent of each other (see conditions 1-3, above). A better model is obtained
by considering a uniform distribution on all resource allocation graphs with a given
number of processes, resources, and edges, i.e., resource requests either granted but
not yet released, or not yet granted. However, this allows for the possibility of unal-
located, i.e., isolated, resources. As will be seen, this complicates the analysis of the
asymptotics.

The more tractable model that we concentrate on uses a uniform distribution on
resource allocation graphs with rn processes, n allocated resources, and q edges. The
intent is that these three parameters characterize the "load" on the system, or its
level of activity. Also, they are easily measurable in actual systems.

Our main results are exact and asymptotic formulas for the number of acyclic,
i.e., deadlock free, resource allocation graphs, and the number of resource allocation
graphs, in terms of m, n, and q. They imply, not surprisingly, that the proportion of
blocked processes (q- n)/m determines the asymptotic behavior of the probability of
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deadlock. That is, if (q- n)/m 0, then the probability of deadlock is asymptotic
to 0, and if (q-n)/m --. a > 0, then the probability is asymptotic to a positive value.

Further, with certain constraints on the growth rates of m, n, and q, the proba-
bility of deadlock is asymptotic to (q- n)2/2m2. Then, if the following assumptions
are made, the expected time until deadlock is O(m2/(q- n)2). First, the system is a
Markov chain. That is, the future evolution of the resource allocation graph depends
only on its current configuration. Second, after a brief time, the probability distri-
bution is close to its limiting distribution. That is, the information about its initial
configuration is quickly lost. This is similar to many examples in statistical mechan-
ics, where systems of interacting particles are studied. If the transition probabilities
are too complex or not even known, then some limiting distribution is assumed. Even
with such simplifications, there can be close agreement with observed macroscopic
phenomena, and useful predictions can be made.

There are obvious analogies to the theory of random graphs. In particular, in [3]
it was shown that for a random graph with n vertices and q edges, the asymptotic
probability of existence of a cycle is 0 if and only if the asymptotic value of q/n is
0. In particular, if q/n >_ 1/2, then the asymptotic probability is 1. Here, of course,
the rules of evolution are quite simple: at each step, an edge is added with a uniform
probability distribution.

2. Main results. In this section, we state and prove results about resource al-
location graphs (P, R, E} with a given number of processes, allocated resources, and
edges. We assume that there are no free resources. In 3, we derive analogous results
for resource allocation graphs with a given number of processes and resources. In that
case, we are able to find simple asymptotic expressions even when free resources are
allowed.

For natural numbers m, n, and q, let

a(m, n, q) the number of acyclic resource allocation graphs with

IPI m, IR[ n, and [E[ q;

g(m, n, q) the number of resource allocation graphs with

IPI m, IRI n, and IEI q; and

a(m, n, q)
the probability of deadlock for a randomly selectedp(m, n, q) 1 --: n, q)

resource allocation graph with IPl m, IR] n, and IEI q.

The proofs of the exact formulas for these functions use generating functions and
formal power series techniques. A thorough exposition of these methods can be found
in Goulden and Jackson [5]. Austin [1] and Scoins [7] used a similar approach to count
the number of m x n bipartite trees.

It will be helpful to define some special kinds of directed bipartite graphs. A
bipartite tree is an acyclic, connected bipartite graph. For every bipartite tree, there
is a unique vertex of outdegree 0, which is called the root. All the other vertices are
directed toward the root. If the root is in P, the tree is said to be a P-tree; otherwise
it is an R-tree. A P-forest (respectively, R-forest) is a set of P-trees (respectively,
R-trees). A bipartite cycle is a connected bipartite graph such that every vertex has
indegree 1 and outdegree 1.

Let

t(m, n, q) the number of P-trees with IPI m, IRI n, and IEI q;
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u(m, n, q) the number of R-trees with [PI m, [R n, and [E q; and

c(m, n, q) the number of bipartite cycles with IPI m, ]RI n, and IE] q.

Let

G(x y, z) E g(m, n, q)
m!n!

xmynzq

and T(x, y, z), U(x, y, z), and C(x, y, z) be the corresponding generating functions for
t, u, and c, respectively. The generating functions are exponential with respect to
processes and resources because they are labeled, but ordinary with respect to edges
because they are not.

LEMMA 2.1. We have

(2.1) T(x, y, z) xezv(x’y’z),
U(x, z)

Proof. We prove only (2.1); the proof of (2.2) is symmetric. We use a variation
of the labeled branch decomposition for trees ([5, 3.3.9]). Every P-tree can be de-
composed into the root r, j R-trees for some j > 0, and j edges from the roots of the
R-trees to r. For fixed j, the generating function for this set is

xU(x, y, z)j zj

Summing over j gives us (2.1).
LEMMA 2.2. We have

C(x,y,z)--log((1-xyz2)-l).
Proof. It is evident that

(m-1)!m! ifn=mandq=2m,c(m, n, q) 0 otherwise.

The lemma follows immediately.
LEMMA 2.3. We have

G(x, y, z) (1 T(x, y, z)U(x, y, z)z2) -1 exp (T(x, y, z) T(x, y, z)U(x, y, z)z2).

Proof. Every connected resource allocation graph is either a P-tree (as in Fig. 2(a)),
or it consists of a bipartite cycle of length at least 4 incident with bipartite trees such
that the root of each tree is the only vertex in common with the cycle (as in Fig. 2(b)),
or it is an isolated resource. Since we are counting only allocated resources, the third
case can be ignored. The generating function for the set of connected resource allo-
cation graphs containing a bipartite cycle of length 2m is

z) U(x, z) z
(m!)2

Summing over m, C(T(x, y, z), U(x, y, z), z) T(x, y, z)U(x, y, z)z2 is the generating
function for the set of connected resource allocation graphs with a cycle of length
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(a) (b)

FIG. 2

at least 4. Adding,, to this function the generating function T(x, y, z) of P-trees, we
obtain H(x, y, z), the generating function of all connected resource allocation graphs,
with no isolated resources.

Lemma 2.3 then follows from Lemma 2.2 and a standard counting trick ([5,
Lemma 3.2.16]) based on the decomposition of resource allocation graphs into com-
ponents that shows that

G(x, y, z) exp(H(x, y, z)). [:]

THEOREM 2.4. We have

mnfq-n.
q--n

Proof. If an acyclic resource allocation graph has m processes, n resources (none of
which are free), and q edges, then it has m+n-q components. The generating function
for the set of acyclic resource allocation graphs with c components is T(x, y, z)C/c!,
and therefore

a(m, n, q) re!n! - + n q)!

We evaluate this by using the multivariate Lagrange inversion theorem ([5, Thm. 1.2.9]).
It is applied to the following formal power series in the ring R[[x, y]], where R Z[z]:

f (x, y) z"+’-q,
(x, )
wl (x, y) T(x, y, z),

(x, ) z,
(x, ) u(x, u, z).

By Lemma 2.1,

wl xl(Wl,W2) and w2 y2(Wl,W2).

Therefore, by the multivariate Lagrange inversion theorem,

[xmyn]f(wl, W2)

[xmyn] f (x, Y)I (x, y)m(2 (x, y)n
x ol.(x,.)

2(x,y)

Y

Y
(x,)

o(,)
Oy

o(,)
Oy
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That is,

[xmyn]T(x, y, z)m+n-q [xmyn]{xm+n-qemzyenzx(1 xyz2)}
?Ttnq-n mn nq-n-

Zq Zq

n!(q n)! (n 1)!(q n 1)!
mn-lnq-n(m q- n q) zq"

n!(q-n)!

Therefore

m ) rnn-lnq-n(m+n-q)a(m, n, q)
q n

and the theorem follows.
THEOREM 2.5. We have

mnnq-n i(_mn) -ig(m,n,q)
q--n i

Proof. Since

xmynzq ] ((x, y z),g(m, n, q) rn!n!

by Lemma 2.3 we can use the multivariate Lagrange inversion theorem with

f(x, y) (1 xyz2)-lex-yz2.

Proceeding as before, we have

[xmyn]G(x, y, z) [xmyn]{ex-xyz2ernzyenzx}
--[xmyn]{e-xyz2mzy(nz+l)x }

m n ,n) + zn--bi
i)!

Therefore

m!n! min(n,q-n) (_l)irn_inq_n_
g(m, n, q)

(m + n q) E i(n i)!(q n i)
i--O

and the theorem follows.
The asymptotic behavior of g(m, n, q) breaks down into three cases: n bounded,

q < 2n as n - c, and q >_ 2n as n -- c. Our methods are elementary. The survey
by Bender [2] covers most of the ideas used here.

THEOREM 2.6. If n is bounded as m --. x, then

g(rn, n, q)
q n

?TtnTtq-n 1
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Proof. By Theorem 2.5,

min(n,q--n)

?Ttn q--n E(2.3) g(rn, n, q)
q n

i=0

(q- n)!(-mn)-(q-n-i)!

Since n is bounded, for < n we have

+ o

If q < 2n, then the sum in (2.3) is asymptotic to 1, and the theorem follows. Thus
let us assume q _> 2n. Then

mg(rn, n, q)
q n )mnnq-n (1 mnq--)n (1-4-0 (--) )

and again the theorem follows. [:]

COROLLARY 2.7. If n >_ 2 is bounded as rn -, c, then

p(rn n, q) (,n 1

\ 2n

Proof. From the proof of Theorem 2.6,

mg(m,n,q)
q-n ) ?Ttnnq--n (1-- )n (l

Along with Theorem 2.4, this implies that

a(m, n, q)
1

q +-- 1--- 1+0g(rn, n, q) rn m mn

Now q <_ m + n, and for large enough m, rn + n <_ .9ran, i.e., q/(mn) is uniformly
bounded away from 1. Therefore

(1 rn-q ) -n-l+q+(n+l)q2m 2m2n +0((
and we have

( q ) ( q (n+l) (q)p(m,n,q) l 1 + 1+ + 2nm m

n-1 2 a)
THEOREM 2.8. (a) If q < 2n as n -- c, then

mg(m, n, q)
q n
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(b) If q >_ 2n as n c, then

m I nq-2n(mn + n q)n.g(m,n,q) q-n

Proof. (a) Consider q < 2n as n ---, (x. By Theorem 2.5,

(n, , q)
q (n i)!

The absolute value of the ratio of consecutive terms in the sum is

(?71)q--n--i--1 / (mn)q-n-i
(i + 1)!(q- n- 1)!(n- 1)! i!(q- n- i)!(n- i)!

(q-n-i)(n-i)
mn(i + 1)

q-n

rn(i + 1)
1

-i+1

Thus the terms in the sum for >_ n1/3 are negligible. Using Stirling’s formula to
approximate the terms when < n1/3,

(n i)! 2r(n i) (n --i)n-ii-n
i + 0

( (=n 1+ e-i 1+O
n-i n

nie-i:/(2(n-i))+O(i/(n-i)u) (l + O ())
--ni(l+O( 1

Again because the terms in the following sum are negligible for >_ n1/3,

(b) For q >_ 2n we write

( m )tq_2nE ( n ) (--1)i(rnrt)n-i(q--n)’
g(m, n, q)

q n (q n i)!

As before,

(ran)n-i-1 / (ran)n-i < 1

(i+l)!(n-i-1)!(q-n--i--1)!/i!(n--i)!(q--n--i)! i+1’
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and when < n1/3,

(q-n)!-(_ 27r(q-n) )(q-n-i)! 27r(q n- i)

Therefore

/2 (q--n)q-nen-q ( ( 1))1.+_0(q n i)q-n-ien+i-q q n

(=(q-n) 1+ e-i 1+0
q-n-i

--(q--n)ie-i/(2(q-n-i))+O(ia/(q-n-i))(1-t-O(1))--rt

( ) )m nq_2n n (mrt)n-i(n q)i.q(_.rn, n, q)_.
q n

i=0

( q--urn )rtq_2n(mn_n_q)n" D

COaOLLaaY 2.9. If n oc, then

p(m,n,q) 1-(1 q--n) (q-n)/m (--lm) (n--/3)e +O +O
m

Proof. We assume q < 2n; the case when q >_ 2n can be handled similarly. The
proof of Theorem 2.8 shows that

( m ) -n( 1)q-n( ( 1 ))mnnq 1 1 + 0 n--/3g(m,n,q)
q-n m

and therefore

a(rn, n, q) 1
g(rn, n, q)

:(1
) ( ( 1 ))q rn- n e(q_n)/m+O((q_n)/m. 1 -t- 0

q n ) e q " /m (l + O (--m +0(l=n.))
since q _< rn + n. So

p(m,n,q):l-- (1 q--n)e(q_n)/m+o (1) (n/3)/0
m m

COROLLAaY 2.10. If (q n)/m o(1), then

lim p(m, n, q) O.

If limm+n-.(q- n)/m a for some a > O, then

lim p(m,n,q)

for some > O. In particular,

_f nla2+O(a3) if n is bounded,
1- (1-a)ea /f n --- oc.
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3. Graphs with a specified number of processes and resources. We first
study the case when all resources are allocated. As we would expect, there are many
similarities to 2, and we do not give all the details of the proofs.

Let

a(m, n) the number of acyclic resource allocation graphs,

g(m, n) the number of resource allocation graphs,

p(m, n) 1
g(m, n)’

the probability of deadlock for a randomly selected

resource allocation graph,

t(m, n) the number of P-trees,
u(m, n) the number of R-trees, and

c(m, n) the number of bipartite cycles,

where IPI m and [R n, and let G(x,y), T(x,y), U(x,y), and C(x,y) be the
associated exponential generating functions.

LEMMA 3.1. We have

T(x, y) xeU(’),
U(x, y) yeT(x’y)

G(x, y) (1 T(x, y)U(x, y))-i exp (T(x, y) T(x, y)Y(x, y))

THEOREM 3.2. a(m, n) rnn(n + 1)m-1.
Proof. The proof is analogous to the proof of Theorem 2.4. We work in the ring

R[[x, y]], where R Z. Let

f(x, y) ex,
1(x, U) ,

(x, ) T(x, ),
.(x, ) ,
:(x, ) U(x, ).

Applying the multivariate Lagrange inversion theorem,

e Oy

and the theorem follows.
THEOREM 3.3. We have

g(rrt, rt)-mn(n+ 1)m( rrt ) / rt ) i!(-m(n + 1)) -i
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Proof. We use the multivariate Lagrange inversion theorem with

f(x, y) (1 xy)-lex-xv.

Proceeding as in Theorem 2.5, we have

[xmyn]G(x, Y) [xmyn]{ex-xymyenx}
--[xmyn]{e-xymy(n+l)x }

mi__,n) (_l)imn_i(n + 1)m_
i)!

and the theorem follows.
THEOREM 3.4. (a) If m is bounded as n--, c, then

m

(b) If n is bounded as m oe, then

+ 11n+l

(c) As m, n --, ,

Proof. We consider two cases: m

_
n and m > n. Part (a) of the theorem

is subsumed by the first case, while part (b) is covered by the second. Part (c) is
included in both cases, but they give the same asymptotic formula when m, n -- x.By Theorem 3.3, if m <_ n, then

g(m, n) (n + l)mmn-’E ( m I (-1)imm-(n
i (n-i)!

1)-in!

For <_ n1/3, !/(n--i)! ni(l+O(n-I/3)), and larger terms are negligible. Therefore

g ?Tt, n) Tt -- 1)m?Ttn-m E (-1)mm-
i=0

(n-_ l)mmn-m(m_ 1)m

(n + l)mmne-1 if m--,

The case m > n is similar. [:]

COPOLLAPY 3.5. (a) If m is bounded as n-+ oo, then

p(m,n)=l-
m 1+o(1)

rn-1 n

(b) If n is bounded as m --, , then

p(m,n)--1--(n-k----l)nn (l+o(1)).n+l
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(c) As m, n ---,

1 + o(1))p(rn, n) 1 e
n

These results imply that the probability of deadlock is high, even when n --This may seem surprising, but an explanation is that most of the resource allocation
graphs with m processes and n resources have a large number of edges, which makes
deadlock very likely. As was shown in 2, the number of edges q plays a critical role in
determining the probability of deadlock. In most actual systems, deadlock does not
occur with great frequency. This may be due to a relatively low number of resource
requests compared to the number of processes and resources. Thus sparse resource
allocation graphs would seem to be of particular practical importance.

We conclude with asymptotic formulas for the case when free resources are al-
lowed. Let g* (m, n) and a* (m, n) be the number of resource allocation graphs, respec-
tively, acyclic resource allocation graphs, with rn processes and n resources. Again
there are different cases depending on the relative growth rates of rn and n. First,
however, we make a somewhat technical distinction between the cases rn <_ n/(3 In n)6
and m > n/(3 ln n)6.

LEMMA 3.6. If m <_ n/(3 lnn)6 as n --. oo, then

a*(rn, n) rn+ 1

m--1

(m+l)n(n+l)m-1

Proof. By Theorem 3.2, we must approximate

(3.1)
3

The ratio of consecutive terms is

2"+ m j+l
m-1

It is easy to see that the sequence of terms is unimodal, and if j rnn/(m + 1), the
ratio is asymptotic to 1. Thus let us sum over a new index k j- rnn/(rn + 1), so
that k 0 corresponds to the maximum term. Each term can then be written as

(3.2)
frtmn/(m+l) { ?’nm+ l

+ l)
m-1

n
rnn/(rn + 1) + k ) mk (mn/(m + l) + l + k )rnn/(rn + 1) + 1

m-1

The first two factors do not depend on k, and

+1 +1 re+l" (n+l)m-1

We now examine the other factors. Using Stirling’s formula,
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( n
mn/(m + 1) + k

(/(+ /+ (/( + /

( o
x

mn/(m+l)+k n/(m+l)-k

x +o /(+)++/(+_
roW1 [(m 1) ( )]mn/(m+l)+k+, n

(e)/ n + ( + 1)/

x (m + 1) if k o(/m)- (m + 1)
m+l

(2m)l/ (m + 1)nm-m/(m+)-k

[ 1 ]mn/(m+l)+k[ l n/(m+l)--k
X

1 + (m + 1)k/(m) 1 (m + 1)/n

Now the first two Nctors above are independent of , and m-/(+)-k cancels with
other Nctors in (a.2). Approximating the bracketed terms above, we obtain

exp[( (m+l)k 1 ((m+l))-mn + m +O(((m+l)k)a))m (m/(m+l)+)

xexp[((m+l)k 1 ((m+l))+ + O (((m+l)k)a)) (/(m + 1) )

(m + 1)k /(m + 1)a (m + 1)k (m + 1)ka
exp -k + 2m + O (ran) m 2(m)

O ( (m + )ak+

[(re+I)k ((re+l)ka) (m+l)k (m+l)ka
x exp k +

2n + 0 n2 n 2n2

0 ( (m + 1)k4

exp[ (m + 1) (m + l)k]2m 2
if - o((/m)/a).

Examining the last factor in (a.2), it equals

1+ran+m+1
=exp [(m- l)(m + 1) (m l)(m + 1) ((m 1)(m + l)aka)]mn+m+l 2(ran+re+l)

+O
(ran+m+1)a

1 if k o(/m).

Altogether, we have shown that each term (a.2) with k o((/m)/a) is asymptotic
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to

m lm_ m + 1 (m + 1)2k2.___.. (m + 1)n(n + ,,,zrmnlj2
exp

2mn

Also, it is evident that each factor exp[-(m + 1)2k2/(2mn)] with k > (n/m)7/12 is

o(n-1). That is, the sum of the terms in

k
2ran

for k > (n/m)7/2

is negligible. Thus the sum is asymptotic to

(2ran)l2

m+l ? (27rmn)1/2
e-x2 dx

oo rn + l

and

a*(m,n) m+l
LEMM* 3.7. If n/(31nn)6 < m o(n) as n o, then

( )na*(m, n) m + e-(m-1)l(n+) (n + 1)m-.

Proof. Changing the index in (3.1) to k n- j, the ratio of consecutive terms is

+ 1) n’

so the terms k >_ m-2/3n are negligible. Also,

(n- k + l)m-l (n + l)m-l ll n+lk Im-i
(n + 1)m-1 exp [- 1)k

n+l
(m- 1)k
2(n + 1)2 + O ((m- 1)k3

if k o(m-/2n).

Therefore

a*(m,n) (n + 1)m-1E n ran_k (m-1)/(n+l)
k

n-k
e-

k=0

--(n + 1)m-1 (m + e-(m-1)/(n+l))
n

D

THEOREM 3.8. (a) /fm o(n) as n c, then

a* (m, n)
m

m+l
(m w1)n(t + l)m-1
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(b) If m an .as m, n oo, then

a*(rn, n) ee-/amn(n + l)rn-1.

(c) If n- o(rn) as rn -+ oo, then

a*(m,n).,mn(n+l)m-1.

Proof. (a) If rn <_ n/(3 In n)6, then Lemma 3.6 applies immediately. If n/(3 In n)6 <
rn o(n), then we apply Lemma 3.7 and use the fact that

(m + e--(m--1)/(n+l)ln rnn exp [ ne-(m-)/(n+)rn

/ )(rn + 1)n
m+l

(b) is immediate from Lemma 3.7, and (c) follows from the fact that only the last
term in (3.1) is significant.

Similar proofs applied to the formulas for g(rn, n) in Theorem 3.4 give the follow-
ing theorem.

THEOREM 3.9. (a) If rn is bounded as n---, oo, then

rn+l (rn- 1)
m

m m+l
(m+l)n(n+l)m"

(b) If n is bounded as m --+ oo, then

()nn
mn(n + 1)m.g*(rn, n)

n+l

(c) If m o(n) as rn, n , then

g* (rn, n) e-2 (rn + 1)n(n + 1)m.

(d) If rn an as m, n -+ oo, then

g*(rn, n) ee-/-rnn(n + l)TM.

(e) If n- o(m) as rn, n -+ c, then

g*(m,n),..,e-lmn(n+l)TM.

Obvious conclusions about the probability of deadlock can be derived. We give
one statement that summarizes all possibilities.

COROLLARY 3.10. We have

a* (m, n)
1

(m, n)
g*(m,n) n

where (m, n) --+ e if m, n --+
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4. Open problems.
1. What is the expected number of acyclic components in a random resource

allocation graph? Since a process is not blocked if and only if it is the root of a
P-tree, this is equivalent to the expected number of active processes.

2. Find realistic transition probabilities for resource allocation graphs, and calcu-
late the expected time to deadlock. Is the ratio (q- n)/m significant in determining
the expected time until deadlock?

3. Find the expected size of the first cycle in a randomly evolving resource
allocation graph, i.e., the expected number of processes involved in deadlock when it
first occurs. This was recently solved for random graphs in [4].

4. Consider more general models of resource allocation, where processes can
request several resources at a time, and there can be more than one instance of each
resource.

5. Acknowledgment. The author thanks the Courant Institute of Mathemat-
ical Sciences, New York University, for its hospitality during a sabbatical visit when
the final version of this article was prepared.
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Abstract. It is proved that every strongly connected directed graph with n nodes and at least
[(n -{- 1)2/4J edges must contain an even cycle. This is best possible, and the structure of extremal
graphs is discussed.

Key words, directed graphs, even cycles, permanents

AMS subject classifications. 05C, 1hA

1. Introduction. A directed graph G is a set of nodes N(G) together with an
edge set E(G) consisting of ordered pairs of N(G). A path in G from a node u
to a node v is a sequence of distinct nodes u v0, vl,..., vt v, so that (vi, vi+l),

0,..., t- 1, are in E(G). A path from u to v together with the edge (v, u) is called
a cycle. If a cycle contains an even number of edges, it is said to be an even cycle.
A hamiltonian cycle is a cycle that contains every node in the graph; a hamiltonian
graph is one that has such a cycle. A graph G is said to be strongly connected if, for
every pair of nodes u and v in N(G), there is a path from u to v. In this paper, we
consider directed graphs containing no loop (i.e., (v, v) E(G) for any v).

In this paper, we prove that every strongly connected graph on n nodes and
at least (n + 1)2/4 edges must contain an even cycle, thus settling a conjecture
of Brualdi and Shader [4], [5]. This is best possible, and we give several examples
of edge-critical graphs that are strongly connected directed graphs on n nodes and
[(n + 1)2/4J 1 edges containing no even cycle. In particular, we characterize the
edge-critical graphs that are hamiltonian.

Two simple examples of edge-critical graphs are the following.
1. The node set of Hn can be partitioned into three parts, A, B, and a node

v, where IAI (n- 1)/2J and IBI (n-1)/2. E(Hn) {(a,b) a e A,b e
B}{(v,a) :aeA}[2{(b,v) :beB}.

2. The node set of Ln consists of v0, v,..., Vn-, which form a cycle. In addition,
(v, vy) is an edge if i- j is a positive even number.

For a node v, the in-degree of v is the cardinality of { u (u, v) E(G)}, and
the out-degree of v is the cardinality of { u: (v, u) E(G) }. If for all v the in- and
out-degree of v is d, we say that G is d-regular. We say nodes u and v are adjacent,
or u is adjacent with v, or u is a neighbor of v, if either (u, v) or (v, u) is in E(G).
The adjacency matrix of a directed graph G on n nodes is the 0-1 n n matrix M
with M(u, v) 1 if and only if (u, v) E(G). For a subset S of N(G), the induced
subgraph of G on S has node set S and edge set { (a, b) E(G): a, b S }. A node v
is said to be a cut point if, by removing v and edges incident to v from G, the resulting
graph is no longer strongly connected.
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Determining if a directed graph contains an even cycle is a surprisingly difficult
problem that was first raised by Younger (see [21]). Klee, Ladner, and Manber [10]
and Thomassen [14] showed that determining whether a prescribed edge is in a di-
rected cycle of a particular parity is NP-complete. Nevertheless, the complexity of
determining if a directed graph contains an even cycle remains unresolved. Surpris-
ingly, there is a polynomial-time algorithm [10] to test whether a graph has a directed
cycle of odd length. In [17] Thomassen gives a polynomial-time algorithm for deciding
whether a planar directed graph contains an even cycle.

There are several results that give sufficient conditions for a directed graph to
have an even cycle. Thomassen [14] proved that every directed graph on n nodes and
minimum out-degree [log2 nJ + 1 contains an even cycle. He also constructed graphs
with minimum out-degree [1/2 log. nJ that do not have an even cycle. Alon and Linial
[1] improved on this by showing that minimum out-degree log n-1/2 log log n +O(1)
guarantees an even cycle. Alon and Linial [1] also proved that if the minimum out-
degree is 5 and the maximum in-degree is A, then a directed graph contains a directed

Friedlandcycle whose length is a multiple of k, provided that (AS+ 1)(1- l/k) < -.
[8] showed that for d >_ 7, every d-regular directed graph contains an even cycle. In
[16] Thomassen extended this to the case d >_ 3. There, Thomassen also showed that
if for every pair of nodes u and v, there are at least three (node) disjoint paths joining
u to v, then a directed graph contains an even cycle.

The problem of finding even cycles in a directed graph is closely related to the
problem of converting some l-entries of a (0,1)-matrix A to -1, so the resulting matrix
B satisfies the property that the determinant of B is equal to the permanent of A
(see [2]). Therefore, a hard problem [19] of computing the permanent is transformed
into an easy one for some graphs. Little [11] and Seymour and Thomassen [13] gave
characterizations of the matrices for which such conversion is possible. In particular,
a directed graph G containing no even cycles satisfies

determinant(I + A) permanent(I + A),

where A is the adjacency matrix of G, and I is the identity matrix.
The result in this paper implies that the largest number of l’s in an irreducible

n n (0,1)-matrix with the same value for its determinant and permanent (see [3],
[4], [20])is [(n + 1)/4J + n- 1.

2. Hamiltonian graphs. Let G be a directed graph without an even cycle.
LEMMA 2.1. Suppose there are three nodes a, b, and c, and (a,b), (b,c), and

(a, c) are edges of G (so that (a, b, c) forms a "transitive" triple). Then all paths from
c to a contain b, and thus b is a cut point.

Proof. Suppose there is a path P from c to a that does not contain b. Then there
must be an even cycle that is either adding (a, c) to P, or adding (a, b), (b, c) to P.
Therefore all paths from c to a must contain b.

The following lemma establishes the result for hamiltonian graphs.
LEMMA 2.2. Let T be a cycle in G. Then any path in T on m nodes spans at

+
Proof. The proof is by induction on m. Let P denote a path v, Vl,..., Vm-1 in

cycle T. If v is adjacent with at most [m/2 nodes of P, then we are finished, since

f(m)- f(m- 1) [m/2. We may therefore assume that v is adjacent with at least
[m/2 + 1 nodes of P. Then v must be connected to two consecutive nodes in P of
the form v2i and v2i+l. The edge between v and v2i must be (v2i,v), and the edge
between v and vi+l must be (v, v2i+1), else there is an even cycle.
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Observe that P v, v,..., V2i and P v, v2i+l, Vm--1 form paths and may
be extended to cycles. Further, (v2, v, v2+1) is a transitive triple, so that the removal
of v from G disconnects v2 from v2+1. This means that all edges between the two
paths P and P not involving v must be directed from P to P. Now an edge (Va, Vb)
with a < b requires a and b to have opposite parities, or it produces an even cycle.
Thus there are at most i(m- 2i- 1) such edges.

Since every edge in P is either of this form, or within P or P", P can have at
most f(2i + 1) + f(m 2i) + i(m 2i- 1) _< f(m) edges.

We now construct all edge-critical hamiltonian graphs on 2k+ 1 nodes. Start with
a directed triangle T1 on nodes vl, v2, v3. Then for 2,..., k, create triangle Ti by
introducing two new nodes, say v2i and v2i+1, and three edges, so that v2i and v2i+
form a directed triangle with some node ai-1 of triangle Ti-1 (in that order). This
yields a spine Sk on 2k + 1 nodes and 3k edges. Then, to construct Gk, take Sk and
for every pair of distinct nodes v E Ti and w Tj, <_ j, add (if necessary) the edge
(v, w) if and only if the path from w to v in Sk has even length (number of edges).

It is easy to show by induction on k that Gk so constructed has k(k + 2) edges:
except for ak-1, every other node is adjacent with exactly one of v2k and v2k+. We
can also show that Gk is hamiltonian by induction on k. Let H denote the hamiltonian
cycle of the subgraph on the first k- 1 triangles, and x the predecessor of ak-1 in
H. Then the path from ak-1 to x in the spine has even length; thus the same is
true of the path from v2k to x in Sk, and hence (x, v2k) is an edge of Gk. Hence
the edge (x, ak-1) in H can be replaced by the three edges (x, V2k), (V2k, V2k+l), and
(V2k+l, ak-1), yielding the hamiltonian cycle of G.

It is less trivial to show that (k has no even cycle. Observe that every ai is a
cut node" any path from Ti+ (and beyond) to Ti (and before) must pass through
ai. Let C be any cycle, and let v and w be nodes of C in the triangles of least and
greatest index, respectively. Then the w-to-v portion of C is the path along Sk; say
it has p + 1 nodes. Let v h0, h,..., hj w denote the remainder of C. Let si be
the distance from hi to hi- in the spine (i 1,..., j). It may be shown by induction
on j that i si p + 3(j 1). However, all the si are even. Hence p + j is odd, but
this is the length of C.

We now show that every graph G on 2k + 1 nodes that is hamiltonian and edge
critical has the above form. We do this by induction on k, so assume k >_ 2. G has
maximum degree of at least k + 2, so by the proof of the above lemma, G has a cut
point v whose removal partitions the nodes into parts $1 and $2 such that all edges
between the parts are directed from $1 to $2. Further, the proof shows that S t2 {v}
and $2 U {v} induce edge-critical hamiltonian graphs G and G2. By the inductive
hypothesis, G and G2 have the requisite form.

We must show that v is in the last triangle of G. This is immediate if G1 is a

triangle, so let the last two triangles of the spine Sm of (1 be Tin-1 and Tm. Let a

denote the node that Tm- and Tm have in common, y the out-neighbor of a in T,,
and x the in-neighbor of a in T,-I. Then (x, a, y) forms a transitive triple in G1 (the
path from y to x in Sm has length four). Thus a must be on every path in G from
y to x, in particular, on such a path that goes via $2. Hence v must be in the last
triangle of G. Similarly, v must be in the first triangle of G2.

There can be an edge frown v S to w $2 only if the path from w to v has even

length. But to obtain the correct number of edges, we must then have all possible
edges from S1 to $2. This means that G is one of the Gk constructed above.

3. The general result. We prove the following theorem.
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MAIN THEOREM. A strongly connected directed graph G on n nodes without an
even cycle contains at most f(n) [(n2 + 2n- 3)/4] edges.

Further, such a G with f(n) edges consists of a maximal hamiltonian edge-critical
subgraph C (on 2r + 1 nodes, say), and an acyclic complete bipartite graph on the
remaining nodes, having parts as equal in size as possible, each node of which is
connected to r + 1 of the nodes of C.

Roughly speaking, the proof of the main theorem can be described as follows.
We partition the node set of our directed graph into a sequence of subsets, which we
call layers, so that the subgraph induced by each initial segment of layers is strongly
connected. Each layer consists of either the nodes of a directed cycle, the nodes of a

(nontrivial) directed path, or a single node. Thus we refer to cycle, path, and singleton
layers.

We establish first an upper bound on the number of edges inside a layer. We then
establish an upper bound B on the number of edges between any two layers. Finally,
we show that this bound B cannot be attained between every pair of layers; indeed,
we derive an upper bound on the number of pairs of layers for which the bound B is
attained.

3.1. Construction of layers. We assume throughout that the directed graph G
has n nodes and no even cycle. The first layer L0 consists of the nodes of a maximum
cycle in G. Thereafter, we construct a sequence of layers Lj (j >_ 1) of nodes of G as
follows. Let Sj denote [.J_<j L.

1. If there is a cycle T of G- Sj-1 such that there are edges between T and Sj-1
in both directions, then we let the nodes of Lj be those of one such cycle of maximum
length.

2. Otherwise, if there is a node v of G- Sj-1 such that there are edges between
v and Sj-1 in both directions, then we let Lj be {v}.

3. Otherwise, we let the nodes of Lj be those of a maximum length path P
x... y in G- Sj_I, subject to there being an edge from Sj-1 to x, and an edge from
yto Sj_

Observe that Lj is (part of) a cycle in Sj and that Sj is strongly connected.

3.2. Excess. Now, we define the excess between two layers of cardinalities a and
b as the number of edges between them minus ab/2. Similarly, we define the excess
inside a layer of cardinality a as the number of edges within it, minus ()/2.

To analyze the number of edges between layers, we consider an auxiliary undi-
rected graph H whose nodes correspond to the layers in G. There is an edge between
two nodes in H if and only if there is positive excess between the corresponding layers
in G (i.e., the number of edges exceeds half the product of the layers’ cardinalities).
We establish a tight upper bound on the number of edges in H. In this regard, we
define a forest F of the edges of H as follows: For each node w of H, we include in
F the edge of H linking w to the node corresponding to the layer of smallest index,
such that there are edges in both directions between the corresponding layers in G, if
such a layer exists.

In order to prove the main theorem we prove the following three claims.
CLAIM 1. The number of edges of G within any layer on m nodes is at most

f(m).
CLAIM 2. The excess in G between any two layers is at most 1. If equality holds,

then there is an edge between the corresponding nodes in F. The excess between the

first layer and a nonsingleton layer is at most -1.
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CLAIM 3. The graph H-F has no triangles, and the first layer is isolated in
H-F.

Actually, we have already established Claim 1 (see Lemma 2.2).
3.3. Proof of the main theorem. We show that the above three claims are

sufficient to establish that the excess in G is at most 3n 3 Let x denote the number4 4"
of layers of odd cardinality, excluding L0, and y the number of even cardinality. The
contribution to the number of edges in G is in two parts.

(i) Inside a layer. In a layer of size m, there is an excess of at most 3m 3 if4 4
rn is odd, and at most - 1 if m is even, by Claim 1. Hence the excess inside layers
is at most

3n/4 y 3x/4 3/4;

(ii) Between layers. We say that a potential edge e between two nodes of H is
"odd" if the layers corresponding to both its ends have odd cardinality; otherwise it
is "even. By Claim 2, if e is odd, then it contributes at most +3 to the excess in
G if it is in H, and -1/2 otherwise. If e is even, then it contributes +1 if in F, and 0
otherwise. We may reassign the contributions and say: Any edge contributes /1 if it
is in F; an odd edge contributes +1/2 if it is in H-F, and -1/2 otherwise. There are
x+l( 2 potential odd edges. By Claim 3, at most x2/4 of these are in H-F. There

are at most x + y edges in F since it is a forest. Hence the excess between layers is
at most

1 x2 1 1)2"4 + (x + y) 3x/4 + y.

Thus the overall excess is at most 3n 3
4 4"

We can also deduce the partial characterization of edge-critical graphs. The first
layer L0 is a cycle layer. By Claim 2, equality in the main theorem requires all layers
except L0 to be singleton layers. Also, a singleton layer must have positive excess with
L0; indeed, it must be joined to L0 by an edge in F, which means that it has edges
in both directions with L0 in G. Further, G- L0 must be complete bipartite having
as equal as possible size parts (by Turn’s theorem [18]). And by the construction of
the layers, G- L0 must be acyclic.

It remains to establish Claims 2 and 3.

4. Proof of Claim 2.
LEMMA 4.1. Let T be any cycle w0, wl,..., w2r, wo in G, and let v be a node in

G T. Then v can connect to only one pair of consecutive nodes in T, say (wo, Wl).
Thus there are at most r + 1 edges between v and T. If there are r + 1 edges, then v
connects to wo and to Wl,W3,..., W2r-1.

Proof. Let there be edges between v and both w0 and wl in G. Of the four
possible pairs of directions for these edges, one (viz., (w0, v) and (v, Wl)) produces an
even cycle with the rest of T.

Suppose that the two edges are (wl, v) and (v, w0), so that {v, w0, wl} forms a
directed cycle. It is immediate that, independent of direction, to avoid even cycles,
all other edges between T and v involve only odd-indexed nodes of T.

Suppose now that both edges are directed from T toward v. Then by Lemma 2.1,
removal of wl destroys all paths from v to w0. Thus any path from v to wl is
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internally disjoint from T. Hence, all edges between v and T are directed toward v
and, moreover, can exist only from odd-indexed nodes Wa in T.

We define the in-node v of a layer Lj (j

_
1) as follows" If Lj is a cycle layer,

then v is any node such that there is an edge from Sj-1 to v; if Lj is a path layer,
then v is the first node on the path; and if Ly is a singleton layer, then v is the node
itself. The out-node of Ly is defined analogously.

LEMMA 4.2. Let node v in G- Sj be adjacent with two consecutive nodes x and
y in layer Lj.

1. If both edges are directed towards v, then Lj is a cycle layer, j >_ 1, y is the
unique in-node of Lj, and any path from v to Sj-1 avoids Lj.

2. If the edges go in opposite directions, then {v,x, y} forms a directed triangle.
Proof. If the edges go in opposite directions, then {v,x,y} forms a directed

triangle, otherwise there is an even cycle. Suppose both edges are directed towards
v. Then any path P from v to x must go via y (by Lemma 2.1). Consider the first
node w of P that is in Sy. If w is in Lj, then it must be y. But then we can replace
the edge (x, y) by (x, v) and P, thereby contradicting the maximMity of Lj. Thus w
must be in Sj_I. Hence y must be the unique in-node from Sy_, and so Ly must be
a cycle layer.

We say a node v of G- Sy is special with respect to layer Lj if it is adjacent with
more than half the nodes in Lj. Further, we say that v is backtrack special if it is in
directed triangle with consecutive nodes of Ly. It is up special if all the edges from Ly
are directed towards v, and down special if they are directed away from v. The above
lemma shows that there is no up- or down-special node with respect to the first layer
L0.

LEMMA 4.3. Let Lj be a path layer with path x... y, and assume that node v of
G- Sj is special with respect to Lj, but not backtrack special. Then Lj has an odd
number of nodes, and v is adjacent with every alternate node on Ly with (x, v) and
(v, y) being edges. We say such a node v is detour special.

Proof. By Lemma 4.2, if v is not backtrack special, then it has no consecutive
neighbors on Lj. Thus Lj is odd, and v is adjacent with every alternate node starting
with x.

Suppose edges between v and Lj go only one way, say toward v. Then consider
a path P from v to Sj-1. If P is disjoint from Ly, then it contradicts the maximality
of the path Lj, since edge (y, v) is in G. If it meets Lj after x, then again Ly can be
lengthened. But if it meets x first, then there is a longer cycleby using Ly, (y, v),
and Pand this cycle is anchored (with y and x) to Sj_. This is a contradiction.

Thus edges go both ways. Then the edges directed away from v come after those
directed toward v, otherwise an even cycle results; thus it follows that (x, v) and (v, y)
are edges.

LEMMA 4.4. If nodes v and w of G Sj are backtrack special with respect to Lj,
then they do not lie together in a cycle outside S.

Proof. Let nodes v and w be backtrack special with respect to Lj. We show that,
for some parity , there are paths in both directions between v and w that use only
Sj, and whose lengths have parity . This contradicts the nonexistence of even cycles
in G if v and w are in a cycle in G- S.

Suppose Lj is a path layer. Then we may assume that the path is xoxx2...,

that v is connected to x0 and x, and that w is connected to x and x+l for i >_ 0.
If 0, then there are odd paths between v and w in both directions through Lj;
if 1, then there are even paths. Otherwise, suppose that i is even. Then v is
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connected to Xi+l (by Lemma 4.1). It is not possible to orient this edge without
producing paths of the same parity in both directions between v and w through
The case when is odd, or when Lj is a cycle layer, is similar.

LEMMA 4.5. Let nodes v and w be consecutive in layer Lk and have a common
neighbor x in lower layer Lj (i.e., k > j).

1. If both edges are directed away from x, then Lk is a cycle layer and v is the
unique out-node of Lk.

2. If the edges go in opposite directions and Lk is a cycle layer, then {v,w,x}
forms a directed triangle.

Proof. Suppose (x, v) and (x, w) are in G. Then any path P from w to x goes via
v (by Lemma 2.1). Thus v is the unique out-node to Sk-1, and Lk must be a cycle
layer. If the edges go in opposite directions and Lk is a cycle layer, then {v, w, x}
forms a directed triangle, otherwise an even cycle results.

We define a (potential) edge between two nodes in H as one way or two way,
depending on whether there are edges in one direction or in both directions between
the corresponding layers in G.

We now prove Claim 2.
LEMMA 4.6. Let layer Lk be above layer Ly (i.e., k > j). Then Table 1 gives

upper bounds on the excess between Lj and Lk in G, depending on whether there are
edges in G between the layers in one direction or in both directions.

TABLE

Lk Lj
C C +1/2
C P 0
P C +1/2
P P 0
C S +1/2
S C +1/2
S P 0
P S +1/2
s s +/

One way Two way Comments

-1/2
+1
0
0

-1/2
+1/2
+1
+1/2

-3/2 excess, if j 0
0 excess in H-F
-1 excess, if j 0

+ve excess for j 0 requires two way
0 excess in H-F

Proof. 1. Cycle above cycle. Suppose Lk has an up-special node u. Then by
Lemma 4.2, all edges are directed towards Lk. Further, u must be adjacent with the
unique in-node of Ly. Thus, there are at most (ILk]+ 1)/2 up-specials (by Lemma 4.1),
and the bound follows. Otherwise, the only chance of positive excess is to have a

backtrack-special node, but there can be at most one such node by Lemma 4.4.
Suppose there is -1/2 excess and j 0. Then Lk is a triangle abca with c (say)

backtrack special. Let cycle L0 be x0,xl,...,x2,x0. Then a and b must have r

neighbors on L0. We claim that a cannot have two consecutive neighbors in L0; for
by Lemma 4.2, they would form a directed triangle with a, which yields a contradiction
as in the proof of Lemma 4.4. Let c’s consecutive neighbors in L0 be x0 and Xl. Then,
by the lack of even cycles and the maximality of L0, a cannot be adjacent with x0 or

x2. Thus a must be adjacent with xl. Similarly, b must be adjacent with x0. These
two edges cannot be in opposite directions (e.g., xlabxoxl would be a 4-cycle). So,
without loss of generality, we may assume that (b, xo) and (a, xl) are edges. Thus
(b, c, x0) is a transitive triple, and all edges are directed from b to L0. It then follows
that (b, x3) is an edge (indices modulo 2r + 1). But that means there is a cycle of
length 2r + 3 in G, viz., x3x4...xlcabx3, which contradicts our choice for L0.
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2. Cycle above path. There is at most one backtrack-special node. Further,
detour-special nodes, which are only possible if the path layer Lj has odd cardinality,
are nonadjacent (by the lack of even cycles). Positive excess therefore requires edges
to go both ways in G. By the layering strategy, Lk cannot be connected both ways
to Sj-1; thus this edge is in F.

3. Path above cycle. Observe that by the layering strategy, no node in the
path layer Lk can have edges both ways to Lj. Up-specials with respect to Lj are
nonadjacent and the same with down-specials. Suppose Lk has a down-special node
d and an up-special node u. By the maximality of Lj, u must come after d. By
Lemma 4.2, the path from u to Sy-1 must avoid Lj, and the path from Sj-1 to d
must avoid Ly, so that u and d lie in an odd cycle disjoint from Ly. However, then
there is an even cycle, since there is a path of length two and one of length three from
d to u using only Ly. Furthermore, if j 0, then Lk can have no special node and so
the excess is at most --ILkl/2.

4. Path above path. By Lemma 4.3, special nodes have edges in both directions
with Lj, which is impossible by the layering strategy.

5. Cycle above singleton. By Lemma 4.1, there is at most +5 excess. If there
is positive excess and edges both ways between the singleton s and the cycle layer
L, then s is in a directed triangle with Lk in G, which is impossible by the layering
strategy.

6. Singleton above cycle. By Lemma 4.1, there is at most + excess. By
Lemma 4.2, for j 0, positive excess requires a two-way edge.

7. Singleton above path. By Lemma 4.3, if the node s in layer Lk is special, then
it is connected both ways with Lj. By the layering strategy, s cannot be connected
both ways to Sj-1; so this edge is in F.

8. Path above singleton. Suppose the node s in the singleton layer is adjacent
with two consecutive nodes v and w in Lk. Node s cannot lie in a cycle outside
Thus by Lemma 4.5, the only possibility is that the edges are (v, s) and (s, w), so that
the removal of s disconnects v from w (by Lemma 2.1). However, then there must be
a path either from w to s or from s to v outside Sj-1, so that s is in a cycle outside
Sj_ 1, a contradiction.

5. Proof of Claim 3.
LEMMA 5.1. Assume all edges are directed from layer Ly to layer L in G, j < k,

and there is positive excess. Let y be the in-node of Lj, and let v be the out-node of
Lk.

1. Nodes v and y are unique.
2. It holds that j >_ 1. Any path from Lk to Sj-1 avoids Lj. In particular, there

is a path from v to Sj-1 avoiding Lj and the rest of Lk.
3. Nodes v and y are adjacent. If Lj (Lk) is a cycle layer, then v (y) is adjacent

with the predecessor of y (successor of v).
Proof. 1. Node v is unique by definition, if Lk is a singleton or path layer. If Lk

is a cycle layer, then it is unique by Lemma 4.5, and similarly for y.
2. Suppose there is a path from Lk to Lj in G- Sj-1. Then this path either

contradicts the maximality of Lj, if that is a cycle layer, or it contradicts the fact
that the node of Lj is not in a cycle outside Sy-1, if Lj is a singleton layer. There is
a path from v to Sj-1 avoiding the rest of Lk, since there is an edge from v to Sk-1.

3. This part follows from Lemmas 4.2 and 4.5. Node v is up special because more
than half of the nodes of Lk are up special. All up-special nodes connect to y, and,
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if Lj is a cycle layer, to its predecessor. A similar argument holds looking from Lj to
Lk.

LEMMA 5.2. There is no triangle in H having all one-way edges.
Proof. Suppose there is a triangle in H using one-way edges among nodes A, B,

C with indices a, b, c. If it is a directed triangle, say A --. B C -- A with c the
maximum, then the B to A path through C contradicts the above avoidance property.

Assume then that they form a transitive triple (A, B, C) with a < c. Let v denote
the in-node of A, and y the out-node of C. Then there is an edge from v to y by the
above lemma. Further, there must be an even-length path from v to y through B (by
part 3 of Lemma 5.1). Thus the removal of B must disconnect A from C.

However, this is impossible, because if b > c, then A and C lie together in the
strongly connected subgraph So. If a < b < c, then by Lemma 5.1, there is a path
from C to Sb-1 (and hence A) that avoids B. Furthermore, if b < a, then by Lemma
5.1, any path from C to Sb-1 avoids B, as do those from Sb-1 to A.

By Lemma 4.6, there are only two possibilities for two-way edges in H-F: odd
path layer above singleton layer (PS), and singleton layer above cycle layer (SC).

LEMMA 5.3. There is no triangle in H-F with a PS two-way edge.
Proof. Assume that path layer Lk (of odd cardinality) is above singleton layer Lj,

and they are connected by a two-way edge in H. Then (by the proof of Lemma 4.6),
the node s of Lj is connected to every alternate node in Lk (in particular, to the in-
node x and out-node y of Lk). Since the edges directed towards s must come before
those directed away from s (by the lack of even cycles), (x, s) and (s, y) must be edges
in G. Further, any path from y to S_1, or from Sy_ to x, must avoid s, since s is
not in a cycle outside S_.

Suppose Lj and L are in a triangle with layer L in H-F. If L is also a singleton
layer, with, say, node t, and connected to L by a two-way edge in H, then by the
above observation, Lk must lie in an odd cycle disjoint from s and t. However, x and
y are also connected by a path of length three through s and t, which yields an even
cycle.

Hence we may assume that all edges between L and L go the same way, say
toward Lk. Then there is a path from y directly to the subgraph S below all three
layers. Also, because there is a path from L to s in G- S, by Lemma 5.1, all edges
are directed from L to s. This yields a transitive triple (v, s, y) where v is the in-node
of L. By Lemma 5.1 (or otherwise), there is a path direct from S to v. This yields
an even cycle.

LEMMA 5.4. There is no triangle in H-F with an SC two-way edge.

Proof. Assume singleton layer Lk, with node s, and cycle layer Ly (k > j), are

joined in H-F by a two-way edge, and that this edge is in a triangle with layer L in
H-F. Then we claim that all edges between L and Lj t2 Lk go the same way. For if
L is joined to L by a two-way (SC) edge in H, then L must be one way with Lj, and
then either the Lj to L, or the L to Lj path through s in G contradicts Lemma 5.1.

A similar contradiction results if L is two way with Lj, or if Lk and Ly are both one

way with L but in different directions. So we may assume that all edges are directed
towards L.

The edge of F incident with Lk connects to a layer in the subgraph S below all
three layers. (By definition, the edge goes below Ly; by Lemma 5.1, it must go below
L.) A path also exists direct from the out-node y of L to S, and an edge exists from
s to y. This means that (s, y) lies in an odd cycle disjoint from Lj. But there is also
an even-length path from s to y using only Lj (by part 3 of Lemma 5.1). This yields
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contradiction.
We have established Claim 3 and hence the proof of the main theorem is complete.

6. Open problems. There are many unsolved problems about even cycles in
directed graphs, two of which we mention here. The most obvious one is the problem
of deciding if a directed graph contains an even cycle. In [17] Thomassen gives a
polynomial algorithm for deciding whether a planar directed graph contains an even
cycle.

ErdSs and PSsa [6], [7] proved that every undirected graph contains either k
disjoint cycles or contains ck log k nodes that must meet all cycles, for some constant
c. Recently, McCuaig [12] proved a conjecture of Gallai [9] by showing that every
directed graph contains either two disjoint cycles or three nodes meeting all cycles.
Does there exist [20] a number f(k) for every integer k such that a directed graph
contains either k disjoint cycles or a set of f(k) nodes meeting all cycles?
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Jia Lai, Paul Seymour, and C.Q. Zhang for very helpful discussions.

REFERENCES

[1] N. ALON AND N. LINIAL, Cycles of length 0 modulo k in directed graphs, J. Combin. Theory
Ser. B, 47 (1989), pp. 114-119.

[2] R. BRUALDI, Counting permutations with restricted positions: Permanents of (0, 1) matrices,
Linear Algebra Appl., 104 (1988), pp. 173-183.

[3] , Graphs and matrices and graphs, Congr. Numer., 83 (1991), pp. 129-145.
[4] R. BRUALDI AND B. SHADER, Cutsets in bipartite graphs. Linear and Multilinear Algebra, to

appear.
[5] , On sign-nonsingular matrices and the conversion of the permanent into the determi-

nant, in Applied Geometry and Discrete Mathematics, American Mathematical Society,
Providence, RI, 1991, pp. 117-134.

[6] P. ERDSS AND L. P(SA, On the maximal number of disjoint circuits in a graph, Publ. Math.
Debrecen, 9 (1962), pp. 3-12.

[7] , On independent circuits contained in a graph, Canad. J. Math., 17 (1965), pp. 347-352.
[8] S. FRIEDLAND, Every 7-regular digraph contains an even cycle, J. Combin. Theory Ser. B, 46

(1989), . e49-.
T. GALLAI, Problem 6, in Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press,

New York, 1968, p. 362.
V. KLEE, R. LADNER, AND R. I’ANBER, Signsolvability revisited, Linear Algebra Appl., 59

(1984), pp. 131-157.
C. LITTLE, A characterization of convertible (0, 1)-matrices, J. Combin. Theory Ser. B, 18

(1975), pp. 187-208.
W. MCCUAIG, Intercyclic digraphs, in Contemporary Mathematics, Vol. 147, American Math-

ematical Society, Providence, RI, 1993, pp. 203-245.
P. SEYMOUR AND C. THOMASSEN, Characterization of even directed graphs, J. Combin. Theory

Ser. B, 42 (1987), pp. 36-45.
[14] C. THOMASSEN, Even cycles in directed graphs, European J. Combin., 6 (1985), pp. 85-89.
[15] , Sign-nonsingular matrices and even cycles in directed graphs, Linear Algebra Appl., 75

(1986), pp. 27-41.
[16] , The even cycle problem for directed graphs, J. Amer. Math. Soc., 5 (1992), pp. 217-229.
[17] , The even cycle problem for planar digraphs, J. Algorithms, 15 (1993), pp. 61-75.
[18] P. TURIN, Egy grdfelmdletei szdlsSdkfeladatrdl, Matem. Physikai Lapok, 48 (1941), pp. 436-

452.
[19] L. VALIANT, The complexity of computing the permanent, Theoret. Comput. Sci., 8 (1979),

pp. 189-201.
[20] V. VAZIRANI AND M. YANNAKAKIS, Pfaffian orientations, 0-1 permanents and even cycles in

directed graphs, Discrete Appl. Math., 25 (1989), pp. 179-190.
[21] D. YOUNGER, Graphs with interlinked directed circuits, in Proc. Midwest Sympos. on Circuit

Theory, Vol. 2, 1973, pp. XVI2.1-XVI2.7.

[01

[11]

[12]

[13]



SIAM J. DISCRETE MATH.
Vol. 7, No. 3, pp. 484-492, August 1994

() 1994 Society for Industrial and Applied Mathematics
012

ON THE SIZE OF WEIGHTS FOR THRESHOLD GATES*

JOHAN H/STADt

Abstract. It is proved that if n is a power of 2, then there is a threshold function on n inputs
that requires weights of size around 2(nlgn)/2-n. This almost matches the known upper bounds.
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1. Introduction. One very interesting computational element is that of a thresh-
old gate. A threshold gate of n inputs is specified by a set of weights Wl, w2,..., Wn

n t) In thisand a threshold t. On input Xl,X2,...,Xn it outputs sign(_-i= wixi
notation we assume that the gate computes a function {-1, 1}n - {-1, 1}, but the
set {-1, 1} could be replaced by any two element set (e.g., by {0, 1}).

Threshold circuits, i.e., circuits that contain threshold gates, have been studied
extensively. On the more theoretical side, many upper and lower bounds on the power
of small depth threshold circuits have been established. For a discussion of these
results we refer to [1] and its references. It is striking to note that there are no known
strong lower bounds for general depth-2 threshold circuits. On the more applied side
we note that threshold circuits have many similarities with neural networks. We refer
to [2], [5], [6] for more information on these connections and the area in general.

For both types of investigation mentioned above it is important to understand
what conditions can be put on the weights wi. Since some finite amount of precision
is always suicient, it is easy to see that we can assume that the weights are integers.
Furthermore, it has been proved many times (one early source is [4]) that if we have
a function with n inputs, then Iwl <_ 2-n(n + 1) (n+l)/2 is sufficient. Since there
are at least 2n2/2 different threshold functions [4], [8], [9], there are some functions
that require max Iwil on the order of 2n/2. On the other hand, there are at most 2n
threshold functions [3], [7], and hence these are essentially the best bounds that can
be proved by this type of simple counting.

There are also known explicit functions that require weights of size at least cn

for some constant c > 1. In particular, if we let the input encode two numbers in
binary and ask which number is greater, then a lower bound of essentially 2n/2 holds.
There are other, slightly more complicated, explicit functions giving a value of c up
to (1 + v/-)/2 [6].

The above-mentioned bounds imply that 9t(n) bits are sometimes needed and
that O(n log n) bits are always sufficient to specify the individual weights. The gap
between these two bounds are not substantial enough to matter greatly in arguments
of complexity theory, because in general we are only interested in whether the quanti-
ties are polynomial in size. However the gap is rather large, and the goal of this paper
’is to bring the two bounds closer together. We do this by improving the lower bound
for an explicit function F. We prove that when n >_ 8 is a power of 2, this function

requires [wi >_ (1/2n)e-nn2(nlgn)/2-n for all i, where/ log2 . Comparing this
to the known upper bounds, we see that it is essentially tight.

Received by the editors August 17, 1992; accepted for publication (in revised form) June 4,
1993.

Department of Numerical Analysis and Computing Science, Royal Institute of Technology,
100 44 Stockholm, Sweden.
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The outline of the paper is as follows. In 2 we define our function and prove the
lower bound on the size of the weights needed to realize this function. In 3 we recall
the proof for the upper bound on the weights, and we end with some final comments
in 4.

2. A function requiring large weights. Let us assume that n is a power of
two and that n 2m. We use {-1, 1} notation throughout and we think of vectors
in {- 1, 1}’ as functions from {- 1, 1}m to {- 1, 1}. This convention makes us use two
types of functions: those on rn variables and those on n variables. We use the former
as inputs to the latter. To decrease the possibility of confusion we reserve capital
letters for functions on n inputs.

For s C_ [m] {1,2,...,m}, let , be the character function, i.e., ,(x)
l-Iie xi, where we let O be the function that is identically 1. Choose an ordering of
s0, c1,..., an-1 of the sets such that the following conditions hold:

1. lal <_ Icj[ for <_ j;
2. IcAa+11 <_ 2 for all i, where laAs+l] is the symmetric difference of the

two sets ci and c+1.
This implies that s0 and c1, s2,..., c, are the singletons, and that laiAsi+ll
1 when lai+l lail + 1, while ]siAai+ll 2 otherwise.

LEMMA 2.1. There is an ordering that satisfies conditions 1 and 2 above.
Proof. Assume that we have an ordering of all sets containing at most d elements

satisfying conditions 1 and 2, and an ordering of the set with d + 1 elements that
satisfies condition 2. If we think of these orderings as lists, we can concatenate them.
This might create an illegal ordering in that condition 2 might not be satisfied when

Isil d and Ii+11 d + 1. However, if we simply permute the names of the elements
in the sets of size d + 1 we can take care of this condition and the concatenated list
will satisfy both conditions.

The above reasoning implies that the only problem is to find an ordering of the
d-element subsets of [m] for any d <_ m. We prove this by an induction over d and
m. The base cases d 1 and d m are obvious. In the general case we first list all
the sets of size d containing m, and then all the other sets. This first part of the list
is essentially all (d- 1)-element subsets from [m- 1], while the second part consists
of all d-element subsets of the same set. Both can be given appropriate orderings
by induction, and thus the only problem is the connection between the two sublists.
However, as above, by permuting the names of the elements in the second list, this
connection can be made to satisfy condition 2. This completes the induction step and
hence the lemma follows.

Let (f,g) denote the inner product of the functions f and g. Define F(f)"
{- 1, 1 }n

_
{_ 1, 1 } as sign((f, )), where is the largest index such that (f,) #

0. This function is a threshold function since

F(f)=sign((n+l)i(f’’))\i=o
and (f, a) is a linear function in the values f(j). This expression is correct since

[(f, )1 <- n for all i.
We want to prove that if

F(f) sign
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then one of wj is large. First let us observe the following simple lemma.
LEMMA 2.2. We can assume that t O.
Proof. Note that F(I) -F(-I). Hence n-1j=0 wjf(J)l > [tl for any f, and we

can set t 0 without changing the function.
It will be easier to work with expressions of the form

sign w (f, 99i)
\i=0

This can be done with the following lemma.
LEMMA 2.3. We have

for all f if and only if

and

n--1 n--1

E wjf(j) E w(f, qoi)
j=o i=o

n-1
1 Ewi n
j=o

n--1

i=0

Proof. The second statement follows from rearranging the terms. To see the first,
note that by Fourier inversion,

f (j) - P.. (j)(f
i=o

This implies

n--1 n--1 n--1 n--1 n--1
1 1

(f. (p.) Wy. (j).E Wjf(j) E Wj E"(J)(f’ P")n
j=0 j=0 i=0 i=0 j=0

and the lemma follows.
We will establish that F requires large weights, and in particular we have the

following theorem.
THEOREM 2.4. Assume that n is a power of 2 and

where wi are integers. Then Wn--1 e-4n 2( og n)/2-n, where fl log().
Before we prove Theorem 2.4, let us first deduce the corresponding result when

using the normal representation of threshold gates.
THEOREM 2.5. Assume that n is a power of 2 and

F(f)= sign(wjf(j))
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e-4n 2(n log n)/2-n wherewhere wy are integers. Then for some j, we have Iwj[ >_ -fl log().
Proof of Theorem 2.5. If we have an expansion of the kind given in the theorem,

then by Lemma 2.3, setting

n-1

Wi n
j=O

may notwe convert it to an expansion of the form considered in Theorem 2.4. The w
be integers, but nw are integers for all i. Multiplying every weight by the same integer
does not change the function and hence by Theorem 2.4, nWn_l >_ e-4’: 2(nlgn)/2-n.
This is equivalent to saying that

n-1

j=O

and the theorem follows.

--4n 2(n log n)/2--n

Let us now prove Theorem 2.4.

Proof of Theorem 2.4. Let us start by an easy observation.
LEMMA 2.6. For any i, wi > O.
Proof. This follows from setting f and noting that F(f) 1 for such f.

By choosing a suitable sequence of test functions f we prove that wi must grow
exponentially. Since the ordering of the ai is not explicit, we sometimes use the
notation w, which should be read as wi where is chosen such that ai c.

LEMMA 2.7. Suppose ]0i+11 IOil k where 2 <_ k <_ n- 1, and that aAai+l
{a, b}. Let v E {-1, 1}TM be any point with Va Vb. Then

where the sum extends over all a such that a C [.J hi+l, and a contains exactly one

of a and b and a is equal to neither ai nor ai+l.
Proof. Let us assume that ai {1,2,...,k} and ai+l {1,2,. ,k 1, k + 1}.

vj for 1 < j < k+ 1. Furthermore,Let v be a vector of length k + 1 that satisfies vj
2

-vj for j k and2
Vj for j < k, and vjlet v2 be a similar vector such that vj

j k + 1. Define the following function on the first k + 1 variables:

f(w)
if w V or w V2
otherwise.

We extend f to a function of m variables by ignoring the rest of the variables.
First note that (f,) 0 for any a that contains an element larger than k + 1. We
have that (f,) 2"-k-1(4- 2k+1), while for other a C_ {!,2,... ,k + 1} we have

where vlv2 is the pointwise product of v and v2. Since this vector is 1 except
for coordinates k and k + 1, we obtain a nonzero inner product if and only if a C
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{ 1, 2,..., k + 1} and a contains exactly one of the elements k and k + 1. The only two
sets of size k with these properties are ci+l and ci, while all other sets with these
properties have cardinality at most k- 1. Note that by property 1 of our ordering,
all these sets appear before ai, and this implies that F(f) sign((i+l, f)) 1.
Writing this statement as an inequality of the weights yields the inequality of the
lemma.

Next we have the following lemma.
LEMMA 2.8. Suppose [a+ll 1 + lail k, where 2 <_ k <_ n- 1 and ai+l

ai U{a}. Then, for any vector v with va 1, we have

Wi+l > (2k-l- 1)wi- E
CgCCi nt. C--OZ

Proof. Let us assume that ci {1, 2,..., k- 1} and ai+l {1, 2,..., k}, and let
vj for 1 < j < k. Define the followingv be the vector of length k that satisfies vj

function on the first k variables"

; (w) if W V 1,f(w) -- (W) otherwise.

Extend f to a function of rn variables by ignoring the rest of the variables. Again
(f,) 0 for any a that contains an element larger than k. Clearly (f, a)
2m-k(2- 2k), while for other c C {1, 2,..., k} we have

(f, 99) (-:,,:,) + 2m+1-k(.i(v1)99a(v1)

Again F(f) sign((,+l, f)) 1, and writing out the corresponding inequality for
the weights gives the lemma.

Using the above two lemmas we establish the main lemma for the proof of Theo-
rem 2.4.

LEMMA 2.9. For each such that Iai+l >_ 2, we have wi+l > (21+1-1 1)wi.
Furthermore, if {a, b}, then

Wc > W{a} -}-W{b} 2F WO.

Proof. We establish the lemma by induction over i, and we must handle the cases
with Ici+11 small separately.

Let us first establish the lower bounds for w when Icl 2. Suppose a 1 and
b 2, and construct the function of the proof of Lemma 2.8 when ci+l c, ci { 1},
and v (-1, 1). This shows that

Wc > W{1} --W{2 - W0.

Let us now establish the lemma when Iozi+ll--IOzil-- 2. Suppose ozi+l {1,3}
and c {1,2}. Then apply Lemma 2.7 with v (-1, 1, 1). This gives

Wi+l > wi nt- w{2} -- w{3}.

Next suppose Ici+l 3 and Icil 2. We might assume that ai+ {1,2,3}
and ci {1,2}. Apply Lemma 2.8 with v (-1,-1, 1). This gives

Wi+l > 3Wi + W{1,3 -]-W{2,3} nt- W{1} -t-W{2}- W{3}- WO > 3Wi,
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where the last inequality follows from the already established bounds.
Let us now take the case I+11 I1 3, where we assume that ai+i {1, 2, 4}

and ci {1,2,3}. Apply Lemma 2.7 with v (-1,-1, 1, 1). This gives

Wi+l > 3wi A-w{1,3 --w{2,3} -t-w{1,4} -t-w{2,4}- w{3}- w{4} > 3wi.

Now consider the case when and 1, where k >_ 4. We can
assume that ci+l {1,2,...,k} and a {1,...,k- 1}. Suppose that aj is the
proper subset of ci+l other than ai that has the highest index. Choose a vector v
with vk 1 such that ,(v)a (v) -1. Now apply Lemma 2.8 with this v. We
have

wi+l > (2k-l- 1)wi + wj- E ai(v)99a(v)wa"
cCcli+ c-’-ji

Thus the lemma follows from establishing

I .1 <-
OOti+ O--’Cj

We divide the sum into those a of size at least 3 and those of size at most 2. To
bound the first sum we note that since W+l > 3wt when lat+[ > 3 and < j, even
the sum over all sets of size at least 3 and index less than j is bounded by w/2.

To bound the second sum we observe that there are at most k(k- 1)/2 + k + 1
terms and each is bounded the maximal weight of a set of size 2. Now there are at
least k- 2 sets of size 3 before ai in the enumeration (this bound is tight for k 4
but very weak otherwise), which implies by induction that wi is at least 3k-1 times
the maximal weight of any set of size 2. The inequality 3k-1 > k(k 1) + 2k + 2 valid
for k > 4 concludes this case.

Finally suppose I  +11 k
k 1, k + 1} and ai {1,... ,k}. Suppose that ai is the set of highest index that
appears in the sum of Lemma 2.7. Choose a vector v with va vk+ 1 such that

(v) (v) -1. Now apply Lemma 2.7 with this v. The analysis is similar to the
last case. This finishes the proof of the lemma.

All that remains to prove Theorem 2.4 is a simple calculation. Let aio be the last
set of size 2 in our ordering. Then

1>

since Wio > 1 and the two factors introduced when ]ai[ 2 cancel each other.
The first factor equals 2nm/2+-. This follows because the average size of a

subset of [m] is m/2, and there are n such sets. The extra "1 -n" is the result of
-1 inside the summation. To estimate the second factor, we use the fact that when

0<x<,l then(1-x)>e-2. Hence

H (i > e-4(l+ e-4n
112

and the theorem follows.
Note that by slightly extra work, the constant in front of nz can be reduced to

any value greater than 2. In fact, if we were willing to obtain an extra term, we
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could in fact obtain the value 2. This would be achieved by using an inequality of the
type 1 x >_ e-x-cx for an appropriate constant c. We do not think this is of great
concern unless the upper bound is improved.

If we use the full strength of Lemma 2.9, then we can actually strengthen Theo-
rem 2.5 to apply to all weights.

THEOREM 2.10. Assume that n is a power of 2 and

\=o

wherewy are integers. Then forn >_ 8 and all j, we have Iwjl >_ (1/2n)e-4n2(nlgn)/2-n
Z ).

Proof. Use Lemma 2.3 to obtain a corresponding expansion

n--1

i=0

where

n--1

1Wja(j).Wi n
j=0

We know by Lemma 2.9 that > 2m-1 1)Wn 2 > 2m-1 1)(2m-2 1)Wn_3Wn--1
where n 2". By Lemma 2.3,

n--1

wj E wp. (j),
i--0

and for n >_ 8,

n--2

Since

w > 1 e_4n 2(n logn)/2-nn-1 n

the theorem follows.

3. Recalling the upper bound. For completeness, let us recall the proof for
the upper bound. Let F be any threshold function and let H0 be a linear function
with the following properties:

1. sign(H0(x))= F(x) for x E {-1, 1}n.
2. IHo(x)l >_ 1 for x E {-1, 1}n.
3. Among H satisfying the above conditions, it maximizes the number of x

{-1, 1}n such that IHo(x)l 1. If there are several H giving the same number of
such points, choose one arbitrarily.
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Since F can be represented by a linear threshold, there is some linear function
satisfying the first two conditions, and thus there will exist such a linear function H0.

Let x(i), 1, 2,..., r be the set of points in {-1, 1}n with IH0(x(i))l 1. We
claim that H0 is uniquely determined by the equations

1,2,...,r.

Suppose this was not the case. The set of of solutions to these equations would contain
linear functions Ho + till for all rational t and nonzero H1. There is some point
x() E {-1,1}n such that H(x()) = O. Suppose for concreteness that H(x()) >
0 and that Ho(x()) < -1. (Note that we cannot have IHo(x())l 1 since we
must have H(x(i)) 0 for 1 <_ <_ r.) Now let to be the minimal t > 0 such
that [H0(x) + tH(x)l 1 for some x {x(),x(2),...,x(r)}. There must be such
a to, since t (-1- Ho(x()))/H(x()) gives IHo(x())+ tHe(x())[ 1. Since
IHo(x) + tH(x)l >_ 1 for all t E [0, to] and all x {-1, 1}n, it follows that the two
first conditions are satisfied by Ho+toH. This implies that we violate the maximality
condition used to define Ho and we have reached a contradiction.

By the claim, the coefficients of Ho can be obtained by solving a linear system
of equations where the coefficients and the right-hand side belong to {-1, 1}. By
Cramer’s rule this means that each coefficient of Ho is given by the ratio of two
(n + 1) (n + 1) (remember that H0 has a constant coefficient) determinants with
entries in {-1, 1 }. Every coefficient has the same denominator and hence we can clear
it. By Hadamard’s inequality, each absolute value of a determinant of the above type
is bounded by (n + 1) (n+l)/2. Thus F can be realized with integer weights of absolute
value at most (n + 1) (n+1)/2. To obtain a better bound we need the following lemma.

LEMMA 3.1. The determinant of an rn rn matrix that has entries from the set
{- 1, 1} is divisible by 2"-1.

Proof. Add the first row to each other row. Now these rows will consist of elements
from {-2, 0, 2}. The determinant of this matrix is clearly divisible by 2m-1. [-!

Using the lemma and clearing the common factor 2n gives the following theorem.
THEOREM 3.2. A threshold function of n variables can be realized with integer

weights of size at most 2-n(n + 1) (n+1)/2.

4. Final discussion. When n is a power of two, we have established upper and
lower bounds that are only a subexponentiM factor apart. It is interesting to note
that we do not know how to establish such sharp bounds when n is not a power of
2. It is not clear that this is an important problem in determining the true bounds
for every n. After all, taking the function F for the largest power of 2 less than n
will give fairly good lower bounds. However, it is one of these problems where we do
obtain much better bounds for special values of the parameter.

One natural way to try to prove the lower bounds given by Theorem 2.4 is to try
to establish that a random threshold function requires large weights. In view of the
fact that there are only 2n2 threshold functions, it is not clear that this could succeed.
One natural question that arises is how to define a random threshold function.

One definition is to pick a random point (w,w2,...,Wn) uniformly from the
n 2 1) and then define the random function to bereal n-dimensionM sphere (Ei--1 Wi

sign(-= wx).
It is not difficult to see that with very high probability we can replace wi by

integers with O(n) bits and keep the same function. It is not clear that this is due to
a deficiency in the definition or that this is the typical behavior of threshold functions.
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Let us finally note that our results extend to the case where the inputs are from
the set {0, 1,..., a} for a >_ 2 (or the more symmetric range {-a, 2 a, 4 a,..., a}).
We can use the same definition of the function and the proof extends essentially word
by word. The only part that does not seem to have a counterpart is Lemma 3.1. We
thus obtain a lower bound that is roughly a factor an stronger, and an upper bound
that is a factor 2han+l worse.
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DOMINATION, FRACTIONAL DOMINATION, 2-PACKING, AND
GRAPH PRODUCTS*

DAVID C. FISHERt

Abstract. Let P2(G),-f (G), and "y(G) be the 2-packing number, fractional domination number,
and domination number, respectively, of a graph G. Domke, Hedetniemi, and Laskar [Congress.
gumer., 66 (1989), pp. 227-238] showed that P2(G) <_ "f(G) <_ /(G). Examples are given with
P2(G) < /y(G) "(G) and P2(G) "yy(G) < "(G). Let G H and G. H be the Cartesian
product and strong direct product, respectively, of graphs G and H. For all G and H, it is shown that
P2(G)P2(H) <_ P2(G. H) <_ P2(G)’(H) and -y(G)’f(H) <_ y(G. H) <_ (G)/(H). These relations
are also independent. Relations involving P2(G H), /f(G H), and ,(G H) are examined. An
unresolved issue involves a conjecture of Vizing: For all G and H, is

Key words, domination, fractional domination, 2-packing, strong direct products, Cartesian
products

AMS subject classification. 05C70

Introduction. Let G be a graph. A subset of the nodes.of G, S, dominates G,
if each node in G S is adjacent to a member of S. The domination number of G,
7(G), is the minimal cardinality of a dominating set. Domke, Hedetniemi, and Laskr
[1] give a fractional version of y(G). A set of nonnegative weights on the nodes of G
is a fractional domination of G if, for each node a, the weights on a and its neighbors
sum to at least one. The fractional domination number of G, yf(G), is the minimal
sum of the weights of a fractional domination. A subset S is a 2-packing of G if, for
all x, y E S, the distance between x and y is at least 3. Let the 2-packing number of
G, P2(G), be the maximal cardinality of a 2-packing. We then have (from [1])

(1) _< <_

Let G and H be graphs with nodes Va and VH and edges Ea and EH, respectively.
Then G 3 H (the Cartesian product of G and H) has nodes (g, h) for all g VG and
h VH with an edge between (gI, hi) and (g2, h2) if and only if [gl, g2] Ea and
hi h2, or gl g2 and [hl,h2] E EH. Also, G. H (the strong direct product of G
and H) has nodes (g, h) for all g e VG and h e VH with an edge between (gl, hi)
and (g2, h2) if and only if gl g2 or [gl,g2] EG, and hi h2 or [hl,h2] EH
(see Fig. 1). A long-standing conjecture of Vizing [4] is that for all graphs G and H,
(G 3 H) >_ "(G)’(H). Fisher, Ryan, Domke, and Majumdar [2] give a fractional
version of this: "f(G3H) >_ "](G)’(H), which follows from a result for strong direct
products,

?(G. H) ?(G)/f(H).

Section 1 shows that the inequalities of (1) are independent by giving examples
with P2(G) < f(G) "(G) and P2(G) "f(G) < "(G). Section 2 proves two
relations similar to (2): ?(G)’(H) < ?(G. H) < -y(G)’(H) and P2(G)P2(H) <
P2(G. H) < P2(G)’(H). Section 3 summarizes these results in Fig. 7. Relations for
P2(G 3 H), y](G H), and /(G 3 H) are also examined.
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G@H

FIG. 1. The Cartesian product and the strong direct product.

2 0
0

H= 1 1
3 3

FiG. 2. The circled nodes are a 2-packin9 of G. So P2(G) >_ 2. The weights are both a fractional
domination and a fractional 2-packing of G. So "yf(G) 2. While the boxed nodes dominate G, no
two-node set dominates G. Hence 2 P2(G) "yf(G) < "(G) 3. In H, the distance between two
nodes is at most two. So P2 (H) 1. The weights are a fractional 2-packing of H. So "If(H) >_ 2.
The boxed nodes dominate H. So "I(H) <_ 2. Hence by (1), 1 P2(H) < -f(H) -),(H) 2.

1. Extremes for the fractional domination number. Four relations for
P2(G), /f(G), and 7(G) are allowed by (1). Examples with P2(G)
(e.g., K1) and P2(G) < 7I(G) < /(G) (e.g., C4) are easy to find. However, examples
with P2(G) /I(G) < (G) or P2(G) < /(G) /(G) are surprisingly difficult to
find. Fig. 2 gives what seems to be the smallest examples.

2. Bounds on the strong direct product. This section gives lower and upper
bounds on (G. H) and P2(G" H). For each, examples (Figs. 3-6) are given with
the lower bound achieved, but the upper is not, and vice versa. These examples are
selected so that at least two integers are within the bounds.

To prove the results, it is easiest to view the graph parameters as optimal values
of linear or integer programming problems. For vectors x and y, let x

_
y (x

_
y)

mean xi

_
yi (xi

_
Yi) for all i. Let lk and Ok be the k-vectors whose components

are all one or zero, respectively. For an m node graph G, let N(G) (the neighborhood
matrix of G) be the m m matrix with nij 1, if j or if nodes i and j are
adjacent, and nij 0, otherwise.

We can redefine (G) as the value of an integer programming problem

(3) "),(G) minx 1Tinx
subject to x >_ 0m, N(G)x >_ lm and x is integer.

A feasible solution to (3) dominates G. Similarly, 9If(G) can be redefined as the value
of a linear programming problem

(4) -f(G) min 1Tmx subject to x >_ 0m and N(G)x >_ 1,.
X

A feasible solution to (4) is a fractional domination of G.
formulation for (G),

Duality gives another

(5) /(G) max 1Troy subject to y > 0. and N(G)y _< lm.
y
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A feasible solution to (5) is a fractional 2-packing of G. Also, P2(G) can be redefined
as the value of an integer programming problem,

T(6) P2(G) max lmY subject to y >_ 0,, N(G)y _< lm, and y is integer.
y

A feasible solution to (6) is a 2-packing of G.
Re-indexing (3) and (6) gives a useful alternative formulation for (G. H) and

P2(G" H). Let Z(m, n) be the set of nonnegative integer m n matrices. Then

(7) 7(G.H)= min IZln subject to N(G)ZN(H) 11 and Z e Z(m,n),
z

(s)
P2(G" H) maxlZl subject to N(G)ZN(H) lml and Z e Z(m,n).

Z

THEOREM 1. For all graphs G and H, (G)I(H) (G. H) (G)(H).
Proof. For the lower bound, let Z be an optimal solution to (7). Then N(G)ZN(H)

lml. Isolating the jth column gives

(N(G)ZN(H))j lm.

Because (N(G)ZN(H))j N(G)(ZN(H))j, we have that (ZN(H))j dominates G.
Thus I(ZN(H))j (G), and hence IZN(H) (G)I. ansposing both sides
and rearranging we obtain

N(H) (7(G)-ZTlm) ln.

Thus, 7(G)-ZTlm is a fractional domination of H giving

I(H) I7(G)-IZTlm ?(G)-IT Z1 ()-1( H)

For the upper bound, let x and y be dominations of G and H, respectively. Then

N(G)xyTN(H) (N(G)x)(N(H)y)T 11T
n"

So xyT is feasible solution of (7) giving

i x) (lnY) (G)(H).H) l xy

The exactness of the bounds in Theorem 1 are independent. Figs. 3 and 4 give
examples with (G)](H) (G. H) < (G)(H) and (G)I(H) < (G. H)

THEOREM 2. For all graphs G and H, P2(G)P2(H) P2(G" H) P2(G)(H).
Proof. For the lower bound, let x and y be 2-packings of G and H, respectively.

Then

N(G)xyTN(H) (g(G)x)(g(H)y)T lml.
So xyT is a feasible solution of (8) giving

H)

For the upper bound, let Z be an optimal solution to (8). Then N(G)ZN(H)
11. Isolating the jth column, we obtain

(N(G)ZN(H))j <_ lm.
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O,

1
21 4 21 4

FIG. 3. The left weights are a fractional 2-packing on G. The right weights are a fractional
domination. Since both sum to 3/2, f(G) 3/2. The 2 boxed nodes dominate G. So /(G) 2.
The 3 boxed nodes dominate G.G. So, Theorem gives 3 /(G)/f(G) /(G.G) < (G)(G) 4.

4 4 4

4 4 4

FIG. 4. The weights on G are both a fractional 2-packing and a fractional domination of G.
So I(G) 3/2. The 2 boxed nodes dominate G. Thus /(G) 2. The graph G. G can be divided
into two halves, each with 3 isolated copies of G. Suppose a 3-node set S dominates G. G. Since a

node can dominate only 4 nodes in its half, each half must have at least one member of S. In the

half with two members, there is a copy of G that has no members of S. Since the members in its
own half cannot dominate its nodes and at most 4 nodes can be dominated by the members in the
other half, S cannot dominate all nodes in this copy. So, 3 nodes cannot dominate G.G. Theorem
gives 3 "(G)f(G) < 9/(G" G) /(G)/(G) 4.

Because (N(G)ZN(H))j N(G)(ZN(H))j, we have that (ZN(H))j is a 2-packing
of G. Thus 1Tm(ZN(H))j <_ P2(G), and hence 1TZN(H) <_ P2(G)IT. Transposing
both sides and rearranging we obtain

N(H) (P2(C)-IzTlm)
_

ln.

Thus, P2(G)-1ZTlm is a fractional domination of H giving that

/f(H) >_ 1TnP2(G)-IZTlm P2(G)-llTmZln >_ P2(G)-Ip2(G H).

The exactness of the bounds in Theorem 2 are independent. Figs. 5 and 6 give
examples with P2(G)P2(H) P.(G. H) < P2(G)yf(H) and P2(G)P2(H) < P2(G.
H) P2 (G)/f (H).

3. Summary. Equations (1) and (2) and the theorems form a system of inequali-
ties. Where do P.(GH), /(GH), andy(GH) fit in? Since N(GH) <_ N(G.H),
replacing G. H by G H strengthens the constraints in (3) and (4), while weakening
those in (5) and (6). So P2(G H) >_ P2(G" H), /(G H) >_ /](G. H), and
/(G H) >_ /(G. H). Fig. 7 summarizes the inequalities.
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FIG. 5. The weights are both a fractional domination and a fractional 2-packing of G. Thus,
/f(G) 5/2. The 2 circled nodes are a 2-packing of G. Thus, P2(G) 2. The graph G. G can be
divided into two halves isomorphic to C4.G. Since Theorem 2 gives P2(C4.G) <_ P2(C4)f(G) 5/2,
each half has at most 2 nodes in a 2-packing of G. G. So Theorem 2 gives 4 P2(G)P2(G)
P2(G. G) < P2(G)’Tf(G)= 5.

3 0 3 08 4 2 8

FIG. 6. The left weights are a fractional 2-packing of G. The right weights are a fractional
domination. Since both sum to 5/2, /f(G) 5/2. The 2 circled nodes are a 2-packing of G. So
P2(G) 2. The 5 circled nodes are a 2-packing of G. G. So Theorem 2 gives 4 P2(G)P2(G) <
P2(G. G) P2(G)’7f(G) 5.
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FIG. 7. The big picture. The arcs indicate that for all graphs G and H, the quantity at the
head of the arc is greater than or equal to the one at the tail. The dotted arc is Vizing’s conjecture.
Quantities without a path between them are independent in that examples exists where each is larger
than the other. Many corollaries are possible, such as a result of Jacobson and Kinch [3] that for
all G and H, (G ( H) >_ /(G)P2(H).

Does Fig. 7 show all possible inequalities? Since P2(C4) < "(C4) < "7(C4), we
have P2(K1 C4) < P2(KI)/I(Ca) and yi(K Ca) < P2(K)/(C4). Purther, let Pa.
be the 3-node graph with 2 edges. Then 2 P.(Pa Pa) > 3’(Pa)y(Pa) 1. So no
relations other than those in Fig. 7 are possible (except for Vizing’s conjecture).
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NORMAL AND SELF-DUAL NORMAL BASES
FROM FACTORIZATION OF cxq+l + dxq ax b*

IAN F. BLAKEt, SHUHONG GAOl, AND RONALD C. MULLIN$

Abstract. The present paper is interested in a family of normal bases, considered by Sidel’nikov
[Math. USSR-Sb., 61 (1988), pp. 485-494], with the property that all the elements in a basis can
be obtained from one element by repeatedly applying to it a linear fractional function of the form
(x) (ax + b)/(cx + d), a,b,c,d 6 Fq. Sidel’nikov proved that the products for such a basis {ai}
are of the form aiaj ei-jai + ej-iaj + % j, where ek, 7 6 Fq. It is shown that every such
basis can be formed by the roots of an irreducible factor of F(x) cxq+l + dxq ax b. The
following are constructed: (a) a normal basis of Fqn over Fq with complexity at most 3n- 2 for each
divisor n of q- 1 and for n p, where p is the characteristic of Fq; (b) a self-dual normal basis of
Fqn over Fq for n p and for each odd divisor n of q- or q + 1. When n p, the self-dual normal
basis constructed of Fqp over Fq also has complexity at most 3p- 2. In all cases, the irreducible
polynomials and the multiplication tables are given explicitly.

Key words, finite field, irreducible polynomial, normal basis
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1. Introduction. Let N (0,1,... ,On--1} be a normal basis of Fq over

Fq, with i cq, 0 _< <_ n- 1, where q is a prime power pm, with p a prime and
m >_ 1. The multiplication of elements in Fq is uniquely determined by the n products

n--1
(O0i j=O $ijCj, tij e Fq. The n n matrix T (tij) is called the multiplication
table of N. As in [6], the number of nonzero elements in T is called the complexity
of the normal basis N, denoted by CN. In hardware and software implementations of
finite field arithmetic, normal bases of low complexity offer considerable advantages.
In [6] it is proved that CN >_ 2n- 1. When the lower bound is reached, N is called
an optimal normal basis of Fq over Fq. Two families of optimal normal bases are
constructed in [6], and in [3] it is proved that these two families are essentially all
the optimal normal bases in finite fields. Some normal bases of low complexity are
constructed in [1]. A normal basis with the smallest complexity, if no optimal normal
bases exist, is called a minimal normal basis.

This paper is interested in a family of normal bases, considered by Sidel’nikov [8],
with the property that all the elements in a basis can be obtained from one element by
repeatedly applying to it a linear fractional function of the form (x) (ax + b) / (cx +
d), a, b, c, d Fq. Sidel’nikov proved that the products for such a basis (i} are of the
form oioj ei-joi + ej_ioj + "7, : j, where ea, "7 Fq. We show that every such
basis can be formed by the roots of an irreducible factor of F(x) cxq+l +dxq-ax-b.
We construct a normal basis of Fq over Fq, with complexity at most 3n- 2 for each
divisor n of q- 1 and for n p, where p is the characteristic of Fq, and a self-dual
normal basis of Fq over Fq for n p and for each odd divisor n of q- 1 or q+ 1. When
n p, the self-dual normal basis of Fq, constructed over Fq also has complexity of at
most 3p- 2. In all cases, we give the irreducible polynomials and the multiplication
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tables explicitly. For this purpose, some properties of linear fractional functions and
the complete factorization of F(x) are discussed in 2 and 3, respectively.

2. On linear fractional functions. In this section, we discuss some properties
of the linear fractional function (x) (ax + b)/(cx + d), with a, b, c, d e Fq and
ad- bc = O. It is easy to see that (x) defines a permutation on Fq U {c}, where

aoc + b a
=-, if c : 0,

cc + d c

a+b :=, ifad:0, c=0,
cx + d
a

c, if a : 0.
0

Actually, (x) induces a permutation on Fqn {cx} for any n >_ 1. The inverse of
(x) is fl-l(x) (-dx + b)/(cx- a).

For any two linear fractional functions and , the composition , defined as
(x) ((x)), is still a linear fractional function. It is well known that all the
linear fractional functions over Fq form a group under composition, and that it is
isomorphic to the projective general linear group PGL(2, q). The order of is the
smallest positive integer t such that t(x) x, i.e., t is the identity map.

For our purpose, we deal with a linear fractional function (x) (ax +b)/(cx +d)
with c = 0. The fixed points of (x) satisfy

cx2 (a d)x b O.

The following two lemmas are easily checked.
LEMMA 2.1. Let (x) ax + b, with a = 0, 1, be a linear mapping. Then

where (x) ax and h(x) x + b/(a- 1).
LEMMA 2.2. Let (x) (ax + b)/(cx + d), with c = 0 and ad- bc # O.

A (a d)2 + 4be. Then

h-lCh,

Let

where h(x) and (x) are defined as follows:
(a) When A O, let xo be the only solution of (1) in Fq, that is, xo satisfiescx -b and 2cxo a- d. Then h(x) (a/c- xo)/(x xo) and (x) x + l.

(b) When A = O, let xo, xl be the two solutions of (1) in Fq2, and let
(a CXo)/(a cxl). Then

x xo (x)
X --Xl

The order of is now easy to determine: it is equal to the order of . If is of
the form x + 1, then the order of is equal to the additive order p of 1 in Fq, where
p is the characteristic of Fq. If is of the form x, then the order of is equal to the
multiplicative order of . In case (b) of Lemma 2.2, if A is a quadratic residue in Fq,
then x0, x E Fq, and E Fq. Hence q- 1, and the order of is a divisor of q- 1.
If A is a quadratic nonresidue in Fq, then xo, x e Fq2 \ Fq and x x, x x0.
Thus q ((a cxo)/(a CXl))q (a cx)/(a cx) (a cx)/(a cxo) 1/.
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So q+l 1, and the order of divides q + 1. Therefore, the order of is always a
divisor of p, q- 1, or q + 1.

LEMMA 2.3. Let a,b,c,d E Fq with c O, and ad-bc 7 O. Let (x)
(ax + b)/(cx + d), with order t. Then, for 1 <_ <_ t 1,

i, eix + b/c a- d
() ei -t- et_i

x et-i c

where el a/c and ei+l (ei) for 1,. ..,t 2.

Proof. It is routine to prove by induction on that there exist ei, fi Fq with

e a/c, f d/c such that

i (x) eix + b/c
x+f

and

a-d
ei-Ji , ei

for 1,..., t- 1, where eo oc. Note that

+ -f x +
x zt- ft-i X- ei

We see that fi -et-i. This completes the proof.
LEMMA 2.4. With the same notation as in Lemma 2.3, we have that

(3)

(t 1)(a d)/(2c),
t-

a/c d/c,E ej (a-d)/c,
J= O,

if p 2,
if p=2 and t 2,
if p=2 and t 3 mod 4,
ifp=2 and t --- l mod 4,

where p is the characteristic of Fq.
Proof. We consider two cases according to the type of (x).
Case I. A (a-d)2 +4bc 0. Then t p and, by Lemma 2.2, (x) h-lh(x),

where

2(x) x + l, h(x) a/c- xo h-l(x) xo + a/c- x
x X0 X

with Xo satisfying 2cxo a- d and CX2o -b. Note that 2i(x) x + i. We have that

i(x) h-h(x)

x x0

xo -ixo)x
ix + (a/c xo ixo)

So

ale Xo
+x0, forl<i<t-1.



502 I.F. BLAKE, S. GAO, AND R. C. MULLIN

Therefore,

p-1 p-1

(- )xo + (a/- xo) i-i--1 i--1

p--1

(p- 1)xo + (/- xo)i
i--1

{ a/c
(p -=l)Xd/c,-(t- 1)(a- d)/(2c), ifp 2,

if p- 2.

Case II. A (a d)2 + 4bc : O. In this case, the order t of (x) is a factor of
q 1 or q + 1. So t 0 mod p. By Lemma 2.2, (x) h-lh(x), where

h(x)
x- xo, (x) x, a/c- xo
X Xl a/c Xl

with xo + Xl (a d)/c and XoXl -b/c. Note that h-l(x) (XlX xo)/(x 1)
and i(x) ix. We have that

99 (x) h-1ih(x)

( o/ o(- )
( 1)x + x x0

So

Xl xo Xl xo
-1 =xl+ i-1

for l<_i<_t-1,

and

t-1 t-1
1Eei (t- 1)xx + (x0 Xl) E 1 i"i=1 i=1

Because is a tth primitive root of unity, we have that

(4)
t-1

I(x- ) (x 1)/(x- 1) xt-1 + xt-2 +... + x + 1.
i--1

Letting x 1 in (4), we obtain the following:

t--1

(5) H(1 i) t.
i=1

Taking derivatives with respect to x on both sides of (4), we have that

(6) IIl(X i) 1

\i=ix-i
=(t-1)xt-2+(t-2)xt-3+...+2x+l.
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Letting x 1 in (6), we see that

/t= i,
i=1 \i=l O,

(note that t is odd when p 2). Therefore,

ifp = 2,
ifp 2 and t-- 3 mod 4,
ifp 2 and t-- 1 mod 4,

t-i f ((t 1)/2)(x0 + Xl) (t 1)(a d)/(2c), if p = 2,

E ei i xo xi (a d)/c, ifp=2andt_--3mod4,
i=l 0, ifp 2 and t 1 mod 4.

This completes the proof.
The following theorem is proved by Sidel’nikov [8, Thm. 2].
THEOREM 2.5. Let a,b,c,d E Fq, with c = 0 and ad- bc = O. Let 0 be a

root ofF(x) cxq+i + dxq- ax-b in some extension field offa not fixed by
(x) (ax + b)/(cx + d), whose order is assumed to be t. Then

are linearly independent over Fq, if i=o () # O.
This theorem indicates that if we can factor F(x), then we can obtain normal

bases over Fq. The factorization of F(x) is discussed in the next section.

3. Factorization of cxq+l +dxq-ax-b. The complete factorization of F(x)
cx+1 + dxq -ax- b, a, b, c, d E Fq, into irreducible factors was established by Ore [7,
pp. 264-270], using his theory of linearized polynomials. In this section, we briefly
discuss how this can be done without resorting to linearized polynomials. For the
detail, the reader is referred to [2]. To exclude the trivial cases, we assume that
ad- bc = O. Let (x) (ax + b)/(cx + d) be the linear fractional function associated
with F(x). As noted in 2, (x) induces a permutation on F U {oo}, for any n >_ 1.
We assume that the order of is t in this section.

Let 0 be a root of F(x) (cx + d)xq (ax + b). Then

aO+b
cO+d

Note that

By induction, we see that 0 i(0), _> 0. So

are all the conjugates of 0 over F. If 0 is a fixed point of (x), then 0 E Fq, and
x- 0 is a factor of F(x). If 0 is not a fixed point of (x), then, by Theorem 2.5,
the elements of (7) are distinct and 0 is of degree t over F. In the latter case, the
minimal polynomial of 0 over Fq is an irreducible factor of F(x) of degree t. So an
irreducible factor of F(x) is either linear or of degree t. We first deal with two special
cases.

THEOREM 3.1. Let Fq \ {0}, with multiplicative order t. Then the following
factorization over Fq is complete:

(-l)/t

II
j=l
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where j are all the (q- 1)/t distinct roots of X(q-1)/t- in Fq.
Proof. Let 0 be a root of xq-1 - in some extension field of Fq.

0i, _> 1. All the distinct conjugates of 0 over Fq are 0, 0,..., Ot-1.
polynomial of 0 over Fq is

Then 0q’

The minimal

t-1

l-[(x x
i=0

which divides Xq-1 . This means that any irreducible factor of x-1 is of the
form x , where/ E Fq. Note that x divides xq-1 , if and only if/ is a

root of x(q-1)/t . This completes the proof.
THEOREM 3.2. For xq (x + b) with b F, the following factorization over Fq

is complete:

(8)
q/p

Xq (X + b) H(xp bp-lx bPj),
j=l

where j are the distinct elements ofF with Trq/p(j) 1 and p is the characteristic

Proof. Let 0 be a root of F(x) xq (x + b). Then 0 0 + ib, >_ 1. So the
conjugates of 0 over Fq are 0, 0 + b,..., 0 + (p- 1)5. The minimal polynomial of 0
over Fq is

Hence, an irreducible factor of xq (x + b) is of the form

(9) xp bp-lx- /, t Fq.

Let be a root of (9) in some extension field of Fq. Then we have that

(10) () -() l_<i_<rn,

where q- pro. Summing (10) yields

",/P’-",/=bTrq/p(-).
Consequently, (9) divides F(x) xpI -x- b if and only if Trq/p(/bp) 1.

Note that there are q/p pro-1 elements / in Fq with trace 1, and the proof
is completed.

In general, we show that the factorization of F(x) can le reduced to factoring
xq -x- 1, x-1- , or xq+l- . Let h-l2h, as in Lemmas 2.1 and 2.2. For any
root 0 of F(x) that is not fixed by , we have that

(11) h(Oq) (h(0)).
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If A is a quadratic residue in Fq, then h(O) (h(O))q. Thus h(O) is a root of
xq-x-1 orxq-x=x(xq-l-), when(x) =x+l or(x)-x, e Fq. So,
by the factorization of xq x- 1 and xq- - as in Theorems 3.1 and 3.2, we obtain
the factorization of F(x) as follows.

THEOREM 3.3. For a, b E Fq with a = 0, 1, the following factorization over Fq is
complete:

)a-1
j=l

X
a--1

where t is the multiplicative order of a, and 3j are all the (q- 1)It distinct roots of
x(-)/t -a.

THEOREM 3.4. For a, b, c, d F, with c : 0, ad-bc O, and A (a-d)2+4bc-
0, the following factorization over Fq is complete:

(cx + d)x (ax + b)
q/P

[ 1
(x xo).HI.= (x xo)p + -j(a/c- Xo)(X x0)p-1

1 ]j (a/c xo)p

where xo F is the unique solution of (1), and/j are all the q/p distinct elements

of Fq with Tr/p(Zj)- 1.
THEOREM 3.5. For a, b, c, d F, with c # O, ad-bc : 0, and A (a-d)2+4bc :

0 being a quadratic residue in Fq, the following factorization over Fq is complete:

(cx + d)x (ax + b)
(q-1)/t

1
(x-xol(x-x ) I-[

j--1

x0) Z (x ],

where Xo, X e Fq are the two distinct roots of (1), t is the multiplicative order of
(a- cxo)/(a- cxl), and j are all the (q- 1)It distinct roots of x(-)/t- in

If A is not a quadratic residue in Fq, the situation is a little more complicated,
as in this case x0, xl, Fq. Noting that x x and x x0, we have that
h(Oq) (1/h(0)). Equation (11) implies that 1/h(O) is a root of xq+ . So,
by factoring xq+- over Fq., we can obtain the factorization of F(x) over Fq:.
Then by "combining" these factors, we obtain the factorization of F(x) over Fq as in
Theorem 3.6.

THEOREM 3.6. For a, b, c, d Fq, with c 0, ad-bc : 0, and A (a-d)2+4bc :
0 being a quadratic nonresidue in Fq, the following factorization over Fq is complete"

+ d)x"- (ax +
(+)/

1
(12) H 1_--j [(x x)t j(x xl)t],

j--1

where x0, x . gq2 are the two distinct roots of (1), t is the multiplicative order of
(a- cx)/(a- cx0), and/j are all the (q + 1)It distinct roots of x(q+)/t- in

Let f(x) be any nonlinear irreducible factor of F(x) of degree t, and let a be
a root of f(x). From. the discussion at the beginning of this section, we see that
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T’(a), 0, 1,..., t-- 1 are all the roots of f(x) and, by Theorem 2.5, they are linearly
independent over Fq if Tr(a) : 0. However, Tr(a) is just the negative of the coefficient
of Xt-1 in f(x). By examining the factors in the above explicit factorizations, we have
the following theorem.

THEOREM 3.7. Let F(x) (cx + d)xq (ax + b), with a, b, c, d E Fq, c # O, and
ad- bc : O. Then a monic nonlinear irreducible factor f(x) of F(x) of degree t has
linearly dependent roots over Fa if and only if the coefficient of xt-1 in f(x) is zero.
The latter happens only if A (a d) 2 + 4bc : 0 and f(x) is of the form

Xl XO

where xo and xl are solutions of (1).
This shows that every nonlinear irreducible factor of F(x) with one possible ex-

ception, has linearly independent roots.

4. Normal bases. As Theorem 3.7 shows, when c : 0, the roots of an irre-
ducible nonlinear factor of F(x) form a normal basis over Fq (with the possible excep-
tion of one factor). This section is devoted to discussing the properties of these bases.
We show how to construct a normal basis of Fn over F with complexity at most
3n- 2 for n p, and for each divisor n of q- 1. For this purpose, we first compute
the multiplication tables of the normal bases formed by the roots of an irreducible
factor of F(x).

Without loss of generality, we assume that F(x) x+1 + dxq -ax- b with
a, b, d e Fq and b ad.-Assume that (x) (ax + b)/(x + d) has order n and that,
by Lemma 2.3, (x) (ex + b)/(x en-), with e -X(a), 1 <_ <_ n 1. Let
f(x) be any irreducible nonlinear factor of F(x) and a a root of f(x). Then f(x) has
degree n and its roots are the following:

c=aq i=0,1 n-1.

They form a normal basis of Fn over F if the coemcient of xn-1 in f(x) is not zero

(or Tr(c) = 0), by Theorem 3.7.
THEOREM 4.1. Let F(x) xq+ + dxq (ax + b), with a, b,d Fq and b = ad.

Let f(x) be an irreducible factor of F(x) of degree n > 1 and let be a root of it.
Then all the roots of f(x) are the following:

(3) (i=a
q =i(a), i--0,1,...,n-1,

n-1where (x) (ax+b)/(x+d). If T }-=0 , the negative of the coejficient of xn-1
in f(x) is not zero. Then, (13) form a normal basis of Fq over Fq such that

O0 T* --en--1 --e,n--2 --el O0

01 el en-1 01

14) s0 O2 e2 en-2 a2 +

On--1 en--1 el On--1

where el a, e+ (e) (i >_ 1), b* -b(n 1), and T* T-- with

(n 1)(a d)/2,
n--1

i=1
O,

ifp: 2,
ifp= n= 2,
if p=2 and n-- 3 mod 4,
if p=2 and n-- l mod 4.
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Proof. We must only prove (14). By Lemma 2.3, for > 1,

eio0 + b
a a)

00 en--i

So

aoOi eiOo + en-iOi + b.

For i 0, we have that

0000 O0

j=l j=l j=l

The theorem follows from Lemma 2.4. D
The next theorem can be viewed as the "converse" of Theorem 4.1.
THEOREM 4.2. Let n > 2 and ai aq*, for 0 <_ i <_ n- 1. Suppose that {ai} is

a normal basis of Fqn over Fq and satisfies the following:

(5) ctiOzj aijozi + bijctj + /ij, for all 0 < = j < n 1,

where aij, bij, 7ij E fq. Then there are constants 7, el, e2,..., en-1 E Fq such that
(a) ei (ei-1), for 2 <_ <_ n- 1, and

aij ej-i, bij ei-j, /ij ", for all i j,

where (x) (elX --7)/(x- en--1), and the subscrots of e are calculated modulo n;
(b) The minimal polynomial of a is a factor ofF(x) xq+l-e,,_lxq-(elx+7),

and thus n must be a factor of p, q- 1, or q + 1.

Proof. Let ek aok and Yk Y0k for k 1, 2,..., n- 1. Then

(16) aOak ekao -+- boak +

Raising (16) to the qn-kth power on both sides, we have that

(17) OzOOZn-k bokao + ekCtn-k nt- ")’k.

Subtracting (17) from (16), with the k in (16) replaced by n- k, gives

(18) (en-k bok)ao + (bon-k ek)an-k + 3’n-k 7k O.

Because n > 2 and the ai’s are linearly independent over Fq, (18) implies that

bok en-k, 7k --n-k, 1 <_ k <_ n- 1.

Therefore,

(9) aOak ekCto + en-kCtk -t-7k, 1 <_ k < n- 1.

Now, for any = j, raising (19) to the qith power and letting k j i, we have
that

(20) OiOj ej_iai + ei-j ctj --[- 7j-i.
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Comparing (20) and (15) gives

(21) aij ej-i, bij ei-j, /ij /j-i,

which proves part of (a).
We prove the remaining part of (a) together with (b). To this purpose, note that

a special case of (20) is

O O + en-lOi+l -]- e C -t- /1, 0 <_ < n 1,

or

(22) Oi+ (9(Oi) 0 < Tt- 1,
Oi en--

where (x) (elx + )/(X- en_l) with 7 71. So, by induction on i, we see that
ai ai(a0) i(a), 0 _< <_ n- 1. We know, by Lemma 2.3, that

(x) (aix +/)/(X- an_i), O <_ i <_ n-1,

where ai p(ai-1), for _> 1, and al el. Thus (22) implies that

aia0 + "O
00 an-i

(23) a0ai aia0 + an-lOCi + /.

Comparing (23) to (19), we have that

This proves (a). For (b), note that o Oq, and that (19) with k 1 means a is
a root of F(x) xq+l -en_lX -elX- /. Therefore, the minimal polynomial of a
divides F(x). This completes the proof.

THEOREM 4.3. For every a, E F with Trq/p() 1,

1 lap(24) xp -axp-is irreducible over Fq, and its roots form a normal basis of Fqp over F with complexity
at most 3p- 2. The multiplication table is

T* --ep_ mep_2

el ep-1

(25)

ep_

"where el a, ei+l (ei) for >_ 1, (x) ax/(x + a), and * a/ if p = 2 or

a/- a if p=2.
Proof. Let F(x)= (x + a)xq -ax and (x)= ax/(x + a). Then, F(x) satisfies

the conditions of Theorem 3.4 with b 0, c 1, d a, A 0, and x0 0. So,
(24) is an irreducible factor of F(x). As the coefficient of xp-1 in (24) is -a/ = 0,
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by Theorem 4.1, the roots of (24) form a normal basis and its multiplication table is

(25). The complexity is obviously at most 3p- 2. D
THEOREM 4.4. Let n be any factor of q- 1. Let E Fq with multiplicative order

t such that gcd(n, (q 1)/t) 1 and let a (-1)/,. Then

(26) X
n 13(x a + 1)n

is irreducible over Fq and its roots form a normal basis of FaN over Fq of complexity
at most 3n- 2. The multiplication table is

T* --en--1 --en--2

el en_l

(27) e2 e-2

n--1

where el a, e+ (e) (i >_ 1), (x) ax/(x+l), and * -n(a-1)/(1-)-e,
with specified as in Theorem 4.1 (with d 1).

Proof. It is easy to see that a has multiplicative order n. Then (x) ax/(x + 1)
has x0 0 and Xl a- 1 as fixed points, and (a- Xo)/(a- x) a has order
n. So has order n. Note that/3 is a root of x(-l)/n -a. By Theorem 3.5, the
polynomial (26) is an irreducible factor of F(x) x+1 + x -ax. Note that the
coefficient of xn-1 in (26) is n(a- 1) = 0. By Theorem 4.1 (with b 0, d 1), the
roots of (26) form a normal basis of Fq over Fq, and its multiplication table is (27).
The complexity is obviously at most 3n- 2. D

Table 1 is the result of a computer search for the minimal complexity of normal
bases. It indicates that when nl(q 1), the minimal complexity is often 3n- 3 or
3n- 2. This indicates that the normal bases constructed in Theorems 4.3 and 4.4
often have complexity very close to the minimal complexity. In the table, ] indicates

TABLE

q 5 7 7 11 11 13 13 17 19
n 4 3 6 5 10 3 4 4 3
min 9 6 16 12 28 6 7, 7* 6

that the minimal complexity is 3n- 2, and, indicates optimal complexity, i.e., 2n- 1.
Other minimal values are of the form 3n- 3.

5. Self-dual normal bases. A basis B {0,l,...,n-1} is called a dual
basis of A {a0, c1,..., a,-1} if Tr(aij) 5ij 0 for # j, and 1 for j, where

Tr is the trace function of Fqn into Fq, defined as Tr(a) a + a +..-+ aqn E
Fq, a Fq.. We can prove that, ibr each basis A of Fq. over F, there is a unique
dual basis. Also, if A is normal then so is its dual. If the dual basis of A coincides
with A, then A is called a self-dual basis, that is, a basis A {hi} is called self-dual
if Tr(aaj) 5j. Lempel and Weinberger [5] proved the following theorem.

THEOREM 5.1. A self-dual normal basis of Fq over Fq exists if and only if one
of the following conditions is satisfied:

(a) q is even and n is not a multiple of 4;
(b) both q and n are odd.
Later, Jungnickel, Menezes, and Vanstone [4] determined the total number of

self-dual bases and self-dual normal bases of Fq over Fq.
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However, the proofs of these results are not constructive. In this section, we
construct a self-dual normal basis of Fq, over Fq for every n in the following cases:

(a) n p, the characteristic of F;
(b) n[(q- 1) and n is odd;
(c) nl(q + 1) and n is odd.
THEOREM 5.2. Let N {ao, al,’",an-1}, with aq, be a normal basis of

Fq over Fq satisfying

oiozj ej-ii + ei_jozj + ", for all = j,

where el, e2,..., en-1, e Q. Let - Tr./(a) and ik -(el--en_l)--?’[/T. Then

( +)( + ) i= o, ,...,-

is the dual basis of N.
Proof. Note that, for : j,

and

Tr()( +)- (( + ))
j=i

r(r + n).

The result is proved. D
We now proceed to determine when the roots of an irreducible factor of F(x)

x+ + dx -ax- b form a self-dual normal basis. Let {c0, c,..., c,_ } be a normal

basis generated by a root ( of F(x) with ai a, and let T Trl(). By
Theorem 4.1 and Lemma 2.3, we have, for - 0, that

(28)

Trqn/q(OoOQ) eiTr(oo) -- en_iTr(oi) -- nb(ei + en-) + nb

T(a d) + nb,

and

(29)

Trq,/q(aOaO) -(T- ) ’- nb(n- 1)

_2 (n 1)(z-(a d) + nb),
if p 2,
ifp : 2.
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Therefore, a generates a self-dual normal basis if - Tr(a) 1 and (a- d)+ nb O.
By examining the irreducible factors in Theorems 3.4-3.6, we find that these two
conditions can be satisfied. More explicitly, we have the following three results.

THEOREM 5.3. For any E F with Trq/p(/) 1,

(30) xp xp- p-

is irreducible over Fq, and its roots form a self-dual normal basis of Fqp over Fq with
complexity at most 3p-2. The multiplication table is (25) where e , e+
(i_>l),p(x)=x/(x+/), and T* l if p : 2 or -* l if p= 2.

Proof. Let F(x)= (x + )xq- x. Then, by Theorem 3.4, the polynomial (30)
is an irreducible factor of F(x) (where b 0, c 1, d a f, x0 0 and
Since a- d b 0 and T 1 in (28) and (29), the roots of (30) form a self-duM
normal basis. Its multiplication table is (25), by Theorem 4.1.

THEOREM 5.4. Let n be an odd factor of q- 1 and F of multiplicative order
n. Then there exists u F, such that (32)(-)/n . Let Xo (1 + u)/n and

+  ot no.  at
1

)n(31)
1 U2 [(X X0)

is irreducible over Fq and its roots form a self-dual normal basis of Fq over Fq. The
multiplication table is (14) with a (x0 Xl)/(1 ), b -XoXl, d a (xo + xl),
and - 1.

Proof. We first prove that there exists at least one root of x(q-)/n that is a

quadratic residue in Fq. Let be a primitive element in Fq. Let t be an odd factor
of q 1 such that nit and gad(n, (q- 1)/t) 1. Then 0 (q-)/t is a tth primitive
root of unity. Since t is odd, is also a tth primitive root of unity. Let d tin.
Then there is an integer i such that (2o)id , that is,

((q-1)/t)2id (2i)(q-1)/n .
So 2i is a root of X(q-1)/n -- and is a quadratic residue in Fq. Therefore, we can
take u- i.

Now, by applying Theorem 3.5, we see that (31) is an irreducible factor of F(x)
(x + d)xq (ax + b). The negative of the coefficient of xn- in (31) is

1 -u2

By Theorem 4.1, the roots of (31) form a normal basis of Fq over F with the claimed
multiplication table. Note that

a d xo + x nxoxl -nb,
n nu nu

that is, 7(a d) + nb 0. It follows from (28) and (29) that the roots of (31) form a

self-dual normal basis. D
THEOREM 5.5. Let n be an odd factor of q + 1, and let Fq2 be a root of

xq+l- 1 with multiplicative order n. Then there is a root u of xq+- I such that
(U2) (q+l)/n . Let x0 (1 + u)/n and x (1 + u)/(nu). Then

1
)n(32)

1 U2 [(X XO)n U2(X Xl
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is in Fq[x] and is irreducible over Fq, with its roots forming a self-dual normal basis of
F over F. The multiplication table is (14) with a (Xl- x0)/(1- ), b -xox,
d a- (x0 + XX), and T 1.

Proof. The proof of the existence of u is similar to that in the proof of Theorem 5.4,
by taking to be a (q + 1)th primitive root of unity in F. We next prove that
a, b, d F and (32) is in F[x]. Note that , u, and u2 are all (q + 1)th roots of unity,
and we have q 1/, uq I/u, and (u2) 1/u2. Thus x x and x xo. So
aq a, b b, and dq d, that is, a, b, d e Fq. Denote the polynomial (32) by (x)
and note that

1
)n((x))q

1 (u2)q
[(xq x (u2)q(x x)

1
[(xq Xl)n 1/u2(x x0)n

1 1/u

We see that the coefficients of (x) are in Fq.
To prove that (32) is irreducible over F, we apply Theorem 3.6. It is easy to

confirm that, with a, b, d as defined in Theorem 5.5, x0 and x are the two distinct
solutions of (1) with c 1 and (a- xl)/(a- x0) c, which is of order n. Now, since
u2 is assumed to be a solution of x(+l)/q , it follows from Theorem 3.6 that (32)
is an irreducible factor of F(x) (x + d)x (ax + b).

As the coefficient of xn- in (32) is (-nxo + nu2xl)/(1 -u2) -1, the trace of
any root of (32) is T 1. It is easy to confirm that T(a- d) + nb 0. It follows from
(28) and (29) that the roots of (32) form a self-dual normal basis. The multiplication
table follows from Theorem 4.1. [:]

REFERENCES

[1] D. W. AsH, I. F. BLAKE, AND S. A. VANSTONE, Low complexity normal bases, Discrete Appl.
Math., 25 (1989), pp. 191-210.

[2] I. F. BLAKE, S. GAO, AND R. C. [ULLIN, Factorization of cxq+l + dxq- ax- b and normal
bases over GF(q), Research report CORR91-26, Faculty of Mathematics, University of
Waterloo, Waterloo, Ontario, 1991.

[3] S. GAO AND n. W. LENSTRA, JR., Optimal normal bases, Designs, Codes and Cryptography, 2
(1992), pp. 315-323.

[4] D. JUN(]NICKEL, A. J. MENEZES, AND S. A. VANSTONE, On the number of self-dual bases of
GF(qTM) over GF(q), Proc. Amer. Math. Soc., 109 (1990), pp. 23-29.

[5] A. LEMPEL AND M. J. WEINBERGER, Self-complementary normal bases in finite fields, SIAM
J. Discrete Math., 1 (1988), pp. 193-198.

[6] R. C. MULLIN, I. M. ONYSZCHUK, S. A. VANSTONE, AND R. M. WLSON, Optimal normal bases
in GF(pn), Discrete Appl. Math., 22 (1988/1989), pp. 149-161.

[7] O. ORE, Contributions to the theory of finite fields, Trans. Amer. Math. Soc., 36 (1934),
pp. 243-274.

[8] V. M. SIDEL’NIKOV, On normal bases of a finite field, Math. USSR-Sb., 61 (1988), pp. 485-494.



SIAM J. DISCRETE MATH.
Vol. 7, No. 3, pp. 513-530, August 1994

() 1994 Society for Industrial and Applied Mathematics
015

ROUTING PERMUTATIONS ON GRAPHS VIA MATCHINGS*
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Abstract. A class of routing problems on connected graphs G is considered. Initially, each
vertex v of G is occupied by a "pebble" that has a unique destination (v) in G (so that r is a

permutation of the vertices of G). It is required that all the pebbles be routed to their respective
destinations by performing a sequence of moves of the following type: A disjoint set of edges is
selected, and the pebbles at each edge’s endpoints are interchanged. The problem of interest is to
minimize the number of steps required for any possible permutation r.

This paper investigates this routing problem for a variety of graphs G, including trees, complete
graphs, hypercubes, Cartesian products of graphs, expander graphs, and Cayley graphs. In addition,
this routing problem is related to certain network flow problems, and to several graph invariants
including diameter, eigenvalues, and expansion coefficients.

Key words, eigenvalues, diameters, expanders
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1. Introduction. Routing problems on graphs arise naturally in a variety of
guises, such as the study of communicating processes on networks, data flow on parallel
computers, and the analysis of routing algorithms on VLSI chips. A simple (though
fundamental) problem of this type is the following. Suppose we are given a connected
graph G (V, E), where V and E represent the vertex and edge sets, respectively, of
G. We denote the cardinality IVI of V by n. Initially, each vertex v of G is occupied
by a unique marker or "pebble" p. To each pebble p is associated a destination
vertex (v) E V, so that distinct pebbles have distinct destinations. Pebbles can
be moved to different vertices of G according to the following basic procedure: At
each step a disjoint collection of edges of G is selected and the pebbles at each edge’s
two endpoints are interchanged. Our goal is to move or "route" the pebbles to their
respective destinations in a minimum number of steps.

We imagine the steps occurring at discrete times, and we let pv(t) V denote the
location of the pebble with initial position v at time t 0, 1, 2, Thus, for any t,
the set {pv(t) v V} is just a permutation of V. We denote our target permutation
that takes v to (v), v V, by . Define rt(G, ) to be the minimum possible number
of steps required to achieve r. Finally, define rt(G), the routing number of G, by

rt(G) max rt(G, ),

where r ranges over all destination permutations on G. (Sometimes we also call a

routing assignment.)
In more algebraic terms, the problem is simply to determine for G the largest

number of terms - (uv)(uv:)... (uv) ever required to represent any permuta-
tion in the symmetric group on n IV symbols, where each permutation T consists
of a product of disjoint transpositions (uav) with all pairs {u,va} required to be
edges of G.
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To see that rt(G) always exists, let us restrict our attention to some spanning
subtree T of G. It is clear that if p has a destination that is a leaf of T, then we
can first route p to its destination u, and then complete the routing on T \ {u} by
induction.

In this paper, we investigate routing on a variety of graphs. These include
trees, complete graphs, complete bipartite graphs, hypercubes, Cartesian products
of graphs, Cayley graphs, and expander graphs. We also consider a related continu-
ous version of the routing problem, the so-called flow problem, which is of independent
interest. Furthermore, we relate the routing problem on a given graph to several in-
variants of it, including its diameter, its resistance, and its expansion coefficients and
eigenvalues.

2. General bounds on rt(G). To begin, an obvious lower bound on rt(G) is
the following:

(1) rt(G) >_ diam(G),

where diam(G) denotes the diameter of G, i.e., the number of edges in a longest path
in G. It would be interesting (but probably difficult) to characterize graphs for which
this equality holds.

Suppose C is a cutset of vertices, and let A and B be subsets of V separated by
the removal of C. Then

2
(2) rt(G) >_ - min(IAI, Igl).

This follows by considering the permutation that maps all pebbles starting in

IA[ into IBI (where we assume, without loss of generality, that IAI _< Igl). nl pebbles
in A (i.e., those pi with pi(0) E A) must pass through some vertex v of C, and it takes
two steps for pi to pass through v: one to move it from A onto v, and one to move it
from v into B (which exchanges it with some pebble from B).

Almost the same argument applies if C is a cutset of edges of G, giving the
following similar bound:

2
rt(G) >_ - min(IAI, ]BI) 1.

This is tight for paths of even length.
Let #(G) denote the size of a maximum matching in G. For a routing assignment, define D(G, 7) by

D(G, r) := E da(v, r(v)),
v

where da is the usual (path-) metric on G. Then, setting

D(G) := maxD(G, ),

we have the bound

This can be seen by noting that D(G) can only be decreased by at most 2#(G) at
each step.
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Since for any spanning subgraph H of G we have

t(a) <_ t(H),

then rt(G) is bounded above by rt(T) for any spanning subtree of G. For any graph
G on n vertices, this last quantity is less than 3n, by Theorem 1, below. We next
consider the routing number of trees.

3. Trees. Let T(n) denote some arbitrary fixed tree on n vertices. The following
result gives a reasonably good upper bound on rt(T(n)).

THEOREM l.

(3) rt(T(n)) < 3n.

Proof. We need the following simple and known fact, which can be easily proved
(by induction, for example).

Fact. For any tree T on n vertices, there always exists a vertex z of T (see Fig. 1)
such that each subtree Ti formed by removing z (and all incident edges) satisfies

(4) ITI
_

n/2.

Z

FIG. 1. Decomposing a tree T.

The proof of Theorem 1 is by induction on n ITI. Let us apply (4) and let
T’ denote any one of the subtrees T. Consider a pebble p pv(0) initially placed
on a vertex v of T’. Let us call p proper if the destination of p under the routing
assignment belongs to T’; otherwise, call p improper. For the special vertex z (the
"root"), the pebble pz(0) is classified as improper.

Our first objective is to move all improper pebbles in (each) T’ toward z’, the
vertex of T’ adjacent to z, so that the vertices they occupy form a subtree T" of T’
containing z’.

CLAIM. The subtree T" in T’ can be formed in at most IT’I steps.
Proof of Claim. Let z vl, v2,..., v, be the vertices on some path M in T.

After the ith step in the process (i.e., after "time i"), there is a certain distribution
of pebbles on M. We let p(v, i) denote the pebble occupying vertex v at time i.
More generally, we use the index i to denote the value of a parameter at time i. In
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particular, let I(i) denote the set of improper pebbles on M at time that are further
from z than some proper pebble on M (where distance on T is measured by the usual
path metric, i.e., the number of edges in the unique path connecting two vertices).
Let x(i) denote the set of all improper pebbles in T that are not in the path M.
Also, let P(i) denote the set of proper pebbles on M that are closer to z than some
improper pebbles on M. Further, let C(i) denote the set of proper pebbles p on M
that are adjacent to an improper pebble on M further from z. Finally, define the
function (i), called the potential, by

(i) := II(i)l + IP(i)l + min{IP(i)l, Ix(i)l}

For example, for the distribution (on the path M) shown in Fig. 2 (where denotes a
proper pebble, and o denotes an improper pebble) we have: III= 6, IPI 5, ICI 3,
and (assuming xl >_ 5) 13.

FIG. 2. Pebbles in a path.

The algorithm we employ for reaching the desired state is simply a greedy algo-
rithm: Whenever we can interchange an improper and proper pebble so as to bring
the improper pebble closer to z, we do it. More specifically, at each step we choose
a maximal set of disjoint pairs of this type, and perform the interchanges. We now
argue that if we have not yet reached the desired state (i.e., the set of all improper
pebbles in T does not yet span a subtree of T containing z), then the potential (i)
(computed for some specific path M to be chosen later) must decrease at the next
step.

To see this, observe that since our greedy algorithm must eventually terminate,
we can find some improper pebble/5 that is moved during the last step. Consider the
path M (z’ Vl,..., Vm), where v, is the location of i5 at time 0, i.e., p(v,, O) .
By the definition of our algorithm, no improper pebble is ever moved off of M. On
the other hand, it is quite possible that new improper pebbles are moved onto M.
Let us denote the pebble distribution on M in terms of alternating blocks of improper
and proper pebbles (see Fig. 3). Pj denotes the jth block of proper pebbles (with size

FIG. 3. Pebbles on M.

IPj I) and/ denotes the jth block of improper pebbles. Each Pj and Ij, 1 <_ j <_ r, is
nonempty (although I0 may be empty). By definition, (i) depends only on x(i), Pj
and Iy, 1 _< j <_ r, and is given by

(i) IIj[ q- E IPJl r + min IPj I, Ix(i)l
j=l j= j=

Now, when we go to time + 1, various changes in M can occur. To begin, the last
(i.e., right-most) proper pebble in each Pj is replaced by some improper pebble, either
the first pebble in I or some other improper pebble from outside of M. Observe that



ROUTING PERMUTATIONS ON GRAPHS VIA MATCHINGS 517

if II(i)l increases during a step, then both IP(i)l and Ix(i)l must decrease by at least
the same amount. By keeping track of all the possible changes that can occur at the
next step, it is not difficult (though it is somewhat tedious) to verify that in all cases,
(i + 1) _< (i)- 1. We omit the somewhat lengthy details. Since the potential can
never exceed, by definition, the number of vertices in T, this completes the proof of
the claim.

The next step in the proof of Theorem 1 is to move each component’s improper
pebbles to their correct components. With T1,..., Tr denoting the subtrees formed
by the removal of the root z, let [(Tj) denote the set of improper pebbles in Tj, and
let P(Tj) denote the set of proper pebbles in Tj. It can easily be shown that using
at most three steps, two improper pebbles can be moved to their correct destination
components. In fact, if t denotes the largest II(Tj)I, then we can move at least 2t
improper pebbles to their correct destination components in at most 2t / 1 steps.

Following this procedure, we can guarantee that all pebbles are in their correct
components (and z is occupied by its proper pebble) in at most

)l[(Tj)l-2t +2t+1

steps.
Note that by the claim, T" can be formed (in T) in at most Tj steps.
Now, since by induction each Ty can now be routed in fewer than 3Tj steps, then

they can all be routed (in parallel) in fewer than 3 max Ty steps. Thus, T can be
routed in less than

)
steps. However, maxy ]Ty]- t does not exceed the number of proper pebbles in the
largest subtree. Let y denote this number of proper pebbles. Then, clearly

and hence the previous quantity is at most

33(n_l_y)+l+3max]Tj< n + 3(n/2) 3n

This completes the induction step; since (3) holds for n 2, Theorem I is proved.
The bound in Theorem 1 can perhaps be improved. For example, it seems clear

that one should not wait to start moving pebbles across z and routing within T’s
until all improper pebbles in each T have been moved close to z (i.e., all of these
steps can be made in parallel). In fact, the correct vMue of the constant may be half
as large, as suggested by the following conjecture.

Conjecture. For any tree T on n vertices,

(6) rt(T)< [3(n 1)]2

Furthermore, we suspect that the equality can only be achieved when the tree is

the star S on n vertices.
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The fact that equality in (6) holds for Sn was pointed out to us by Goddard [7].
This can be seen as follows.

Denote the center of the star Sn by x. Each cycle (al... at) of r > 2 vertices not
containing x requires exactly r + 1 steps to achieve the desired routing. If (al at)
contains x, then exactly r steps are required. Therefore

rt(S, ) n- 1 + t,

where t denotes the number of cycles of r of size at least 2 that do not contain x.
Since t_< n-1[J, we obtain the desired bound.

For the case where Tn is a path Pn on n vertices, our routing problem reduces
to a well-studied problem in parallel sorting networks (see [9] for a comprehensive
survey). In this case, it can be shown that rt(Pn) n. In fact, any permutation 7r

on Pn can be sorted in n steps by labelling consecutive edges in Pn as el, e2,..., en-1
and only making interchanges with even edges e2k on even steps and odd edges e2k+l
on odd steps.

4. Complete graphs. Let Ku denote the complete graph on n vertices. In this
case, because Kn is so highly connected, the routing number K is as small as we
could hope.

THEOREM 2. For the complete graph Kn on n > 3 vertices,

(7) rt(Kn) 2.

Proof. To see that rt(Kn) > 2, it is enough to consider the permutation r (abc)
consisting of a 3-cycle on K. It is clear that such a r cannot be achieved in a single
step.

To show that rt(In) <_ 2, it suffices to show that any cyclic permutation can be
achieved in two steps, since any permutation r can be factored into disjoint cycles,
which can then all be routed in parallel. Thus, let rrn denote the cyclic permutation
on {1,2,...,m} given by

r(i)=i-1, l<i<_m,

Consider the following two routing steps:

S" (,- + 1)(,, + 1 )... (,, + 1 )...,

and

$2" (1, m- 1)(2, m- 2)..-(j,m- j)....

We confirm that the composition $1 o $2 sends the following:

im+l-im-(m+ l-i)=i-1,

This map achieves the desired permutation in two steps. Consequently, rt(Kn) <_ 2,
and the theorem is proved. [3

The following result is due to Goddard [7].
THEOREM 3. For the complete bipartite graph Kn,n with n >_ 3,

(8) rt(K,) 4.
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Proof. Suppose Kn,n has vertex sets A and B, where the edges are all between A
and B. To see that rt(Kn,n) >_ 4, we consider the permutation r (ala2a3), where
ai’s are in A. It is not difficult to show that r cannot be achieved in three steps.

A pebble is said to be an A-pebble if its destination is in A. Otherwise, it is called
a B-pebble. In at most one step, we can move all A-pebbles to B and all B-pebbles
to A. To prove that rt(Kn,n) <_ 4, it suffices to show that any cyclic permutation
r (1, 2,..., 2m) can be achieved in the following three routing steps:

m m m

m m

m m

,2m- 1),

This proves the theorem.
More generally, it is not difficult to show that for a general complete bipartite

graph Kin,n, m <_ n, we have

(9) rt(Km,n) 2 [-’1 " 2,

since in at most two steps, m pebbles (in fact, B-pebbles, as defined above,) can be
routed to their destinations.

5. Cartesian products. For graphs G (V, E), G’ (V’, E’), we define the
Cartesian product graph G G’ to be the graph with vertex set V V’ { (v, v’) v E
V,v’ E V’} and with (u,u’)(v,v’) an edge of G G’ if and only if either u v,
utv E, or u vt, uv E. Thus, the n-cube Qn is just the Cartesian product of
K2 with itself n times.

The following theorem can be traced back to the early work of Bens [5]. It was
also proved by Baumslag and Annexstein [4].

THEOREM 4. We, have

(10)  t(a < e t(a) +

Note that since G G and G G are isomorphic graphs, then (10) can be written
in the symmetric form

rt(G x G’) <_ min{2rt(G) + rt(G’), 2rt(G’) + rt(G)}.

We briefly describe the proof of Theorem 4 here. We can picture G G as an array
V V, with each row spanning a copy of G and each column spanning a copy of G
as illustrated in Fig. 4. To route in G G, we:

(i) route in columns (copies of G); then
(ii) route in rows (copies of G’); then
(iii) route in columns (copies of G).

Let r be the desired routing permutation we are trying to achieve. Each pebble p has
some destination (or(p), o’S(p)), where o(p) V, at(p) Vt. Let us first classify the
pebbles according to their second coordinates. Since 7r is a permutation on V V, for
each v e V’, there are exactly IVI pebbles with a’(p) v’. Hence, by the well-known
marriage theorem of Hall (see, for example, [11]), we can select a set of distinct
representatives from the columns, i.e., one pebble from each column so that their
second coordinates are all distinct. Furthermore, we can now repeat this procedure
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g

V G’

G
FIG. 4. G x G.

(again by Hall’s theorem) to obtain another set of distinct representatives, and so on.
At the end, we see that we can in fact arrange the pebbles in each column so that
the pebbles in each row of the rearranged columns all have distinct values of a. By
hypothesis, this rearrangement can be accomplished in at most rt(G) (parallel) steps.

Next, we rearrange the pebbles in each row (i.e., copy of G) so that pebbles p in
the column indexed by v’ E V’ have a’ (p) v’. This can be done (by hypothesis) in
rt(G) more steps, and guarantees, when completed, that the pebbles in each column
have distinct values of a.

The final step, permuting each column (copy of G), can be done in rt(G) more
steps. Thus, the whole process requires at most 2rt(G) + rt(G’) steps.

COROLLARY 1. For the n-cube

rt(Qn)

_
2n-1.

COROLLARY 2. For the rn by n grid graph P, x Pn, rn <_ n,

rt(Pm x Pn) <_ 2m + n.

Remarks. Routing on the n-cube Qn is a very natural question in view of the pop-
ular use the n-cube structure for models of parallel computation and communication.
Indeed, it was this context (through the work of Ramras [10]) that first motivated
our considerations of these questions.

Corollary 1 is well known in the literature. The exact value of rt(Qn) is still
unknown. It is easy to see that rt(n)

_
n, since diam(Qn) n. The permutations

shown in Fig. 5 can be checked to show that rt(Qn) >_ n+l for n 2, 3. It is
reasonable to conjecture that we always have rt(Q) >_ n + 1 for n >_ 2. Certainly
rt(Qn) an for some c E [1,2]. Again, we suspect that the correct value of a is
closer to 1 than to 2, but this seems difficult to prove.

6. Flow problems on graphs. Ordinarily, one might expect that rt(G x G) is
substantially larger than rt(G), e.g., as large as 2rt(G). However, this is not always
the case, as the following result shows.

Let Gn denote the graph consisting of two copies of K joined by an edge e (see
Fig. 6). It is easy to see that

rt(Gn) 2n + O(1).
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V 0
zr(v) 1

2 3

Q1

Q2

6 7

2

,5

0 1

0 1 2 3 4 5 6 7
7 0 6 4 5 2 1 3

FIG. 5. Bad permutations on Qn, n <_ 3.

FIG. 6.

It turns out that rt(Gn Gn) is not much larger.
THEOREM 5. We have

(11) rt(Gn x G)= (1 + o(1))2n.

Proof. We can view G x G as consisting of 4 copies of Kn x Kn joined to each
other by n parallel edges to form a 4-cycle (see Fig. 7). Within each V K x K, the
two sets of n vertices incident to "crossing" edges have exactly one common vertex.
Initially, each V has pebbles with destinations lying in the other various V’s. We
group each of V’s pebbles into sets Sij of size n, according to their destinations (so
that all pebbles in a set Sij have the same V destination; there may be mixed groups
of n left over). We move the Sij’s as a unit, in that all pebbles in each Sj cross from
one Vk to another V} at the same time. Further, we restrict our routing algorithm so
that crossing moves are only made at even times. Of course, permutations within a V
can occur at all times. Since rt(Kn x K) _< 6 (by Theorems 2 and 4), it is not difficult
to see that if we have m Sij’s in Vk that should cross over to V (which is adjacent
to it), then this can be done in 2m + O(1) steps. Thus, our problem can be reduced
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Kn xKn

FIG. 7. Gn Gn.

crossing
edges

to the following continuous flow problem on the 4-cycle C4. We are given one unit of
"mass" on each vertex v of C4 (where we have rescaled our sets of n2 pebbles at each
vertex of Ca to have total mass 1). Thus, mass is required to "flow" along the edges
of C4 in order to satisfy a 4 4 doubly stochastic circulation matrix C (C(u, v))
where, for vertices u, v of C4, C(u, v) denotes the amount of mass initially at u that
must end up at v. Since C is assumed to be doubly stochastic, then C(u, v) >_ 0 and

c(, ) X: c(, ).
V U

Therefore, each vertex of C4 also ends up with a total of one unit of mass (hence, our
use of the terminology "circulation").

In general, a C-circulation on G (V, E) is a set of assignments v E -- +,u, v E V, such that, for all u, v,

.(x) c(, ) .(),
uxEE yvEE

while for any w :/: u, v,

X: .()= X: (t).
swEE wt6E

Intuitively, these equations specify that for each pair u, v V, C(u, v) units of mass
flow from u to v. The norm of , denoted by I111, is defined to be the maximum
amount of mass

assigned to any edge e of E, where we distinguish between e ij E and the edge
-e ji with the reverse orientation. We say that is balanced if (e) (-e) for
all edges of G.

A little reflection shows that we have proved Theorem 5 if we establish the fol-
lowing lemma.
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LEMMA 1. For all circulation matrices C on C4, there always exists some balanced
C-circulation 99 with 119911 <- 1.

Proof of Lemma 1. Consider a spanning tree T on C4. There are four such trees;
these are all paths of length 3. (See Fig. 8.) Note that there is a unique balanced
F-flow 99T on T. The amount 99T(e) that 99T assigns to e is just

uEA

where A and B are the components of T formed by the removal of e j, and
E A, j E B. We form our desired F-flow 99 as a convex combination of 99T’S, as

1 e 2

4 3

1 2 1 2 1 2 1 2
O O

O
O

4 3 4 3 4 3 4 3

(a) (b) (c) (d)
FIa. 8.

T ranges over the spanning subtrees of G. This guarantees that 99 is a C-circulation
and is balanced (since each 99T is). In fact, we take the simplest possible convex

combination, namely,

1

T

where T ranges over all four spanning trees of C4. To compute 119911, we need to
bound the value of 99(e) for each edge e. For any edge e (by symmetry), the mass

99(e) assigned to e is equal to that assigned to the edge in the figure, which is the
following:

from (a),

1
+ (f(1, 2)+ f(4, 2)+ f(3, 2)) from (b),

1
+ (f(4, 2)+ f(4, 3) + f(1, 2)+ f(1, 3)) from (c),

1
+ (f(1, 2)+ f(1, 3) + f(1, 4)) from (d).
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FIG. 9. Spanning trees of C4.

T

However, observe that in Fig. 9, the maximum value that can flow from A to B is
just min(IAI, IBI). Consequently,

f(1, 2)+ f(4, 2)+ f(3, 2) <_ 1,

f(4, 2) + f(4, 3) + f(1, 2) + f(1, 3) _< 2,

f(1,2) + f(1,3)+ f(1,4) <_ 1,

and so,

(e) _< 1.

Since e was arbitrary, I]]1-< 1 and the lemma is proved. [q

Now, because is balanced, we can reinterpret it as pebble movements, where
small time delays (due to the nonuniform Sj, or bounded movement within the V’s)
are negligible as n -- oe. We can then conclude that

rt(Gn Gn)= (1 + o(1))2n,

as claimed.

The same argument applies, with the same conclusion, for the k-fold product

k

akn--n X X an,

provided we prove the corresponding flow result on Qk, the k-cube, which actually is
of interest in its own right. We do this with the following theorem.

THEOREM 6. Let F be a doubly stochastic circulation matrix on Qk. Then there
always exists a balanced C-circulation on Q with I1[[ <- 1.

Proof. We follow the same strategy as in the case of C4 Q2, and build as
a (uniform) convex combination of tree flows. Define the spanning tree Tk on Q
recursively as follows:

(i) T1 is just an edge, which is all of Q1;
(ii) T is formed by adding the edge ek {(00... 0), (10... 0)} to join the two

copies of Tk_l in the corresponding two copies of Qk-1 that make up Qk, namely,
{2 (Xl,... ,xk) lxl 0} and {2 (Xl,... ,Xk) e Q,k ix 1}.
We observe that for any edge e of Tk, we can always find a minimum-sized component
A(e) of T -{e} that does not contain the origin (00... 0). Hence we conclude (by
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induction) that

g(k)

e--ek eek

2k-1 -4- 2. g(k- 1)

2a- + 2-(k 1). 2k-2 k. 2k-l,

where we check that 9(1) 1 satisfies (12) to start the induction.
Next, we construct the family of trees that is used to form . Let Aut(Qk) denote

the automorphism group of Qk. It is easy to see that IAut(Qk)l 2. k! and that for
any h E Aut(Qk), h(Tk) is also a spanning tree of Qa. Furthermore, for each edge e
of Q and each edge e’ of Tk, there are exactly 2(k 1)! choices of h E Aut(Qa) that
map e onto e’ (as undirected edges; this accounts for the factor of 2. Of course, this
does not depend on e being in T.) Define

1
2k! E T,

T

where T ranges over all 2k. k! trees h(Tk), h Aut(Qk). Note that this is just what
we did for C4. To bound 1[11, we compute for any e,

1 1
(e) <_

2 k! min(IAh(e)l’ IBh(e)l)= 2kk!
h6Aut(Qk)

2(k- 1)!g(k) 1.

This completes the proof of Theorem 6.
COROLLARY 3. For fixed k, if Gk denotes the k-fold Cartesian product G x x G

of the graph G shown in Fig. 6, then

rt(C) (1 + o(1))2n.

Let us define circ(G), the circulation index of a (connected) graph G, by

(13) circ(G) := sup inf I111,

where ranges over all balanced C-circulations on G, and C ranges over all doubly
stochastic circulation matrices C for G. A trivial lower bound for circ(G) is the
resistance of G, defined by

(14)
1

res(G). "= max ,-==. min(lA(X)lx

where X ranges over all cutsets of G (i.e., minimal sets of edges whose removal dis-
connects G), and A(X) and B(X) are the connected components formed by removing
X. The inequality

(15) circ(G) >_ res(a)

follows by considering the circulation matrix that sends all IA(X)I units of mass into

B(X), for an extremal cutset X, where we assume IA(X)I < IB(X)I. It is interesting
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to note that (15) holds with equality for Qk. This is not true in general, as can be
shown by considering bounded degree expander graphs G* on n vertices. In that case,
we can have

res(G) O(1) and circ(G) > clogn.

Other classes of graphs G for which equality holds in (15) prove interesting. The
technique above can be easily used to show that the set of even cycles is such a class.

It seems likely that the space of balanced C-circulations on any graph is spanned
by (convex combinations of) the tree circulations on G, i.e., the C-circulations in the
spanning trees of G.

7. Eigenvalues, random walks and routing. Here we consider &regular
graphs for which all the eigenvalues of the adjacency matrix besides the trivial one
have a small absolute value. Let us call a graph G an (n, d, ,\)-graph, if it is a &regular
graph on n vertices and the absolute value of every eigenvalue of its adjacency matrix
besides the trivial one is at most ,. If , is small with respect to d, then a random
walk on such a graph starting from any vertex converges quickly to the uniform dis-
tribution on its vertices. We use this property to derive the following theorem, the
proof of which is given later.

THEOREM 7. Let G (V, E) be an (n, d, ;)-graph and let cr denote a permutation.
Then

rt(a, ) <_ O
(_ ,x)

og

Note that in 2, it is shown that rt(G) is lower bounded by the diameter of G and
therefore the routing number of a d-regular graph is at least log/log(d- 1) and at
most

d
O ( (d_ A) lg n)

Now define the ezpansion coecient a of G to be the minimum, over all subsets
X of at most half the vertices of G, of the ratio IN(X) X/IXl, where N(X) is the
set of all neighbors of X in G. om 2, we know that the routing number is bounded
below by 2/a. As an immediate corollary of Theorem 7, up to a polylogarithmic
factor, rt(G) is bounded above by a polynomial in 1/a for any regular graph with
polylogarithmic degrees.

COROLLARY 4. If G (V, E) is a d-regular graph on n vertices with ezpansion

coecient a, then

rt(a) 0 log n

Pro@ The main result of [1] states that if a is the expansion coecient of
&regular graph, then the second largest eigenvalue of its adjacency matrix is at most
d- 4+. Suppose, first, that this is an upper bound for the absolute value of every

d log n).negative eigenvalue as well. Then, by Theorem 7, rt(a) O(t) for t= O(
If there are negative eigenvalues of large absolute value, we first add d loops in every
vertex and apply the result to the new graph. This completes the proof.

In a similar way, we define the edge ezpansion coecient of G to be the min-

imum, over all subsets X of at most half the vertices of G, of the ratio
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where F(X) is the set of edges of G leaving X (i.e., with exactly one endpoint in X).
We remark that the inverse of the edge expansion coefficient is exactly the resistence
of G. From 2, we know that the routing number is bounded below by 2/- 1. As a
corollary of Theorem 7, up to a polylogarithmic factor, rt(G) is bounded above by a
polynomial in 1// for any regular graph with polylogarithmic degrees.

COROLLARY 5. If G (Y, E) i8 a d-regular graph on n vertices with edge expan-
sion coefficient/, then

(d4 )rt(G) <_ O - log2n

Proof. The proof follows from the well-known fact (see [8]) that if/ is the edge
expansion coefficient of a d-regular graph, then the second largest eigenvMue of its

adjacency matrix is at most d 9.4"
[-1

Note that by the above two corollaries, rt(G) < O(log2 n) for any bounded degree
expander on n vertices (i.e., any regular bounded degree graph on n vertices with
expansion coefficient or edge expansion coefficient bounded away from 0).

Many interconnection networks studied in the literature are, in fact, Cayley
graphs. A simple corollary of the above theorem implies that the routing number
of a Cayley graph is intimately related to its diameter.

COROLLARY 6. For any Cayley graph G of a group of n elements with a poly-
logarithmic (in n) number of generators, the diameter of G is polylogarithmic, if and
only if the routing number rt(G) is polylogarithmic.

Proof. As shown in [3], a Cayley graph of polylogarithmic diameter has an inverse
polylogarithmic expansion coefficient; hence the result follows from Corollary 4.

The proof of Theorem 7 follows from the following lemmas. Our first lemma holds
for any d-regular graph G. A random walk of length starting at a vertex v of G is
randomly chosen sequence v v0, vl,..., vt, where each Vi+l is chosen, randomly and
independently, among the neighbors of vi, (0 < < 1). We say that the walk visits v
at time i. We make no attempt to optimize the constants here and in what follows.

LEMMA 2. Let G (V, E) be a d-regular graph on n vertices, and suppose that
>_ log n. For any v E V independently, let P(v) denote a random walk of length

starting at v. Let I(v) denote the total number of other walks P(u), such that there
exists a vertex x and two indices 0 < i, j < l, li- Jl < 5 so that P(v) visits x at time
i and P(u) visits x at time j. Then, almost surely (i.e., with probability that tends to
1 as n tends to infinity), there is no vertex v such that I(v) > 100(/+ 1).

Proof. Let A be the normalized adjacency matrix of G, i.e., the matrix A
(av),vey defined by av l(u, v)/d, where l(u, v)is the number of edges between
u and v. The probability that the random walk P(u) visits x at time is precisely
e(x)tAie(u), where e(y) is the unit vector having 1 in coordinate y and 0 in any other
coordinate. Given the random walk P(v) and a value of i, 0 < < l, there is a unique
vertex x x(v, i) in which P(v) visits at time i. For any given u = v, the conditional
probability that for some j satisfying li- j] < 5, the walk P(u) visits x at time j is
thus at most e(x) ’-j:lj_il<5 AJe(u). The probability p(v, u) that there exists some

vertex x and two indices 0 < i, j < l, li- Jl < 5 follows, so that P(v) visits x at time
and P(u) visits x at time j can be bounded by

<_
i--0 j:lj--il<5
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By summing over all possible starting points u (including v itself, where this last
summand corresponds to adding another independent random walk starting at v,
an addition which may only increase the expectation of I(v)), we conclude that the
expectation of I(v) is at most

<_
ueV i=0

where e is the all 1 vector. Since e is an eigenvector of A with eigenvalue 1, the last
expression can be computed precisely by showing that it is strictly less than 10(/+ 1).
We have thus shown that for each fixed v, the expectation of the random variable
I(v) is strictly less than 10(/+ 1). Observe that this random variable is a sum of
n- 1 independent indicator random variables whose expectations are the quantities
p(v, u). It thus follows easily from the known estimates for large deviations of sums
of independent indicator random variables (see, e.g., [2, Thm. A.12, p. 237]), that for
each fixed v, the probability that I(v) exceeds, say, 100(/+ 1) is at most

(e9/101) l(t+l) << 1/n2.

(A similar estimate can in fact be proved directly. Given a set of m independent
events, with the probability of the ith event being p, suppose that p <_ r. Then,
the probability that at least s events occur can be bounded by

< <
sa{1 m},lSl=

In our case, we have r- 10(/+ 1) and s 10r.)
Since there are only n vertices v, the probability that there is a vertex v with

I(v) > 100(/+ 1) is (much) smaller than i/n, completing the proof.
LEMMA 3. Let G (V, E) be an (n, d, (1- )d)-graph and let a be a permutation

of order two of V (i.e., a product of pairwise disjoint transpositions). Put 1___0 log n.

Then there is a set of n/2 walks P(v) P(a(v)), v V, of length 21 each, where
P(v) connects v and a(v) such that the following holds. Let I(v) denote the total
number of other walks P(u) such that there exists a vertex x and two indices 0 <_
i,j <_ l, li- Jl < 5, so that P(v) visits x at time i, and g(u) visits x at time j or at
time 21- j. Then I(v) <_ 400(/+ 1) for all v.

Proof. Let P(v) be a random walk of length 21 between v and a(v). As shown
in [6] (using an argument similar to the one used previously in [12]), we may assume
that each walk P(v) consists of two random walks of length each, one starting from v

and one from a(v). The reason for this is that by our eigenvalue condition, a random
walk of length is almost uniformly distributed on the vertices of G, and hence one

may view the walk P(v) as being chosen by first choosing its middle point (according
to a uniform distribution) and then by choosing its two halves. For more details, see

[6]. The result thus follows from Lemma 2.

Proof of Theorem 7. Let G (V, E) be an (n, d, A)-graph. It suffices to consider
a permutation cr of order two of V (i.e., a product of pairwise disjoint transpositions),
since any permutation is a product of at most two such permutations (as proved in
Theorem 2). We set 1- and log n. We want to show that rt(G, a) < O(/2).
Let P(v) be a system of walks of length 21 satisfying the assumption of the previous
corollary. Let H be the graph whose vertices are the walks P(v) in which P(u) and
P(v) are adjacent, if there exists a vertex x and two indices 0 _< i, j _< l, li- j[ < 5,
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so that P(v) visits x at time i, and P(u) visits x at time j or at time 21- j. Then
the maximum degree of H is O(1) and hence it is O(/)-colorable. It follows that we
can split all our paths P(v) into O(1) classes of paths such that the paths in each
class are not adjacent in H. Consider now the following routing algorithm. For each
set of paths as above, perform 21 + 1 steps, where the step numbers and 21 + 2
correspond to flipping the pebbles along edge numbers i and 2l + 1 in each of the
paths in the set for all i < 1. Step number flips edge l, and step + 1 flips edge
+ 1. We can check that by the end of these 21 + 1 steps, the ends of each path

exchange pebbles, and all the other pebbles stay in their original places. (Note that
some pebbles that are not at the ends of any of the paths may move several times
during these steps, but the symmetric way these are performed guarantees that such
pebbles will return to their original places at the completion of the 21 + 1 steps.) By
repeating the above for all the path-classes, the result follows.

8. The route covering number of a graph. We next discuss several problems
closely related to the routing number of a graph. One such problem is the following.

Suppose G (V, E) is a connected graph on n vertices. For a permutation r, we
consider a route set P, which is just some set of paths Pi joining each vertex vi to
its destination vertex r(v), for 1,..., n. For each edge e of G, we consider the
number rc(e, G, r, P) of paths P in P which contain e. The route covering number
rc(G) of G is defined to be

rc(G) max min max rc(e, G, r, P).
7r P eE

In other words, for each permutation, we want to choose the route set so that the
maximum number of occurrences of any edge in the paths of the route set is minimized.
It is easy to see that the route covering problem is a special case of C-circulation
obtained by choosing C to satisfy C(u, v) 1 if v 7r(u), and 0 otherwise, for each
permutation 7r, and by insisting on integer valued circulation.

For example, for the n-cube Q, the method described in Theorem 4 gives

rc(Qn)

_
4.

In the other direction, by choosing r to be the permutation of vertices in Qn so that
the distance between v and r(v) is n for every vertex v, it can easily be seen that

rc(Qn)

_
Ev dist(v, r(v))

2.

The problem of determining the exact vMue of re(Q) for general n remains un-
resolved. Also of interest is a "symmetric" version of the route covering problem
espeeiMly for Qn.

An ssgmet for Qn is a partition of the vertex set of Qn into subsets of size
or less. Is it possible to find edge-disjoint paths joining vertices in the same subset

for any assignment of Qn ?
The answer is negative when n is even. However, for odd n this problem remains

open.

9. Concluding remarks. Numerous unanswered questions remain, some of which
we now mention.

(1) Is it true that, for any tree Tn on n vertices,

3 3
rt(T) <_ -n + o(n)? n + O(1)?
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(2) Is it true that, for the n-cube

 t(O, n) n + o(n)? n + O(1)?

(3) Is it true that, for every graph G,

 t(c c) _>

(4) Is it true that, for an expander graph G of bounded degree,

rt(G) O(log n)?

(5) Characterize graphs G with circ(G) res(G).
(6) Are the balanced C-circulations on a graph always spanned by the spanning

tree C-circulations on the graph?
(7) What is the computational complexity of determining rt(G)?
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PREDICTING CAUSE-EFFECT RELATIONSHIPS FROM
INCOMPLETE DISCRETE OBSERVATIONS *
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Abstract. This paper addresses a prediction problem occurring frequently in practice. The
problem consists in predicting the value of a function on the basis of discrete observational data
that are incomplete in two senses. Only certain arguments of the function are observed, and the
function value is observed only for certain combinations of values of these arguments. The problem is

considered under a monotonicity condition that is natural in many applications. Applications to tax
auditing, medicine, and real estate valuation are discussed. In particular, a special class of problems
is identified for which the best monotone prediction can be found in polynomial time.

Key words, cause-effect relationship, monotone regression, incomplete observations
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1. Introduction. The problem of establishing cause-effect relationship based
on incomplete observations was studied in [7]. In this paper we address the problem
of finding a good approximation of an unknown discrete function on the basis of a
set of observations, which is incomplete in two senses. We observe the values of only
some of the arguments of the function and we observe the function value only for
certain combinations of values of these arguments. Our goal is to predict the value of
the function for any combination of values for these arguments. Such problems occur
frequently, and we begin with some examples.

Suppose that a tax bureau must decide which tax forms to audit, with the goal of
auditing only those for which the increased return justifies the auditing expense. The
observation set consists of data records corresponding to forms audited in the past.
Each record indicates whether the audit was justified and lists some attributes of the
taxpayer. The problem is to determine, on the basis of these attributes, when future
tax forms should be audited.

A taxpayer’s attributes form a vector x of Boolean (0-1) variables, where each
xj indicates whether a certain threshold is exceeded. For example, one xj may have
the value 1 when the taxpayer claims too many dependents for a person of his age,
and another may have the value 1 when he claims too many charitable contributions
relative to his income.

The observation set partially defines a function g whose value is 1 when auditing
was justified, and 0 otherwise. Whether an audit was justified depends not only on the
recorded attributes used to make the auditing decision, but on a number of hidden
factors as well. The arguments of g therefore consist of a vector x of the recorded

* Received by the editors April 16, 1991; accepted for publication (in revised form) July 16,
1993.

Rutgers Center for Operations Research (RUTCOR), Rutgers University, P.O. Box 5062, New
Brunswick, New Jersey 08903.

: Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, Penn-
sylvania 15213. This author’s research was supported by Air Force Office of Scientific Research grant
91-0287 and Office of Naval Research grant N00014-92-J-1028.

This author’s research was partially supported by Air Force Office of Scientific Research grants
89-0512B and F49620-93-1-0041 and Office of Naval Research grants N00014-92-J-1375 and N00014-
92-J-4083.

531



532 E. BOROS P. L. HAMMER, AND J. N. HOOKER

attributes and a vector y of hidden attributes. So, each data record can be written
in the form (x, g(x, y)). In practice, the function g is only partially defined because
its value g(x, y) is not given for every possible vector (x, y) of attributes. We cannot
even assume there is an observation for every possible x.

Our problem is to predict the value of g(x, y) on the basis of x alone. To do this,
we derive an approximation f of g that is a function of x only. Deriving f requires
that we interpolate a value when x has not been observed. However, even when x
has been observed, we may need to reconcile different observed values of g(x, y) for
different y’s.

We focus on problems in which f is monotone, in the sense that f(x) f(x’)
whenever x xt, where -< is a partial order on the outcomes and - a partial order on
the x’s. In the tax auditing example, the two outcomes are linearly ordered (0 - 1),

for all j. Monotonicity is a reasonableand -< is defined by x x whenever xj <_ xj
assumption for this problem, because every 1 among the attributes is another reason
for suspecting that the form should be audited. If one form with certain suspicious
traits should be audited, then another form with these and still other suspicious traits
should certainly be audited.

We also generalize our approach to problems in which more than two outcomes are
possible, where these outcomes are partially ordered. The tax auditor, for example,
might classify forms as needing no audit, needing a second look to determine the
desirability of an audit, and needing an audit right away. These outcomes happen
to be linearly ordered in a natural way (in the order listed), and it is reasonable to
assume that f is monotone.

The attributes as well as the outcome can have more than two values. Suppose,
for example, that we have a battery of 45 biochemical tests for carcinogenicity, each
of which can have outcomes negative, indefinite, and positive. We do not apply every
test to a given chemical; when a test is not applied, we say that the test "result" is
no data. The 45 test results are viewed as attributes of the chemical tested. Since the
tests are not foolproof, we first apply them to a number of chemicals that have been
previously tested clinically for carcinogenicity, with possible outcomes harmless, unde-
termined (indicating inconclusive clinical experience), potentially dangerous (meaning
that the chemical causes cancer when ingested in very large doses), and dangerous.
The problem is to find a function f that predicts the outcome of clinical trials for a
new chemical.

To check for monotonicity, we must impose a partial ordering on the attribute
vectors and on the outcomes. The four possible values of each attribute xj submit to a
partial order: negative is less than indefinite and no data, which are less than positive;
but indefinite and no data are incomparable. We can therefore say that x x when

for all j. The four outcomes have a similar partial ordering: harmless is lessXj " Xj
than potentially dangerous and undetermined, both of which are less than dangerous;
but we may be unable to order potentially dangerous and undetermined with respect
to each other. It is reasonable to assume that f is monotone with respect to these
orderings.

Whenever f incorrectly predicts the outcome for a given observation, a penalty is
incurred, where the size of the penalty depends on the correct and predicted outcomes.
For us, the best approximation f is one that minimizes the total penalty. In [4] we
investigate the issue of defining "best approximation" from a statistical point of view
and distinguish the analysis described here from logit and categorical data analysis.

If there is no restriction on f, finding the best approximation is relatively easy,
since we can treat each x separately. That is, for any fixed x, f (x) should have the value
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that minimizes the sum of the penalties over observations of the form (x, y). If x occurs
in no observations, f(x) can be set to an arbitrary value. However, if f is required
to be monotone (or to have some other restrictive property), the problem cannot in
general be decomposed this way, and the observed values of f(x) for unobserved x are
in general restricted. In [4] we consider some other possible restrictions on f (when it
is a Boolean function). More examples for similar problems can be found in [6], [21],

In this paper, we show that a network flow model can be used to determine the
best approximation f when the partial ordering of the outcomes belongs to a special
class of partial orders, including interval orders. An interval order is one in which
every element can be associated with an interval of real numbers, such that ( / if
and only if the upper end of the interval associated with a is smaller than the lower
end of that associated with . A special case of an interval order is one that is layered,
in the sense that the elements are partitioned into a sequence of sets $1,..., Sin, such
that all the elements in each Si are incomparable, but everything in Si is less than
or equal to everything in Si+l. The outcomes of the clinical trials for carcinogenicity
have this sort of ordering. A linear order, as in the tax auditing problem, is, of course,
an interval order.

Another instance that might call for an interval ordering is estimating the value
of a piece of property. Suppose that we suspect that certain combinations of prop-
erty attributes justify assessing the value to be within certain ranges. The ranges
may overlap, but the outcomes nonetheless have an interval order. If higher-ranked
attribute values are more desirable, it may be reasonable to assume monotonicity.

We begin in the next section with a precise statement of the problem and a small
example. In 3 we show that finding the best monotone approximation is equivalent
to a generalization of the "maximal closure" problem on a directed graph [16]. When
there are two ordered outcomes, the generalization coincides with the maximal closure
problem. In 4 we describe a special class of partial orders, the so-called aligned
orders. We prove that aligned orders can be recognized in polynomial time and that
interval orders are aligned. Finally, in 5 we show that the generalized maximal closure
problem can be reduced to the maximal closure problem when the outcomes form an
aligned order. Since the maximal closure problem can be solved via a minimum cut
computation, we can solve the best approximation problem likewise. The complexity
of our algorithm is O(n3m3), where n is the number of distinct input attribute vectors
x and where m is the number of possible outcomes.

2. Problem statement and main results. Let (X,-) be a finite partially
ordered set of (observed) attribute vectors x and (V, 4) a finite partially ordered set
of outcomes. The mapping # X V 2 indicates the number of times an attribute
vector x resulted in a given outcome; that is, it(x, ) is the number of observations
(x, y) for which g(x, y) . The penalty function is c" V V - , where cz, is
the penalty for predicting outcome/ when the observed outcome is (. The problem is
to find a V-monotone function f(x), i.e., one for which f(x) - f(x’) whenever x xt,
so as to minimize the total penalty,

(2.1)
xX oV

As a matter of fact, we want to define the function f(x) only on the set X of observed
attribute vectors For an unobserved value xt, we can let f(x) take any value for
which f(x’) f(x) for all observed values x satisfying x’

_
x and for which f(x) -
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f(x) for all observed values x satisfying x _-< x. The above problem is called the
monotone approximation problem, and an instance of this problem is denoted by M

Let us observe that the objective function in the above problem is separable in
the sense that it can be written as

If] hx (f (x)),
xEX

where

hx (f (x)) E Cf(x),# (x,
aEV

and the function hx depends only on x but not on other elements of X. The problem
of separable optimization subject to precedence (-like) constraints, in general, can be
formulated as follows:

min E h (f (x))
xX

(SOP)
s.t.f(x) EV for allxEX, and

f(x)f(y) whenever x-,y.

Here (X, -) and (V, -) are partially ordered sets, X is a finite set, and h V --, I
are given real-valued functions for x X.

If (V, -<) is the set of reals with the usual order < and if hx are convex functions,
(SOP) is known in the statistical literature as the isotonic regression problem; see,
e.g., [2]. There is a bewildering variety of algorithms created to solve this problem in
various special cases, many of which are not polynomial. An equivalent problem was
considered in [14], [19] in the context of inventory/production systems. An O(IXI4)
algorithm was provided in these papers for the case when the functions h are special
convex differentiable functions for x G X. For general convex functions and for the
case of handling general upper and lower bounds, an algorithm of similar complexity
is given in [18]. For a somewhat more general class of objective functions, a different
algorithm of the same complexity is presented in [5]. The methods of the last two
papers extend to the case when (V, ) is a linearly ordered discrete (finite or infinite)
set. In the further specialized case, when (X, >-) is a linear order and hx are convex
quadratic real functions, an O(]XI)-time algorithm is provided in [3].

None of the above methods can handle the problem (SOP) in polynomial time if
the objective function is not special (usually convex, or something almost as restric-
tive). The authors are not aware of any results for the case where (V, >-) is not linearly
ordered.

In this paper, we address the problem (SOP) in the case when (V, ) is a finite
partially ordered set and no restrictions are imposed on the functions hx, x X. The
main result of this paper is that the problem (SOP) can be solved in polynomial time
in the case when (V, >-) belongs to a special class of partially ordered sets. We say
that a partial order (V, >-) is aligned if there is a linear extension of -, i.e., a labeling
V {v0,..., v } of the elements of V satisfying the following two conditions:
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TABLE
A sample observation set.

Xl x2

1 N N
2 I N
3 I U
4 P U
5 I P

,(x,,)

h u p d

2 0 0
1 1 0 1

0 0 0
1 1 2 0
0 0 2

h u p d

2 4 5 8
5 4 5 5
0 2 2 3
6 4 3 9
8 5 4 2

fo :1

h h

p p
d d

Wxh Wxu Wxp Wxd

-2 -2 -3 -1
-5 1 0 -1
0 -2 -2 1

-6 2 3 -8
-8 3 4 -1

(el) V//i -<//j 3 an indexksuch that/<_ k, k + 1 _< j, and//k -< //k-t-l;

(C2) //k "< //k+l //j -< //k+l Vj _< k.

We show that (SOP) can be solved in O(IXI31VI3) time if (V, >-) is aligned. We also
show that, given a partial order (V, >-), we can recognize in O(IYl2) time whether it
is aligned, and we prove that interval orders are aligned.

We use the following as a running example throughout the remainder of the
paper. Suppose that we wish to determine the carcinogenicity of chemicals on the
basis of only two tests. We have clinical data for five chemicals (Table 1). N, U, I,
and P, respectively, denote the possible test results (negative, no data, indefinite, and
positive), and h, u, p, and d denote the four possible outcomes (harmless, undetermined,
potentially dangerous, and dangerous). The table displays the number #(x, a) of times
chemicals with attribute vector x lead to clinical result a.

To define the penalty for error, let us rank the outcomes as follows: h has rank
1, u and p have rank 2, and d has rank 3. Then we might say that the penalty for
an error is 1 more than the distance between the ranks of the predicted and observed
outcome when the outcomes are different, and 0 otherwise. For instance, predicting a
potentially dangerous (p) chemical to be harmless (h) brings penalty 2, and predicting
it to be undetermined (u) brings penalty 1. The total penalty -Z cz#(x,) for
predicting that chemicals described by x have clinical outcome a appears in the middle
of the table. For instance, the penalty for predicting that chemicals with test results
(N, N) are dangerous is 8, because they were observed to be harmless on two occasions
and to have undetermined effect on one occasion.

If there are no restrictions on the approximating function f, the best approxima-
tion is clearly the function f0 shown in the table. We set f0(N, N) h, for instance,
since predicting h results in the least penalty (Zev Ch,f#((N, N), fl) 2h,h-[-Ch,u
2). In general, f0 is defined such that the sum Zey cy0(x),Z#(x,/) is minimal for
x e X. In this example, however, f0 is not monotone, since fo(I, N) - f0(I, U) even
though (I, N) (I, U). Our task is to find the best monotone approximation.

3. Maximal V-partitions. Let G (N, A, w) be a directed graph, where N
denotes the set of nodes and where A denotes the set of arcs. A subset C c N of the
nodes is called a terminal set of G if (x, y) E A, x E C implies that y C. Clearly,
the intersection of two terminal sets is again a terminal set. For a given subset S of
the nodes, its closure cl(S) is defined as the minimal terminal set containing S. In
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FIG. 1. Illustration of a V-chain.

other words, cl(S) contains exactly those vertices y of G that are either belonging
to S or accessible from S by a directed path of G. Given real weights wx,x E N
associated with the nodes, a maximal closure of the graph G is a terminal set C for
which w(C) --xec Wx is maximal.

To an instance A4 (X, V, it, c) of the monotone approximation problem, we
associate a directed graph G (X, A) in which the observed attribute vectors are
the nodes and where there is an arc from x to y whenever x -< y.

As an example, consider the graph G0 in Fig. 1, which has nodes corresponding
to the five values of x in Table 1. (Ignore for now the large sets circled in Fig. 1.) Go
contains an arc (x, x’) whenever x - x’. The closure of a set C of nodes (x’s) is the
set of all x’s greater than or equal to the x’s in C. For instance, the closure of {3} is

Picard [16] introduced the problem of finding a maximal closure in a given directed
graph and showed that the maximal closure can be found as the source side of a min-
imum cut in an associated network. This problem has many interesting applications,
e.g., [1], [11]-[13], [15], [17], [20], [23].

In this section, we introduce a generalization of this problem, which is shown to
be equivalent to the problem of V-monotone approximation and which is reducible in
certain cases to the problem of maximal closures.

Let us consider a partially ordered finite set (V, -) and let all denote the fact
that a and/ are incomparable elements of V. A partition 7) {Pla V} of the
nodes of G (i.e., [Jev P N) is called a V-partition if

(3.1) V(i,j)A, iP and jPz imply thatc/.

For example, suppose that we let V {h, u, p, d}, as in Table 1. One possible V-
partition is given by the circled sets in Fig. 1, that is, Ph { 1 }, Pu {2, 3}, Pp {4},
and Pd {5}.

Note that the sets in this V-partition are determined by the function fl, displayed
in Table 1. Namely, the set Pd is the set of nodes classified by fl as dangerous
(fl (x) d), Pp is the set of nodes classified as potentially dangerous (fl (x) p), Pu
is the set of nodes classified as undetermined (fl (x) u), and Ph is the set of nodes
classified as harmless (f (x) h).

Note that the function f that defines the above V-partition of Fig. 1 is V-
monotone. In fact, we have the following result.

THEOREM 1. Let G (X,A) be the directed graph associated with a given
instance of the monotone approximation problem. Then there is a one-to-one corre-
spondence between the V-monotone functions and the V-partitions of G.

Proof. Let us assume first that f X V is a V-monotone function. For c V,
let

(3.2)
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and let Pf {Pla e V}. We show that :Pf is a V-partition.
Now condition (3.1) is implied by the monotonicity of f, as follows. Let (x, y) E A

be an arbitrary arc with x E P and with y P. We now have a f(x) and f(y)
by (3.2). The monotonicity of f implies that

(3.3) f (x) f (y).

It follows then that either a

_
or all, and hence (3.1) follows.

For the converse relation, let "P {Pal( V} be a V-partition of G. Then the
function fp, defined by

(3.4) fp(x)=a if xP,

is clearly an X V mapping, and property (3.1) immediately implies its V-
monotonicity.

Let wx, be given real weights for x N and a E V and let the weight w(P) of
the V-partition P be defined as

(3.5)

Then a maximum-weight V-partition of the weighted graph G (N, A) is a V-partition
P, which maximizes w(P).

Let us again consider the directed graphG (X, A) associated with an instance
J4 (X, V, it, c) of the monotone approximation problem. Let us now define weights
wx, for x X and ( V by the following set of equations:

(3.6) Z___Ew,=_hx(a)/=_Ec,#(x,))forallaV.zev
It is easy to observe that, if we arrange the elements of V according to an arbitrary
linear extension of 4, then the coefficient matrix on the left-hand side of (3.6) becomes
a lower triangular matrix with l’s in the main diagonal. Hence, for any integral
parameter vectors c and it, the system of equations (3.6) has a unique integral solution.

We show below that the problem of monotone approximation is equivalent to a

maximum-weight V-partition problem in the associated graph.
We know that finding a V-partition is equivalent to finding a monotone approxi-

mation f, but, to equate the maximal V-partition problem to the monotone approxi-
mation problem, we must relate the weight of a V-partition to the penalty associated
with an approximation. This is done in the example of Table 1 as follows. The nega-
tive of the weight Wh contributed by each x lying in Ph to a V-partition is the penalty
that results from predicting chemicals with attributes x to be harmless. The negative
of the total weight Wh +w contributed by each x in P is the penalty for predicting
chemicals with attributes x to be undetermined, and similarly for Wxh + Wp. The
negative of the total weight Wxh +w +Wp + Wxd contributed by each x in Pd is the
penalty for predicting x to be dangerous. The resulting weights w for each outcome
a appear on the right side of Table 1. Suppose, for instance, that the predictions are
given by fl. The penalty incurred for each x is shown in boldface in the middle of the
table. The penalty for each x is the same as the negative of the sum of the boldface
weights that appear at the end of that row. It is clear that finding a maximal-weight



538 E. BOROS, P. L. HAMMER AND J. N. HOOKER

V-partition over these weights is equivalent to finding predictions that minimize the
penalty.

THEOREM 2. Given an instance A/[ (X, V, c, #) of the monotone approximation
problem and an arbitrary V-monotone function f X V, let 79y (PI( E V} be
the V-partition of the graph GM, defined by (3.2). Then

(3.7) [f] -w (7)y),

where wx,, a V is the unique solution of (3.6) for every x X and where w(Py) is

defined by (3.5).
Proof. We prove (3.7) as follows.

xEX EV

Here, the second line comes from the first one by the definition of 7), the third line
comes by a simple rearrangement, and the fourth equation is obtained by applying
(3.6). For the last equation, we simply applied (2.1). [:]

COROLLARY 1. For a given instance J9 (X, V, c, #) of monotone approxima-
tion, let w (wx,lx X,a V) be determined by (3.6). Then finding the best
V-monotone fit to .h is equivalent to finding the maximum-weight V-partition in the
associated graph GM.

4. Aligned partial orders. In this section, let us consider aligned partial orders
(V, -<), i.e., partial orders satisfying conditions (C1) and (C2).

Let us first prove that this property of a partial order can be recognized in poly-
nomial time.

LEMMA 1. Given a partial order (V,-), one can either find a labeling
V {po, l]l,...,pv} satisfying conditions (C1) and (C2) or conclude that (V,>-) is
not aligned in O(IV]2) time.

Proof For an a G V, let S {/31/3 -< c}. Furthermore, let -y E V such that ISI
is maximal.

We show that (V, -) is aligned if and only if the induced relation (V \ S, -) is
an empty relation and the induced partial order (S, -) is aligned. The recognition
algorithm and its complexity follows immediately from this.

Let us first assume that (V \ S, >-) is an empty relation and that the induced
partial order (S, -) is aligned. Let S {u0,..., u,sl-1} be an appropriate labeling
of the elements of S satisfying conditions (C1) and (C2). It is easy to verify that, by
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defining/21sl " and taking an arbitrary labeling {/21s1+1,...,/2v} V \ (S U {}),
we can obtain a labeling of V that satisfies conditions (C1) and (C2).

To see the converse direction, let us assume that (V, >-) is an aligned partial
order and the labeling V {/20,...,/2v} satisfies conditions (C1) and (C2). Let k
be the largest index for which/2k-1 - /2k. Then Sk {/2jlJ 0,... ,k- 1} follows
from condition (C2). Furthermore, condition (C1) implies that there are no indices
j > i >_ k such that/2j -/2i. It follows then that S c_ S.k for any k, and hence

S. is maximal. It is also clear that the induced partial order (S, >-) is also aligned
(with the same labeling) and that the induced partial order ({/2k,... ,/2},>-) is an

empty relation.
The only thing left to show is that the claim remains true for any other in-

dex k for which IS, is also maximal. Let us observe that, in this case, k > k
and S, Sk follow from properties (C1) and (C2). Therefore, by interchanging
the elements /2a and /2k’, we obtain another good labeling of V, which proves the
lemma. [:]

We show next that interval orders are aligned.
LEMMA 2. Interval orders are aligned.
Proof. Let us recall (see [9]) that (V, -) is an interval order, by definition, if there

are real intervals [as, b] c_ for a E V such that a - if and only if b < az. Let
us consider such a set of intervals realizing (V, >-).

It is clear that
S- {/ Ibz < as }.

It follows then that S c_ SZ if as <_ az; therefore ISI is maximal if and only if
is maximal. Let a E V be such that as is maximal. Then, for every/ V, either

bz < as (in which case,/ S) or az _< as <_ bz. This implies that there is a common
point as of all intervals associated to the elements of V that are not in S, and hence
there cannot be any relation between these elements.

Since (S, >-) is again an interval order and since ISI < IVI, we can continue,
and the recognition algorithm described in the previous lemma will not fail.

It is easy to see that aligned orders are not necessarily interval orders. For ex-
ample, let us consider V {/20,/21,/22,/23,/24}, in which /20 /22,/20 -< /24,/21 - /22,

and/2 -/23. This partial order is clearly aligned, but it is not interval, since neither
/20 - /23 nor /21 - /24-

5. Maximal V-partitions via maximal closures. In this section, we show
that if (V,-) is an aligned partial order, then a maximal weight V-partition can be
determined in polynomial time.

Let G (N,A) be a given directed graph, let (V, ) be an aligned order, and
let V {/20,...,/2.} be a labeling of the elements of V satisfying co.ditions (C1) and
(C2). Furthermore, let w, be given reals for x N and a V.

It follows then that, for any V-partition, :P {Pla E V} and, for any index i
for which/2-1

V

[_J

In the example, we can let {/20,/21,/22,/23 } {h, u, p, d} as an appropriate labeling.
As we can observe easily, this partial order is not only aligned but is also an interval
order.
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FIG. 2.. Maximal closure formulation of an approximation problem.

Let kp(x) be defined for any x e N as the index of fp(x) in this linear order,
where fp is again the function defined by (3.4). In other words, fp(x) "k(x) for
every x E N.

Let us define a directed graph, ( (/9,) associated with G and (V, 4), as
follows. The graph ( contains vlN nodes, and each node x E N has v "relatives" in
/9, denoted by Xl, x2,..., xv. We include the arcs (xi, yi) for (x, y) A and for indices
with -1 - in the partially ordered set (V, -). We also add the arcs (x, x-l) to. for every x N and i 2,..., v. In other words, we place v copies of the node set
N on top of each other and we include all the arcs of G in the ith level, if i-1 and
i are comparable; otherwise the ith level is an empty graph. In addition to these,
we include a directed arc from each vertex to its lower relative, too. The graph (
associated with the graph of Fig. 1 appears in Fig. 2.

We define real weights @x, associated with every vertex xi /9 as follows:

for 1,...,v, and x N.

The weights x for our example also appear in Fig. 2.
THEOREM 3. There is a one-to-one correspondence between the V-partitions of

G and the terminal sets of . Furthermore, if 7) {PIa V} is a V-partition of G,
and if is the corresponding terminal set of , then

(5.3) w (T)) E w,’o + (v (),
xN

where v is the vector defined by (5.2).
Since ExEN Wx,o is a constant, it follows that finding a maximal V-partition in

G is equivalent with finding a maximum-weight terminal set in .
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Proof. Let us consider first a V-partition of G, 7) {Plc E V}, and define a
subset of the nodes of & as follows:

(5.4) (7= U xi xE P

We show that (p is a terminal set in
For xi p, it follows that xi_ p by definition (5.4). Let us consider

an arc (xi,yi) e of , where xi p. By the definition of G, (xi, yi) only
Vif --1 . Therefore it follows from (5.1) and (3.1) that j= P is a terminal

set of G. By definition, xi p implies that x P for some j i, i.e., that
Vx j= P. From (x, y)

y=i P, thus implying that yi

Conversely, let us consider a terminal set of . Let Po {x]x }, let
P, {xxi but xi+ }, for i= 1,2,...,v- 1, and let P. {x]. C}. We
show that P {P i 0, 1,..., } is a V-partition of G such that Cp.

Since is a terminal set of G, it follows that, for very x N, either x , or

x , or there is a unique 0 < v such that xi C but Xi+l . Therefore P is
a partition of N.

Let us now consider an arbitrary arc (x, y) A of G for which x P and y P,
and let us assume that j i. Then, on the one hand, xi

, but Xy+l
, by the

above definition of P. On the other hand, by property (C1), there must be an index
k such that j k,k + 1 i, and a k+- Then the arc (Xk+l,Yk+l) belongs to the
graph , and thus the vertices Xi, Xi-l,...,Xk+l,Yk+l,Yk,...,Yj+l form a directed
path from xi to Xj+l in , which starts in the terminal set and ends outside of it.
This contradiction shows that y , i.e., that kp(y) kp(x) for any arc (x, y) A
of G, and thus it proves that P is a V-partition of G.

Finally, (5.3) follows easily by (5.2) and (5.4)"

ke()

(5.5) =1

xeN

x,N

The maximal closure for Fig. 2 is encircled in the figure. Note that this solution
corresponds to the function fl defined in Table 1. Thus f is a best approximation to
the data.

We conclude by indicating in Table 2 the possible values of f (x) for both observed
and unobserved values of x. The observed values are in boldface. Note, for instance,
that f(Y, U) cannot be d, since (N, U) (I, U), (I, U) u, and d u. In this
example, the value of f(x) is completely determined for only one unobserved x,
namely, x (P, P).



542 E. BOROS P. L. HAMMER AND J. N. HOOKER

TABLE 2
Function values consistent with an optimal approximation.

(N,N)

(U,N)
(N,U)
(I,N)
(N,I)

(u, u)
(I,U)
(P,N)
(U,I)
(,)
(N,P)

(P,U)
(P,)
(U,P)
(I,P)

(P,P)

h, u, p
h,u,p
u
h, u, p, d

h, u, p
u
u,p,d
h, u, p, d
u,p,d
h,u,p,d

P
u,p,d
h, u, p, d
d
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A CODING APPROACH TO SIGNED GRAPHS*

PATRICK SOL] AND THOMAS ZASLAVSKY

Abstract. The cocycle code of an undirected graph F is the linear span over F2 of the charac-
teristic vectors of cutsets. (If F is complete bipartite, this is the generalized Gale-Berlekamp code.)
The natural bijection between the cosets of this code and the switching classes of signed graphs based
on F is used to show that the number of such classes is equal to the number of even-degree subgraphs
of F in both the labeled and unlabeled cases and to improve by coding theory previous bounds on

D(F), the maximum line index of imbalance of signings of F. Bounds on D(F) are obtained in terms
of the genus of F and on the number of unlabeled even-degree subgraphs in terms of D(F). Numerous
examples are treated, including the "grid" (or "lattice") graphs that are of interest in the Ising model
of spin glasses.

Key words, signed graph, line index of imbalance, frustration, cutset code, cocycle code,
covering radius, genus, spin glass, Ising model, Gale-Berlekamp code, switching class, even-degree
subgraph

AMS subject classifications, primary 05C35; secondary 94B25, 82B20

1. Introduction. Graphs with signed edges, called signed graphs, were intro-
duced in the 1950s [12] in connection with a problem in attitudinal psychology [7] and
have since often been rediscovered, notably in the theory of spin glasses [31]. The fun-
damental feature of a signed graph is the list of circuits that are positive, that is, have
an even number of negative edges. We call two signed graphs switching equivalent if
they have the same base graph and the same positive circuits. The equivalence classes
(called switching classes) of signings of a graph correspond to the additive cosets of
the binary cocycle space of F; by considering this space as a linear code (the cocycle
code or cutset code), we can use coding theory to obtain results on two problems about
signed graphs.

A signed graph is called balanced if every cycle is positive. One measure of the
degree to which a signed graph fails to be balanced is the smallest number of edges
whose negation produces a balanced signed graph. This quantity is known as the line
index of imbalance or frustration index. (The former name is from [13]; the concept,
in different formulations, originates in [1] and [13] and later from spin glass theory [a,
2.2J--whence comes the term "frustration"--and possibly elsewhere.) The question
is how large the index can be, given F. We obtain new upper and lower bounds on the
maximum index, improving the results of [2], by observing that it equals the covering
radius of the cutset code.

Using an approach to imbalance in signed planar graphs first developed in [15] and
our recent results on the covering radius of cycle codes [29], we obtain lower bounds
on the line index of imbalance of a signed graph based on a graph of known genus.
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The number of switching classes of signings of a graph F is known to equal the
number of even-degree subgraphs of F. This is trivial if F is labeled, a theorem of Wells
if F is unlabeled [32]. We observe that Wells’s theorem is precisely the application
to cutset codes of a standard automorphism property of a linear code. Then we use
the cutset code to obtain a lower bound on the number of unlabeled even-degree
subgraphs.

2. The cutset code of a graph. We let F denote a finite, loopless graph
with vertex set V V(F) and edge set E E(F) {el,e2,...,em}. We write
n IVI, m IEI, and c the number of connected components of F. A cocycle or
cutset is an edge set that consists of all edges having one endpoint in some set X c_ V
and one endpoint not in X. Under the operation of set sum (i.e., symmetric difference),
the cutsets form a subspace of the binary vector space of all subsets of E. Replacing
subsets S of E by their characteristic vectors xs E Fn gives a subspace of F, which
we call the cutset or cocycle code, C*(F). The dual code is the cycle code C(F), defined
as the linear span of the characteristic vectors of circuits of F. As is well known, both
codes have length m; their dimensions are n c for the cocycle code and m n + c
for the cycle code.

The cosets of a linear code C are the additive cosets of C in F. The weight w(x)
of an element x ofF is the number of ls it contains. The distance from x to y in F
is d(x, y) w(x y). The minimum weight of a coset x + C is minvec w(x + y). The
covering radius R(C) is the largest minimum weight of a coset taken over all cosets.

3. Signed graphs and switching classes. A signed graph is a pair (F,a),
where a is a function from the edges of F into {-1, +1 }. A signed graph (F, a’) is said
to be obtained by switching (F, a) at X _C V if

a’ (xy) a (xy) if x, y e X or x, y e Y\Z,
-a(xy) ifxeXandyCXorxCXandyeX,

where xy denotes an edge whose endpoints are x and y. Two signed graphs are said
to be switching equivalent if they are based on the same graph and are exchanged by
switching at some X. It is easy to see that switching equivalence is an equivalence
relation. It is also easy to show that two signings of F are switching equivalent if and
only if they have the same positive circuits (see [33, Prop. 3.2], for instance).

Switching is derived ultimately from [16], where it was employed to study two-
graphs, which are, in effect, signed graphs (Kn, a) on the complete graph Kn. The
precise definition is as follows: a two-graph on n vertices is a class of three-element
subsets of an n-set V such that each four-element subset of V contains an even number
of members of the class. The original article on two-graphs is [30]. An excellent
exposition of this line of development is [24].

A simple but crucial lemma is the following.
LEMMA 1. The mapping +1 - 0, -1 -+ 1 induces one-to-one correspondences

(i) between signed graphs based on F and elements of Fn, and (ii) between switching
classes of signed graphs based on F and cosets of C*(F).

Proof. (i) is obvious. (ii) Switching at X in (+1,-1) notation is equivalent to
adding in (0, 1) notation the cocycle determined by X and its complement. Thus a
switching class is, in (0, 1) notation, a coset of C*(F).

4. Covering radius and index of imbalance. It is clear that a signed graph
is balanced if and only ifit is switching equivalent to the all-plus signed graph (F, +1).
The smallest number d(F, a) such that (F, a) can be changed into a balanced graph by
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changing the sign of d(F, a) edges is called the line index of imbalance of (F, a). The
largest possible line index of imbalance over all signings of a graph F, call it D(F),
was investigated in [2]. These authors proved inter alia that

m m
(1)

2
nv/-n- <- D (F) <_

and

t2
(2) D (Kt,t) < cot3/2

for some constant co that can be taken as co /480.
We can improve these results by using known facts on the covering radius of

codes (some of which were originally expressed in terms of +1 matrices). Theorem 1
improves the lower bound in (1). Our proof is, moreover, conceptually simpler than
the proof of (1). Formula (6) sharpens (2), and Theorem 2 shows that the quantity
rn/2- D(F) can be bounded away from zero more generally than is done in (2).

THEOREM 1. It i8 the case that

(3)
2 v/m (n c) _< D (F).

We mention that (3) is derived in [26] from a slightly stronger formula, which in
our notation is

(4) D (F) >_ rnH_I (1
n

where H is the binary entropy function (H2 in [17, pp. 308-309]).
THEOREM 2. If P is simple and bipartite,

(5) D (r) _<

THEOREM 3. [5, p. 266, Thm.]. We have

t2 t3/2 t2 t3/2
(6)

2 2 - (t3/2) < D(Kt,t) < - 0 (t3/2).-2

The error term in the upper bound of Theorem 3 was reduced to O(tl/2) in [9,
Cor. 3 and Rem.].

For the proofs, we first need a lemma.
LEMMA 2.
(i) The line index of imbalance of a signed graph based on F is equal to its

minimum weight as a coset of F.
(ii) D(r) s equat to the covering radius of C*(F).
Proof. (i) is clear by translating (+1,-1) notation into (0, 1) notation. (ii) is

clear from (i), since the covering radius of a code is the largest possible minimum
weight of a coset.

Proof of Theorem 1. For any IN, K] code, a simple consequence of the sphere-

covering bound is R > N/2- v/1/2NKln2 (stated in [20]; the proof is given in [26,
Thm. 2]). Here N m,K n-c, and R D(F).
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Proof of Theorem 2. Furthermore, if a binary code is of strength 2 and contains
the all-one vector, then R < (g V)/2 [14, Tam. 3]. Here the strength is 2 because
the minimum distance of the cycle code is > 3. C*(F) contains the all-one vector if
and only if F is bipartite.

Note that, for any graph, the bound D(r) <_ m/2 of [2] is also implied by the
results of [14].

Proof of Theorem 3. We indicate how the quantity evaluated in [5], which is
the minimum number of -ls in line negations of a +l-matrix (of order p x q, say),
maximized over all such matrices, equals D(Kp,q). Let Y(Kp,q) X U Y, where X
{Xl,...,Xp} and Y {yl,...,yq}. An entry aij in the matrix is the sign of the
edge xiyj. Switching a vertex, say x, corresponds to negating a line, in this case,
row i.

Interest in D(Kp,q), although not by that name, was aroused by the Gale-
Berlekamp switching game [5], [8]-[10] and the corresponding binary code, which
happens to be C*(Klo,lo). The code C*(Kp,q) is usually described as the p by q array
code whose codewords are sums of matrices of the form

0 0 or 1 1

1 0

This is a [pq, p + q- 1] code, which might be called a generalized Gale-Berlekamp code
because it corresponds to the p by q Gale-Berlekamp switching game. Identifying rows
(respectively, columns) with the first set (respectively, second set) of the bipartition
of Kp,q, we see that the code is C*(Kp,q). Indeed, switching at a point in K10,10 is the
same as switching a commutator in the Gale-Berlekamp switching game.

Theorems 1 and 3 suggest that the best general asymptotic lower bound on D(F)
has the form

m-- C1+ O (-)
__
D (F),

ln2 59 and .28. Wewhere cl is a positive constant lying between 1/2v/
would like to know the exact value of cl, both for all graphs and for narrower classes,
especially for classes in which m/n2 is bounded away from zero and for the class of
k-connected graphs, where k _> 1.

For the latter, the graphs Kp,q with k _< p <_ q are relevant. It is known [9, Thm.
3], [10, p. 396, Ex. b] that

1
(7) D (Kp,q) <

pq Pq
if q >> p.

2 Y4

Exact values are known when p _< 5. It is easy to prove that

D (Kl,q) 0, n(K2,q) [J
for all q. It is true, but difficult to prove, that

04,
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where ca 0, except Ct4 1 if q 1, 4, 5 (mod 8), and that

125 1D (Ks,q) --q 05,

where (5 0, except c5 1 if q 2, 4, 9, 13, 15 (mod 16). (The formulas for p < 4
were published in [5] without proof. That for p 5 is new.) We conclude that, as
q oc while p is fixed,

D (Kp,q)
pq bpx/--d + 0 (1)
2

where bl ,1 52 x//4 .35, b3 v//4 .43, 54 3 .375, and b5 3v//16
.42. (The values approach 1/x/ .40, by (7).)

The exact values D(Kt,t) are also known, for t _< 10. They are published in [8,
Table 1] as the values Rt of the covering radius of the Gale-Berlekamp codes C*(Kt,t).

Concerning Theorem 2, we conjecture that a somewhat similar upper bound holds
for all simple graphs.

CONJECTURE 1. D(F) <_ m/2- (n-c)
The conjectured bound is sharp since it is essentially equal to D for Kn, since

D(gn) [(n- 1)/2)2. (This was stated implicitly in [1, Whm. 14]. It was proved in
[21].) Conjecture 1 is stronger than Theorem 2 for most bipartite graphs, including
all those in which q _> p + 2x/-fi + 1.

For graphs with large girth, stronger upper bounds than those of (1) and Theorem
2 follow from the generalized Norse bounds of [28]. We let #k(m) denote the kth
centered moment of a B(m, ) binomial probability distribution. Some small values,
taken from [28], are

m 3m2 2m 15m3 30m2 + 16m
/t2 (m) 2, /t4 (m) 24 /z6 (m) 26

THEOREM 4. If F has girth g >_ 2s + 2, where s is a positive integer, then

m
D (F) _< - (21-/(2s+) 1) #2s (m)/2

If F is bipartite, then
m 1/2sD (F) _< #2 (m)

Proof. The proof follows from [28, Thms. 6 and 1]. [:]

When s 1, the latter part of this theorem is Theorem 2.
The next result is an asymptotic version of Theorem 4.
THEOREM 5. If F has girth g >_ 2s + 2, where s is a fixed positive integer, then,

as m -- c, we have

D(F)<
m

(21-1/(2s+1)- 1)((28)!) 1/2s

+ o

and, if F is bipartite,

D(F)<
m V/-((2s)!ll/2s + o
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Proof. The proof follows from [28, Thms. 7 and 3].
For general graphs with fixed minimum girth, better estimates are attainable.

For instance, from [28, Thins. 4 and 5], we obtain Theorem 6.
THEOREM 6. If [’ has girth >_ 4, then

D(F) < m
2 2

where fl .68.
If F has girth g >_ 6, then

m 1/4n (F) _< h2#4 (m)

where h2 .82.
The exact values of fl and h2 can be obtained from [28].
The bounds of Theorem 6 are stronger than those of Theorem 4 evaluated at

s 1 and 2. However, they are still probably rather weak. (Since they are so general,
applying to all binary codes, that is not surprising. The same remark applies to all
general results of this section, although they are the best known bounds on D(F).)
For instance, the Petersen graph P has girth 5. Theorem 6 gives D(P) <_ 5.7, but it
can be shown that D(P) 3. For an example falling under Theorem 2 (i.e., the case
where s 1 and F is bipartite of Theorem 4), see Example 10.

5. Embedded graphs. In this section, all graphs are connected. For many
planar graphs F, D(F) is easy to compute because of duality. Let F* be the planar
dual ofF. Then C*(F)= C(F*); hence D(F)= R(C(F*)). However, this equals [1/2n*J
(where n* IV(F*)I the number of faces of a planar embedding of F, that is,
m + 2 n) for many graphs, for instance, if F* is Hamiltonian or if it is connected:
k-regular, and k-edge-connected [29].

As far as we know, the first to apply planar duality to find the imbalance of signed
graphs were Katai and Iwai [15, 4]. They used minimum T-joins in F*, for suitable T,
to calculate d(F, a). (T-joins and their connection to the cycle code are explained in
[29].) Previously, d(F,-1) had been obtained similarly in [19], where it was regarded
as the largest cut size in the plane graph F.

Example 1. K2,q is planar. Its dual graph is Cq with doubled edges, which is
Hamiltonian. We recover the result of 4, D(K2,q)

Example 2. A wheel Wn is the join of a circuit Cn-1 and a vertex. It is planar
and self-dual. Because it is Hamiltonian, D(Wn)

Example 3. A biwheel Bn is the join Cn-2 / K2, where Kp is the edgeless graph
of order p. Its planar dual is a circular ladder CL-2, which consists of two vertex-
disjoint Cn-2’s, say with vertex sets {x,x2,...,Xn-2} and {y,y2,...,y,-2}, and
edges xiyi for all i. This is Hamiltonian (and cubic and three-edge-connected), so we
have D Bn n 2.

Example 4. Dually, D(CL) [n/2J + 1 since B+2 is Hamiltonian.
Example 5. The ladder Ln is CLn with the edges XlXn and YlYn deleted. We

see that D(L) [n/2J, since its dual contains the Hamiltonian spanning subgraph
Pn-1 /K1, where Pn- is a path of order n- 1. The latter (a fan) is self-dual; hence
D(Pn-1 k//1) [n/2J, as well.

Example 6. The rectangular grid Gp,q is of some interest as a finite spin-glass
model [31], [3]. It has vertex set {1,2,...,p} {1,2,...,q} and edge set {(i,jl)
(i2,j2) lil- i21 -IJl- J21 1}. So /t pq and m 2pq-p- q. Its planar
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dual G* is Gp_ with an extra vertex adjacent to every outer vertex of Gp-l,q-1P,q ,q--

Since G,q is Hamiltonian and has (p- 1)(q- 1) + 1 vertices,

D (Gp’q) [Pq P- q + 2 J"2

The bounds given by Theorems 1 and 2 are far from the true value. Theorem 1,
for instance, approximately gives D > pq(1 x/ 2) .17pq for Gp,q.

We can generalize this work to nonplanar graphs as follows: Let X denote the
largest Euler characteristic of any surface in which F embeds and X0 the maximum

1(2 X0) the genus and 2-Xover orientable embedding surfaces. We call /--
the demi-genus of F. A simple use of the Euler formula yields the following lemma.

LEMMA 3. Let F* denote the dual off as cellularly embedded in a compact surface
of demi-genus d. Then

dim C (F*) dim C* (F) d.

Proof. Subtract dim C(F*) m n* + 1 from dim C(F) n 1 and apply Euler’s
formula n m + n* 2 d.

Using simple results of coding theory yields the following result. We denote the
covering radius of C(F) by T(F).

THEOREM 7. We have the bounds

Proof. C*(F) c_ C(F*), hence their covering radii satisfy the reversed relationship
w(r*) _< D(r). However, T(F*) > [n(F*)/2J by [29]. The second lower bound on T(F*)
follows from Lemma 3 and the theorem of Simonis [25].

COROLLARY 1. D(F) >_ [1 -/2 + (m- n)/2].
Proof. Substitute from Euler’s formula into the first bound of Theorem 7.
For fixed , this bound is better than Theorem 1, as the following examples (taken

from [4]) show.
Example 7. The Heawood graph, n 14, m 21, and the genus is 1. We may

take x/= 2. Corollary 1 yields D _> 3, while Theorem 1 yields D _> 2.
Example 8. The Franklin graph, n 12, m- 18, and we may take - 2. This

gives a lower bound of 3. Theorem 1 only gives 1.
Example 9. The r-dimensional hypercube graph Q has n 2 and m 2-lr.

By Theorems 1 and 2,

< D (Qr) < 2r-2r- V/2r-3r.

(Here 4 In 2 2.772
Computing D(Q) exactly is surely hard, but we know

D (Q1) 0, D (Q.) 1, D (Q3) 3.

The values for r _< 2 are obvious. Q3 is planar, and Q is the octahedral graph. The
latter is Hamiltonian, so D(Q3) -(Q) [1/2n*J 3. (From (8), we only obtain
1 < D(Qa) < 4.)
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We also know that the minimum - for Qr is 2 + 2r-2(r- 4) if r > 3 ([23]; see [11,
Thm. 3.5.8]). Corollary 1 then gives the lower bound

m
(9) D (Q) > 2-3r-

4

For instance, 8 < D(Qa) < 13, which is a wide range of uncertainty, but less than that
allowed by (8). It is interesting that (9) holds with equality for r 2 and 3. Formula
(8) shows this cannot be true for r > 12.

Example 10. The toroidal grid G,q has been used as a spin glass model [31],
[3]. It consists of Gp,q (Example 6), together with "wraparound" edges (i, 1)(i, q) and
(1, j)(p, j). It has n pq, m 2pq, and 2. Thus, by Corollary 1, D(G’p,q) >
[pq/2J. Theorem 7 gives the same result, since G’pq is self-dual in the torus, and it is
namiltonian so -(G,q) [pq/2].

On the other hand, if F1 c_ F2, clearly D(F2) < D(F1) + m2 ml. Taking
Gp q C Gp,q, our best estimate for the toroidal grid is therefore

[Tj < D (Gp,q) [pq + p + q + 2J
Exactly where the true value lies we do not know. It is at neither extreme, since we
can show that

G’ G’D(,q) q+l and D(2,q) q+2.

Theorems 1 and 2 give very poor estimates, similar to those for the rectangular
grid in Example 6.

6. Switching classes and even-degree subgraphs. Now we turn to our sec-
ond problem. An even-degree subgraph of F is a spanning subgraph in which all degrees
are even. In other words, it is a spanning subgraph whose edge set is an element of
the cycle space C(F), the dual code of C*(F). It is easy to see the next theorem by
comparing the dimensions of C(F) and F/C*(F).

THEOREM 8. For a labeled graph F, the number of switching classes of signings
of F equals the number of even-degree subgraphs.

What happens in the unlabeled case, specifically if we let the automorphism
group of F act on the cosets of C*(F) and the words of C(F)? Call two subgraphs of
F, or (switching classes of) signings, F-isomorphic if one is carried to the other by an
automorphism of F. Then we have the following result.

THEOREM 9. (see [32]). The number ofF-isomorphic even-degree subgraphs of F
is equal to the number of F-isomorphic switching classes of signed graphs based on F.

This result was proved for F Kn in [18], then in a cohomological context in [6],
and later generalized to arbitrary F, again with a cohomological proof [32, Thm. 1.3].

Proof. We apply to the cycle code the well-known fact [22, p. 211] that a group
acting on the coordinate places of a linear code C has as many orbits on the codewords
of C as on the cosets of its dual.

We now use imbalance to obtain a lower bound on the number in Theorem 9.
THEOREM 10. The number ofF-isomorphic even-degree subgraphs off is at least

equal to D(F)+ 1.

Proof. Since two F-isomorphic signed graphs based on F correspond to equivalent
cosets of C*(F), they have the same line index of imbalance. Hence, there are at least
D(F) + 1 signed graphs based on F that are F-nonisomorphic and, from Theorem 9,
at least that many even-degree subgraphs in F.
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COROLLARY 2. There are at least [(n- 1)2/4] + 1 two-graphs on n vertices.

Proof. From [21l, we know that D(Kn)- [(n- )/4J.
Call a binary linear code completely transitive [27] if its covering radius equals the

number of orbits of cosets under the action of its automorphism group (not counting
the code itself).

COROLLARY 3. If D(F)+ 1 equals the number ofF-isomorphic even-degree sub-
graphs of F, then C*(F) is completely transitive.

Proof. From Theorem 9 and Lemma 1, D(F)+ 1 counts the number of F-
isomorphism classes of cosets of C*(F). However, every automorphism of F induces a
coordinate automorphism of C*(F). V1

Example 11. Consider C*(Ka). Note that Ka Wa. Hence, from 5 or [21], we
know that D(Ka) 2. All even subgraphs of Ka are isomorphic to either Ka, K3, or

Ca. Thus we obtain a completely transitive [8, 3] code with covering radius 2.
Example 12. C*(K3,3) is completely transitive. A direct proof is given in [27].

All even subgraphs are isomorphic to either K6, Ca, or C6. It is known from [5] (and
easily proved) that D(K3,3) 2. So we have a completely transitive [9, 5] code with
covering radius 2.

7. Conclusion and open problems. In this paper, we have shown how coding
theory could be used to generalize certain enumerative results on two-graphs and to
improve certain estimates on the line index of imbalance of signed graphs. The next
question is to see if graph theory can be of some use in designing good new covering
codes or decoding classical ones.
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Abstract. In this paper the second and the third generalized Hamming weight of Melas codes
are computed and results on the second generalized Hamming weight of dual Melas codes are obtained.
The authors’ main tool is the theory of elliptic curves over finite fields.
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1. Introduction. Let C be a binary linear (n, k)-code of length n and dimension
k. Since Wei proved in [W] that the performance of C, when used on the wire-tap
channel of type II, is determined by the generalized Hamming weights of C, renewed
interest in these parameters of a code has been observed (see, e.g., [C], [FTW], [GV2],
[GV3], [HKY], [HTV], [W], [YES]).

We recall that for 1

_
r _< k, the rth generalized Hamming weight of C is defined

by

(1) dr (C) min {#S (T))IT) is an (n, r)-subcode of

where S(T)) is the support of T), i.e., the set of coordinate places where not all words
in 7) have a coordinate 0. Since projection of T) on a coordinate place is an F2-1inear
map, we easily see that d,.(C) can also be defined as

(2) d, (C) 2_
min w (d)" T) is an (n, r)-subcode of C

where w(d) is the weight of the word d.
In general it is not easy to determine dl (C) and results on d(C) for r>_ 2 are even

more scarce until now. In this paper we obtain results on d-and da of the classical
Melds codes M(q) of length q- 1 with q 2m and on d. of their dual codes. The
Melds codes were introduced in [M].

2. Melas codes and their duals. Let ]Fq be the finite field of cardinality q-
2 with rn _> 3. By ( we denote a generator of the multiplicative group ]F. The Melas
code M(q) of length n- q- 1 is the binary cyclic code with parity check matrix

1 c-1 oz-(n-)

The code M(q) is reversible (i.e., if (co, c,..., C-l) M(q), then (c_,..., Cl, co)
M(q)). For m _> a, the dimension of M(q) is q- 1 2m and the minimum distance

* Received by the editors January 25, 1993; accepted for publication (in revised form) September
1, 1993.
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: Mathematisch Instituut, Rijksuniversiteit te Leiden, Niels Bohrweg 1, 2300 RA Leiden, The
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is 3 for even m, while it is 5 for odd m _> 5 (see [MacWS] and [SV]). In [SV] it was
shown that the dual code M(q) +/- can be described as the binary code with words

c(a,b)= Tr ax+- with a, b

where we denote by Tr the trace map from Fq to IF2.
The weights occurring in M(q) +/- were determined by Lachaud and Wolfmann in

[LW]. If we define tmin min{t E Z" t2 < 4q and t l(modd)}, then the following
theorem holds (see [SV]).

THEOREM 2.1. The minimum weight in M(q) +/- is (q-l+tmin)/2 and the number
of words of minimum weight is (q 1)h(t2min 4q).

Here h denotes a class number. Namely, for positive definite integral binary
quadratic forms Q(X, Y) aX2 + bXY + cY2 we have

/t (A) # {Q (X, Y) b2 4ac A}/SL2 (Z) equivalence.

Note that (A) is nonzero only for A e Z<0 and A 0 or l(mod 4).
The theory of reduced quadratic forms yields

t(A)-#{(a,b,c)Z3"b2-dac-A,Ibl <_a<c, andb_>O, ifa=[bIora=c}.

This expression makes h(A) very easy to compute. For details we refer the reader
to [o].

The multiplicative group F and the Galois group Gal(Fq/F2) of the field exten-
sion ]q/]2 act in a canonical way on M(q) +/-. This leads to the following lemma.

LEMMA 2.2. If c(a, b) is a word of minimum weight in M(q) +/-, then
(i) for every F, the word c(a, fl-ib) has minimum weight,
(ii) for every a Gal(Fq/F2), the word c(a(a), a(b)) has minimum weight.
Proof. (i) The map defined by x /3x is a permutation of F. Hence c(13a, -lb)

is equivalent with c(a, b) and thus has the same weight.
(ii) Likewise a E Gal(Fq/F2) also permutes F and the trace map is invariant

under the action of a. This implies that w(c(a, b)) w(c(a(a), a(b))), n
Due to this lemma, there exist words of minimum weight of the form c(a, 1),

necessarily with a ]F, and their number is h(t2min -4q) (see [SV, Thm. 3.3]).
3. Determination of d2(M(q)+/-). First we consider the case where m is even.

Then Fq contains a primitive third root of unity, which we denote by p.
THEOREM 3.1. For even m > 4, there exists a two-dimensional subcode of M(q) +/-

all of whose nontrivial words have minimum weight.
Proof. Let c(a, 1) be a word of minimum weight. Then, according to Lemma 2.2,

the weight of c(pa, p2) is also minimal. These two F2-independent words generate a
two-dimensional subcode of the kind we are looking for, since c(a, 1) + c(pa, p2)
c(p2a, p) also has minimum weight, n

COROLLARY 3.2. For even m

_
4, the second generalized Hamming weight of

M(q) +/- satisfies

Now we consider the case where m is odd.

a (q- 1 + tmin)/4.
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THEOREM 3.3. Let c(a, 1) be a word of minimum weight in M(q) +/-. If there ex-
ists an automorphism a e Gal(Fq/F2) such that Tr(a(a)/a) 0, then d2(M(q) +/-)
3dl(M(q)+/-)/2.

Proof. Consider the words c(a, 1) and c((a),-1) with a E Gal(Fq/F2) and
E ]Fq ]F2. Now we want the sum of these two words to be of the form c(Ta, 7-1) for

a certain 7 ]q ]2. Therefore we have to find a Gal(Fq/F2) and/, ]q ]2
satisfying

(3)
a +

1 +/-1 7-1

By substitution (3) yields

(4) /32 +/3 a/a (a).

This equation has two solutions e Fq- F2 if and only if Tr(a/a(a)) 0 or

Tr(a-i(a)/a) O. Hence our condition implies the existence of a two-dimensional
subcode of M(q) +/-, all of whose nontrivial words have minimum weight.

COROLLARY 3.4. If M(q) +/- contains a minimum weight word c(a,1) with Tr(a)
0, then d2(i(q) +/-) 3dl(i(q)+/-)/2.

Due toa result in [GV1] we can translate the condition Tr(a) 0 into a con-
dition that has to be satisfied by tmin. Namely, the word c(a, 1) (Tr[ax +
corresponds to the elliptic curve Ea with affine equation y2 + y ax + 1. The
rational points on Ea form in a natural geometric way an abelian group Ea(Yq) of
order q - 1 train (see IS]). In [GVX] the following theorem was deduced.

THEOREM 3.5. Let q 2m with rn >_ 3 and let Ea be an elliptic curve over Fq of
the form y2 + y ax + 1. Then Ea(Fq) has a point of order 8 if and only if Tr(a) O.

COROLLARY 3.6. f tmin l(mod8), then d2(M(q) +/-) 3dl(M(q)+/-)/2.
Proof. The condition tmin l(mod 8) implies that the abelian group Ea(]Fq) on

the elliptic curve involved has a subgroup of order 8. Then it follows that E(Fq) has
a point of order 8 since Ea(Fq) has only one point of order 2 (see IS, Prop. 3.4]). We
find our result if we combine Theorem 3.5 with Corollary 3.4.

EXAMPLE 3.7. For m- 11 the code M(q) +/- is a (n- 2047, k- 22)-code. From
Theorem 2.1 we infer that tmin -87- l(mod8). Hence d(M(2047) +/-) (2047-
87)/2 980 and d2(M(2047) +/-) 1470.

Remark 3.8. In the case where rn is odd, there exist dual Melas codes that do
not have the pr_operty d2 (3/2)dl. Namely, for m 5 we find tmin -11 and

2h(tmin -4q) h(-7) 1. This implies that c(1, 1) has minimum weight and the set
of minimum weight words is given by {c(/,/3-1) /3 E F}. Then we conclude that
there is no two-dimensional subcode of M(32) +/- containing three minimal words. In
fact, dl(M(32) +/-) 10 and d2(M(32) +/-) 16.

Note that m 5 is the only odd m for which h(tminN2 4q) 1.
Finally, we derive a simple upper bound for d2(M(q) +/-).
THEOREM 3.9. For odd m >_ 7, the second generalized Hamming weight satisfies

the inequality

(M (q)+/-) <_ (3q- 2 + 2tmin)du /4.

Proof. Take a word c(a, 1) of minimum weight. Since rn _> 7 we may assume that
a : 1. Then c(a, 1) and c(a2, 1) generate a two-dimensional subcode that contains two
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words of weight (q- 1 + tmin)/2 and one word of weight q/2. Using (2), the upper
bound easily follows.

4. Determination of d2(M(q)) and d3(M(q)). In this section we label the
coordinate places of a word in M(q) by the elements of ]F in the same order as in the
first row of the parity check matrix H for M(q) given in 2.

First we consider the difficult case, i.e., the case where rn is odd, m _> 5. Fix
two different coordinate places tl, t2. From (2) we see that the words of weight 5 in
M(q) that have ones in the places tl, t2 play an important role in the determination
of generalized Hamming weights. If we look at the parity check matrix H it follows
that these words are closely related to the solutions (Xl, x2, x3) E (F)3 of the system
of equations

Xl -- X2 -- X3 tl - t2,
1 1 1 1 1

xl x2 x3 t t2

THEOREM 4.1. For q- 2 with odd rn >_ 5, the number N3(t,t2) of solutions

of (5) is at least q 5 2x/"
Proof. We replace (5) by

(6)
Xl - X2 -- X3 X4,

1 1 1 A
Xl X2 X3 X4

where A (tl - t2)2/tlt2. Substituting the expression for X4 in the second equation
we obtain

(Xl -- X2 -- X3)(XlX2 -- XlX3 2t- X2X3) Axlx2x3.

This equation represents a plane projective curve CA. For odd m we have A 1, which
implies that CA is nonsingular. Furthermore, CA has genus 1 and an Fq-rational point;
so CA is an elliptic curve over ]Fq. The Riemann hypothesis for elliptic curves over finite
fields, proved by Hasse in 1933, yields that the number #CA (]Fq) of F-rational points
on CA satisfies

#CA (F) >_ q + 1 2x/.

Now the projective points (x x2 x3) (1 0: 0), (0:1 0), (0: 0: 1), (1 1
0), (1 0: 1), (0:1 1) do not induce solutions of (6) and we conclude that (6) has
at least q- 5- 2xfl0 solutions for fixed x4 E ]F. Replacing xa by t -- t2 we obtain at
least q- 5- 2v/- solutions of (5).

If we denote the number of words in M(q) of weight 5 with ones in the positions
t and t2 by A5(tl, t2), we have the following corollary.

COROLLARY 4.2. The number of words A5(tl,t2) satisfies

A5 (tl, t2)

_
(q- 5- 2X/)/6.

Proof. We verify that the solutions (x,x2,x3) of (5) satisfy xi G F {tl,t2} for
1, 2, 3. Keeping in mind that the symmetric groups $3 acts on the solutions of (5),

Theorem 4.1 implies the inequality for A5(t,t2).
This corollary leads to the following theorem.
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THEOREM 4.3. For the Melas codes M(q) of length n q- 1, where q 2m with
rn _> 4, we have for even m,

(i) d2 (M (q)) 6,

(ii) d3 (M (q)) 9;

while for odd m,
(iii) d2 (M (q)) 8,

(iv) d3 (M (q)) 10.

Proof. (i) and (ii). For m even, m >_ 4, the code M(q) has (q- 1)/3 words
of weight 3 (see [SV]), namely, the shifts of the word that has ones in the positions
corresponding to 1, c(q-1)/3,(2(q-1)/3. First we conclude that d2(M(q)) 6. For
a three-dimensional subcode T C M(q) with a basis of words of weight 3 we have
#S(T)) 9. Since M(q) has no words of weight 4 (see [SV]), we find that #S(T) >_ 9
for three-dimensional subcodes T that have no basis consisting of words of weight 3.
Hence d3(M(q)) 9.

(iii) Since M(q) has minimum distance 5, the expression (2) for dr(C) implies
that d2(M(q)) _> 8. From the inequality in Corollary 4.2 we immediately see that
Ah(tl,t2) _> 2. Two words of weight 5 with ones in the positions tl and t2 generate a
two-dimensional subcode/P with S(:D) 8, which proves d2(M(q)) 8.

(iv) From (2) we derive d3(M(q)) >_ 10. Let P(t, t2) be the set of words of weight
5 in M(q) with ones in two fixed positions tl and t2. Then it follows from Corollary
4.2 that the support S(P(tl, t2)) of P(tl,t2) satisfies

=//=S(P(t,t2)) >3(q-5-2v/)_6
+2.

Take a word w in P(t,t2) with support t,t2,wl,w2,w3 and consider words - w in
P(tl,w). If the support of this set is not disjoint from S(P(t,t2)), we have three
words (namely two words, including w, in P(t,t2) and a word w in P(t,wl)) that
generate a three-dimensional subcode of M(q) that occupies 10 positions, thereby
proving d3(M(q)) 10. If the supports of our second set and P(t, t2) are disjoint, we
carry on by considering sets of words P(ti, wj) {w} for i e {1, 2} and j e { 1, 2, 3}.
If all the supports of these sets are disjoint, we use at least

3(q-5-2x/)+2+6"3"6 (q-ll-2v/)=(Tq-67.14x/)6/2
positions. Since we have only q- 1 positions available, we get a contradiction. Hence
there is a nonempty intersection, which provides us with three words, including w,
that generate a three-dimensional subcode of M(q) of support size 10. This proves
d3(M(q)) 10.

For the even weight subcodes of Melas codes of length q 2m with rn odd, m >_ 5,
it can be proved along the same lines that d2 9 and d3 11.
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RAMANUJAN DIAGRAMS *
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Abstract. A diagram D is a graph that is of finite volume with respect to a measure (weights)
on the vertices and edges. The author gives the basic definitions for a diagram, and defines the cases
where it is an expander. Let A be the Laplacian on L2 (D), and let A be the infimum of its spectrum
on the subspace of functions that are orthogonal to the constant function. The strong connection

between A being large and D being a good expander is shown. For a k-regular infinite diagram, the
largest possible A is k- 2x/- 1, and when this is achieved, it is called a Ramanujan diagram. Using
representation theory of PGL2, many infinite families of infinite Ramanujan diagrams are explicitly
constructed.

Key words, diagram, Ramanujan graph/diagram, expander, Laplacian, explicit constructions
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1. Introduction. An (n,d)-expander is a graph F (V, E) with n vertices,
such that for any set S c_ V with ISI

_
n/2, the set of neighbors of S, F(S)

(v e Yl(v, u) e E for some u e S}, satisfies

IF (S) \SI >_ d (1 ISI In)ISI.

Expanders have a wide area of interest, and are particularly useful in theoretical
computer science when proving lower bounds, asymptotically optimal algorithms, and
construction of communication networks. They were first introduced by Pinsker [Pin],
Pippenger [Pip], and Margulis [Mal]. Later, Gaber and Galil [GG] and Margulis [Mall
gave explicit constructions for families of k regular (n, d)-expanders with fixed k, d, and
n - cx. Although Pinsker [Pin] showed that much better families exist, for a long time
no one knew how to build them explicitly (even though many applications require an
explicit construction) until the Ramanujan graphs were built by Lubotzky, Phillips,
and Sarnak [LPS], and Margulis [Ma2], independent of one another. Ramanujan
graphs are the best possible families in terms of eigenvalues, which are a measure of
expansion, but better families of expander graphs may exist, for example, random
graphs.

Let F be a finite k-regular connected graph with n vertices, and let A be its

adjacency matrix. Let A(F) be the second smallest eigenvalue of kI- A. The following
theorems have been proved.

THEOREM A [AM], [Wa]. F is an (n, 4/(2A + k))-expander.
THEOREM B [A1]. If F is a k-regular (n, d)-expander, then (F) >_ d2/4k.
Hence, to look for a good expander is approximately equivalent to looking for a

large , but for this there is a limit.
THEOREM C [A1]. Let {Fi (, Ei)}I be an infinite family of k-regular graphs.

If limi_. IVl c, then limsup_ (F)

_
k 2v/k 1.

In [LPS], for every prime p 2, many families of k p + 1 regular graphs with
_> k- 2v/k 1 are explicitly constructed. This is achieved by using the Ramanujan
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1, 1993.
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conjecture (proved by Deligne [De]). These graphs are therefore called Ramanujan
graphs. The technique is to divide the tree of PGL2(Qp) (on which PGL2(Qp) acts
as a group of automorphisms) by a co-compact lattice that acts freely. To obtain q + 1
regular Ramanujan graphs for q, a prime power, it is reasonable to replace Qp by a
suitable completion k of the function field IFq(x) over the field with q elements, see
[Mo2]. Then PGL2(k) contains lattices that are not co-compact and act on the tree
with "large" stabilizers (i.e., no finite index sub-lattice acts freely). The quotient is
then more complicated. It is an infinite graph of finite volume by weights attached
to vertices and edges (i.e., the lattice measure), and we call it a diagram. While
interesting themselves, more surprising is the fact that in some, the regular part (where
all weights are 1, i.e., a usual graph) contains graphs of great interest (as shown in
[Moll).

Many questions arise. What is an expanding diagram? What is the analogue of, and how does it relate to expansion? What is the best possible expansion? Can
one reach it? In 2, we give the definitions and see that the analogue of (which is
also called A) satisfies Theorem A. Yet only a weaker version of Theorem B is proved:

>_ d’2/dk, where d’ expresses the expansion of the best family of finite sub-diagrams
of D that grows up to D. We leave open a few questions concerning the best possible
expansion.

We then prove a stronger version of Theorem C" Even for a single k-regular
infinite diagram, A <_ k- 2v/k- 1. The same holds true for limsup in a family
of finite diagrams where the number of vertices (and particularly where the volume)
approaches infinity. The best diagrams, where k- 2v/k 1, are called Ramanujan
diagrams. Finally, in 3, using representation theory of PGL2, we explicitly construct
many families of infinite, q + 1-regular Ramanujan diagrams for every prime power q,
and sketch the proof that these are Ramanujan diagrams.

2. The Laplacian of a diagram.
DEFINITION 2.1. A diagram is a triple D (V, E, w), where F (V, E) is an

undirected graph, IV[ _< R0, w V tJ E -- (0, 1] is the weight function, and for any
e (u, v) e E, w(e) >_ w(u), w(v). For S c_ V, #(S) -es w(u) is the measure on
D, and we assume that tt(V) < oc (we also write re(D) for tt(V)). D is called infinite

if IV R0. Call O(u, v) w(e)/w(u) the entering degree of e (u, v) to u, and for
a vertex u, in-degree(u) Y(,v)eE O(u, v). D is called k-regular if, for every u e V,
in-degree(u) k.

On the functions on D, an inner product is defined by

(f’ g) :/D f. d# f (v) g (v)w (v)
vEV

Then Ilfll and L2(D) are defined as usual. Define A, the Laplacian on L2(D), by

(1)

A (f) (u) in-degree (u)- f (u) E 0 (u, v). f (v)
(u,v)E

0 (u, v) (f (u) f(v)).
(u,v)eE

Using the Cauchy-Schwartz inequality, it is easy to see that if, for every u E V,
in-degree(u) _< k, then A L2(D) --+ L2(D) is bounded and IIAII <_ 2k.

LEMMA 2.2. A is Hermitian.
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Proof.

uv (u,v)E

’ Ag (u)f (u) w (u) {f,
uV

For a k-regular connected diagram D, the constant function 1v is an eigenvector
for the eigenvalue O. Look at the following orthogonal complement of 1u"

L (D) { f e L2 (D) E f (v)w (v) 0}.vV

Because A is Hermitian, L2(D) is invariant under A and

(D) inf {(Af, f)If e L (D), Ilfll- 1} inf spec (A L (D)).

DEFINITION 2.3. A k-regular diagram D is called a (tt0, d)-expander if tt(V)
#o and, for any S c_ V with #(S) <_ #0/2, the set of neighbors of S, F(S) satisfies
#(F(S)\S) _> d(1 #(S)/#o)#(S). Let d(D) sup{diD is an (#o, d)-expander}.

Following Alon [A1], we prove the analog of Theorem A, as follows.

THEOREM 2.4. A connected k-regular diagram with (V) tto is a (tt0, 4A/
(2A + k) -expander.

Proof. For S c_ V, let S- V\(S U F(S)). Define the function g E L2(D),

1/# (S)
() -/()

(1/# (q)1/# ())

vES,
vS,
e r()\S.

Let a Evv g(v)w(v)/#o, and let f(v) g(v) a. Then

() () E (v) (v) (v) 0.
vV vV vV

So, f e L2(D), and hence (Af, f} _> AIIfll 2. Therefore,
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(f (u) f (V))2 w (V)__
(f (U) f (v))2 w (v)

eeE(S,r(s)\s)

eeE(F(S)\S,9)
(f (u) f (v))2 w

1(1-4

1(1<-
-4

1)
2

+ k, (r (s) ks).()
1 \l k# (F (S) \S) #0+ ).(.) .(s). ()

Hence,

. (r (s) ks) >_ -.o" () "(s) . (r (S).o ks) )
Thus,

1 + lt (S) it (F (S) \S) _> 1

4A (it(S)) 4A (it(S))it (F (S) \S) _>
4"(s) 1 it (S) > 1 it (S).

-h-J-o + k it0 2 + k it0

DEFINITION 2.5. Let D be a connected k-regular infinite diagram. A family
{fi}=l of finite sub-diagrams (which certainly are not k regular) of D is essential in
D if limi_ it(f)- it(D). Let

d (9) inf {dlVf e jz, f is a (it(f), d)-expander},

and
dass (D) sup {d ($’)I:" is essential in D}

THEOREM 2.6. If D is k regular, then A(D) >_ dess(D)2/4k.
Of course dess(D) <_ d(D), but they are equal for all diagrams that we can imagine,

especially for those in 3.
Question 2.7.
(a) Is d(D) equal to dss(D)? If not,
(b) is the last theorem true with d(D), instead of dess(D)? If not,
(c) can we find an example where D is a good expander, d(D) >> ds(D), and

A(D) is "small"?
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If the answer to (a) and (b) is "no," then (c) seems to be a very hard task to
accomplish, because the only known way to prove expansion is by showing that ,k is
large (or by statements implying it).

Proof of Theorem 2.6. ,(D) inf{(At, tl[t E L2(D), I[tll- 1}. Let e > 0, and let
t L2(D) be such that, I- (At, t}l < e and Iltll- 1. Let be an essential family in
D with Id(9c) dess(D)l < , and hence every M 9c is a (#(M), dess ) expander.
Let M " be such that

(2) It ()1 w () < ,
vED\M

and

(3) t(). t().(v)
vED\M

Let vo r(M’)\M’, and let M )c be such that M’ U r(M’) c_ M and

(4) icrl ae_f v" t () ()

vD\M
1 + It (vo)l + -(,vo)eE It (u)l"

(It is obvious that (2) and (3) are still true for M.) The Laplacian of M, AM, is defined
as in (1) (here, in-degree(u) (,,v)eE(M)O(u,v)). Again, 0 is an eigenvalue of

multiplicity one, and A(M) -inf{{AM/, f}lf e L2(M), IIf]l- 1}. Define { e L2(M)
by

t() # v0,
t()()()= t(o)+ E (o) -vo.

vD\M

By (2) and (4),

(1- IIll 2) (lltl]2- I1 11

_<
vED\M

< + 2 + 2 < 4.

+ 2 It (v0)l I1 v (v0) / =w (vo)

Furthermore, since IIAM[I 2k,

(5)

Using (2) and (3), we also have that

2 <., t < s.
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(6)

I(A’}- (At’ t}l <-IvDM At (v) t (v)w (v)

vM\M’

(u,vo)E,uM

(u,vo)E,uM

0 (u, v0)[(t (u) t(vo) a) t(u) (t (u) t(vo))t(u)] w (u)

< + 2k + 4k + ke < 8k.

From (5) and (6) we have that

(7) k A (D) >_ (At, 17ks >_ ) (M)- 17ks.

Following an idea of Dodziuk [Do], we now estimate/k(M). Let f E L2(M) be an

eigenfunction for A(M) with [Ifll- 1. Since AM is Hermitian, we may assume that f
is real. Let M+ {v M[f(v) > 0}, and

{f(v) vM+,g (v)
0 otherwise.

Since f can be replaced by (-f), we may assume that #(M+) _< #(M)/2. Let us agree
that when we write e=(,)eE, we sum once for each edge (the direction is of no

consequence), but v e=(.,)eE implies that we sum each edge twice, once for each
direction.

Observe that

(8)

e--(u,v)E(M)

=?2 ?2
vMe=(v,)E(M)

vMe=(v,)E(M)

()[ (v) a ()]:

()[ (v) a ()] a (v)

e (v, )[a (v) ()] (v) (v) (/x, a/

o (v, u)If (v) g (u)] f (v)w (v)
vM+ (v,u)E(M)

-< E E (v, u)If (v) f (u)] f (v)w (v)
vM+ (v,u)E(M)

E AI (v). f (v) w (v) A (M) E If (v)[2 w (v) A (M)][g]]2.
vM+ M+
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The main idea behind obtaining the inequality above is that

veM+ (u,v)EE(M),uM+

0 (v, u) f (u) f (v)w (v) < O.

Consider now the sum

E= E
e-(u,v)EE(M)

Using the Cauchy-Schwartz inequality and (8), we have that

(9)

E= E
e--(u,v)E(M)

( () (v) ( () + (v) ()

1/2

e--(u,v)E(M)

<_ /1/2 (M)]]g]l [ E
e--(u,v)eE(M)

( () (v)) ()]e--(u,v)E(M)

1/2

1/2

From the other side, let 0 sr < < 81 be all the different values of g2, and
let Li {v E MIg2(v) >_ si}.M Lr D Lr-1 M+ D... L1. It is easy to see that

j--1

E-- E E E E (Sk-SkA-1)w(e)
i----1 vEM j>i =(v,u)EE(M) k--i

g2(u)--sjg2(v)=s

r--1

E (8i-8i+1) E W(e)
i=1 e=(v,u),vEL,uLi
r-1 r-1

> E (8i 8i+1) E W (t) >__ E (8i 8i+1) # (F (Li) \El).
i=1 e=(v,u),vL,uL i=1

Recall that M is a (#(M), dess(D) e) expander, and that for i _< r 1, Li C_ M+.
Hence tt(ii) <_ tt(M). We obtain that

(10)

r--1

E - E (8i- 8i+1)(dess e) /_t (Li)
i--1

2
st, (L) + E 81 ( (L) #

i--2

(dess (D)--e) 2

2
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Putting together (9) and (10), we have that

(M) _> (dess (D)_)2
4k

This, together with (7), gives that for any > 0, A(D) _> ((dess(D) )2/4k) 17,
and hence A(D) _> (des)2/4k.

Although we cannot say what is the best possible expansion, we can say what is
the best possible A.

THEOREM 2.8. (a) For a k-regular infinite diagram D, A(D)

_
k- 2v/k- 1. (b)

For a family {Di (, Ei, w)}= of finite k-regular diagrams subject to Itl -- c(and especially if #(V) -- c), limsup__. A(D) <_ k- 2v/k- 1.

Proof. We simply modify the proof of Alon and Boppana (see [A1]) to suit the
case of diagrams. Let n E N, and assume that (Ul, Vl) and (u2, v2) are two edges of
D of distance greater than 2n + 2. Let

V0(1) {Ul, Vl},

( ( V0(1)) --i) i= 1,2,3,.,V/(1) V E Vldistance v,

yo(2) yl(2)

are defined similarly. Define a function f" V - 11( as follows:

al (k- 1) -i/2 v V/(1) and i

_
n,

f(v)- a2(k-1) -i/2 vV(2) andi_<n,
0 otherwise,

where al, a2 are chosen so that f e L2(D). Clearly, Ilfll 2 A1 + A2, where Aj
aj2 n_=0 #(V/(J))(k- 1)-i,j 1, 2. From the other side, let E(V(j). ,,(J)+) {e
(t, V)llt e (J) V e "i+1}" Then

(Af, f) w (e)If (u) f (v)] 2 B1 + B2,
e--(u,v)EE

where
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For the two inequalities above, observe that, if u E V(j) and el (u, Vl),..., e8

(u, vs) are all edges that touch u, then at most s- 1 of {Vl Vs} are in v(J) Leti+l"
us assume that Vl is not. Since t?(u, vr) _> 1 for 1 _< r _< s, we have that

(12)

w (v) < w (e.) w (u) O (u, v)
r--2 r--2 r--2

From this, the first inequality is clear. For the second inequality, it is enough to show
that tt(v(J)i+1) <- (k- 1)tt(V(j), which is again clear from (12).

Combining the above, we have that

, (D) _< B2 2x/k-l-1(Af, f) B+B2 <max <k-2v/k-l+
A+A2 A A2f-(f, f) n + 1

Because in both cases of our theorem we are able to do it for n as large as we want, we
obtain A(D)

_
k- 2x/k- 1 for an infinite diagram, and limsup A(Di)

_
k- 2x/k- 1

in the other case.
DEFINITION 2.9. (a) An infinite k-regular diagram with )(D) k- 2x/k- 1 is

called a Ramanujan diagram.
(b) A family {Di (t, E, wi)}l of finite k-regular diagrams, subject to IVI

oc and limi-oA(Di) k 2v/k 1, is called a family of Ramanujan diagrams.

3. Explicit construction of infinite Ramanujan diagrams. ]Fq is the field
with q elements, v is the valuation at infinity of Fq(x) (i.e., v(f(x)/g(x))
degree(g)- degree(f)). It is well known that k Fq((1/x))--the Laurent series
in the variable 1Ix over Fq--is the completion of Fq(x) with respect to the metric

la q-V(a), and that (9 F[[1/x]]--the Taylor series in 1Ix over ]Fq--are the in-
tegers of k. Let G PGL2(k) be the 2 2 invertible matrices over k, divided by its
center. K PGL2(O) (i.e., 2 2 matrices over O with determinant in (9*, divided by
its center) is a maximal compact subgroup. In [Se] the structure of the q + 1 regular
tree is put on G/K, and it is shown that F(1) PGL2(Fq[x]) is a lattice in G that
is not co-compact (i.e., discrete and of finite co-volume, but F(1)\G, and therefore
F(1)\G/K, are infinite). Since for every g(x) e Fq[X],

d
e r(1) a- 1,d- 1, b,c,=_O(modg(x))

is of finite index in F(1), it is also such a lattice in G. F(g) acts (by multiplications from
the left) as a group of automorphisms of the tree G/K. The quotient Da F(g)\G/K
is an infinite q + 1 regular diagram (as a quotient of that q + 1 regular tree), under the
weights w(r(g)aK) I{ e r(g)l, ag ag}1-1, and in the same way for an edge
e, w(e) I{/e F(g)le e}1-1. See [Moll for the exact structure of D9. In [Moll we
also proved the following theorem.

THEOREM 3.1. Dg is a Ramanujan diagram.
Main steps of the proof. The continuous spectrum of the Laplacian A on L2(Dg) is

well known from the theory of Eisenstein series ([Ge, 8], for example). It is exactly the
segment [k-2q/2, k+2ql/2] (see also a direct computation for the case of F(1) in [Ef]).
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As in [Lu], it is shown that is an eigenvalue of A if and only if the irreducible, unitary,
class one representation p appears in the regular representation of G in L2(F(g)\G),
where p is such that its unique spherical function is an eigenvector for the Laplacian
on L2(F(g)\G) with eigenvalue A. Then, using strong approximation, p is lifted to a
cuspidal, class-one representation of the Adeles of G. So, by Drinfeld’s theorem [Dr],
it is a principle series representation. In particular, k- 2ql/2

Although we give Dg as a quotient of the infinite tree, it can be made very
explicit. In [Moll we showed that D9 is the following diagram: Let degree(g)
d, n Fq[x]/g(x)Fq[x] be represented by all polynomials (over Fq) of degree smaller
than d, (if g is irreducible this is just Fqd). H PGL(n), Bo PGL2(Fq), and

degree (b) < n} n-- 1,2,...,d- 1.

The vertices of D9 are divided into sets V0, V1,..., Va-1, and cusps. Where, for
0, 1, 2,..., d- 2, Vi H/Bi, edges are allowed only between and +1 and an edge
exists between aBi and bB+l, if and only if aBi n bBi+l . So the edges between
aBi and bBi+l are just the cosets of Bi g Bi+l, which are contained in aBi bBi+l
(if there are such cosets). Everything is finite and all weights are 1. Then on every
vertex a0 of Vd-1, the same infinite cusps of the form

eo el 2 3

ao al a2 a3 a4

are glued, where w(a) w(e) q-. This gives Dg explicitly, and one can easily see
that Da is trivial almost everywhere, except for the graph between V0 and V1, which
is of great interest. For q >_ 5, it results in a bounded concentrator. (For more details
see [Moll.)
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ON PATH-TOUGH GRAPHS *

PETER DANKELMANN, THOMAS NIESSEN, AND INGO SCHIERMEYER:

Abstract. A graph G is called path-tough, if, for each nonempty set S of vertices, the graph
G-S can be covered by at most ISI vertex disjoint paths. The authors prove that every graph of
order n and minimum degree at least [3/(6 + x/)]n is Hamilton]an if and only if it is path-tough.
Similar results involving the degree sum of two or three independent vertices, respectively, are given.
Moreover, it is shown that every path-tough graph without three independent vertices of degree 2
contains a 2-factor. The authors also consider complexity aspects and prove that the decision problem
of whether a given graph is path-tough is NP-complete.

Key words. Hamilton cycle, path-tough graph, toughness, 2-factor, degree condition, NP-
completeness

AMS subject classifications. 05C38, 05C45, 68C25

1. Introduction. It is well known that 1-toughness is a necessary condition
for a graph to be Hamilton]an, but it is not sufficient. The purpose of our work is
the study of some properties of so-called path-tough graphs, where path-toughness is
another necessary condition for Hamilton]city related to 1-toughness.

We begin with some definitions and convenient notation. A good reference for
any undefined terms is [8]. All graphs here are finite and undirected without loops or
multiple edges. The vertex set of a graph G is V(G), and the edge set of G is E(G).
We use w(G) for the number of components of G, and a(G) denotes the cardinality
of a maximum set of independent vertices. If v E V(G), then NG(v) is the set of all
vertices in V(G) adjacent to v and da(v) --ING(v)l is the degree of v. The minimum
degree and the maximum degree of G are denoted by 5(G) and A(G), respectively.

kFurthermore, for k _> 2, let ak(G) min i=1 dG(vi), where the minimum is taken
over all independent subsets {Vl, v2,..., vk} C_ V(G). Here we adopt the convention
min +c, and so ak(G) +x, if (G) < k. For disjoint U, Y C_ V(G), we denote
by G[U] the subgraph of G induced by U, and by G[U, V] the bipartite subgraph of
G having vertex set U t V and edge set {uv E(G)Iu U, v V}. Moreover, we
let e(U, V) -IE(G[U, U])l. As introduced by Chvtal [12], a graph G is t-tough, if
ISI >_ t(G- S) for every subset S c_ V(G) with w(G- S) > 1. The toughness of
G, denoted by t(G), is the maximum value of t for which G is t-tough (t(K,) +
for n >_ 1). Finally, the path-covering number it(G) of G is the minimum number of
pairwise vertex-disjoint paths that cover all vertices of G. This parameter has been
investigated by Goodman and Hedetniemi [18] and Boesch, Chen, and McHugh [7].
If no ambiguity arises, we sometimes write d(v) instead of da(v), a instead of a(G),
and so forth.

Let G be a graph with a Hamilton cycle C and let S be a nonempty subset of
V(G). Obviously, we have #(G-S) _< #(C-S) _< IS’I, and therefore #(G-S) _< ISI for

* Received by the editors October 28, 1992; accepted for publication (in revised form) September
1, 1993.
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all nonempty sets S c_ V(G) is a necessary condition for Hamiltonicity. This condition
appeared in Hggkvist [19] and Hendry [21] (see 2 and 5), and, following a suggestion
of J. A. Bondy (personal communication), we call graphs with this property path-tough.
The reason for this notion inspired our first proposition, which follows easily from the
inequality #(G) >_ w(G).

PROPOSITION 1. Let G be a path-tough graph. Then G is l-tough or G -- K2.
For any path-tough graph G, it follows directly from the definition that every

vertex-deleted subgraph G-v, v E V(G), is traceable (that is, there exists a Hamilton
path). The next proposition shows that the converse also holds.

PROPOSITION 2. A graph G is path-tough if and only if G- v is traceable for
every vertex v V(G).

Proof. We consider only the nontrivial implication. Let S be any nonempty subset
of V(G). Choose a vertex v S and let S’ S- {v}. Since G- v has a Hamilton
path P, we have

#(G- S) _< #(P- S’) _< ]S’I + 1 -ISI,
as required. [:]

2. Main results. Two well-known sufficient conditions for Hamiltonicity are
due to Dirac [13] and Ore [24].

THEOREM 1. (Dirac [13]). Let G be a graph on n >_ 3 vertices. If 6(G) >_ n/2,
then G is Hamiltonian.

THEOREM 2 (ORE [24]). Let G be a graph on n >_ 3 vertices. If a2(G) >_ n, then
G is Hamiltonian.

The complete bipartite graph I’k,k-1, which is not 1-tough, shows that the degree
bounds for a2 and 6 are the best possible. Jung [23] improved Theorem 2 for 1-tough
graphs as follows.

THEOREM 3. Let G be a 1-tough graph with n >_ 11 vertices. If a2

_
n- 4, then

G is Hamiltonian.
l(n- 4)COROLLARY 1. Let G be a l-tough graph with n >_ 11 vertices. If 5 >_

then G is Hamiltonian.
Let the net N be the graph obtained by adding three independent edges between

a triangle and three independent vertices. For n >_ 7, odd, the graph Jn K(n-5)/2 +
[(n- 7)/2]K1 t2 N), which is not path-tough, shows that the degree bounds for a2 and
5 are the best possible (here "+" denotes the join, and "t2" denotes the union of two
disjoint graphs).

We now present four degree conditions for path-tough graphs to be Hamiltonian.
The proofs are given in 4.

THEOREM 4. Let G be a path-tough graph with n >_ 3 vertices. If 5 >_ [3/(6 +
-)]n, then G is Hamiltonian.

This theorem improves the first part of the following result due to Hggkvist [19].
THEOREM 5. Let G be a non-Hamiltonian graph of order n with 5 >_ 1 (n 1).

Then G is not path-tough. Moreover, G contains a set S of at least 35- n + 2 vertices
such that G- S cannot be covered by IS vertex disjoint paths.

Let p,q,r be integers such that p >_ q >_ r >_ 3 and p + q + r n. Let Gpq
denote the graph with n vertices obtained from three disjoint complete graphs H
Kp, H2 Kq, and H3 K by adding the edges of two triangles between two disjoint
triples of vertices, each containing one vertex of each of H, H2, H3. It is easy to
confirm that Gpqr is an edge-maximal non-Hamiltonian path-tough graph. Gpqr has
minimum degree 6 r- 1, and so, for p q r, we have 6 (n- 3)/3, showing
that the bound in Theorem 4 must be at least (n- 2)/3. We conjecture that Theorem
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4 remains valid under this weaker hypothesis, with the exception of the Petersen
graph, which is a non-Hamiltonian, path-tough graph with 5 (n- 1)/3. A stronger
conjecture has already been posed by the third author, Schiermeyer, at the 13th British
Combinatorial Conference, 1991.

CONJECTURE 1. Let G be a path-tough graph with n >_ 3 vertices. If a3 >_ n- 2,
then G is Hamiltonian or isomorphic to the Petersen graph.

The proof of Theorem 4 is based on our following result.
THEOREM 6. Let G be a graph. If 5 + A >_ n >_ 3, then either G is Hamiltonian

or G is not path-tough.
For p n 6 and q r 3, the graph Gpqr has 5 + A n 3, showing that

the bound in Theorem 6 is almost the best possible.
Replacing "path-tough" by "l-tough" in Theorem 6, we find that the lower bound

for 5 + A must be at least (3n 6)/2, as indicated by the graph Jn, for n _> 9.
4(n-- 1)THEOREM 7. Let G be a path-tough graph with n >_ 3 vertices. If a2 >_ -g

then G is Hamiltonian.
Again, the graph Gpqr for p q r shows that the bound for a2 must be at

least (2n- 4)/3, and the Petersen graph has a2 (2n- 2)/3. We also refer to Con-
jecture 1.

The proof of Theorem 7 is based on our following result, which is an extension of
Theorem 6.

THEOREM 8. Let G be a 2-connected graph. If a2 +A >_ n >_ 3, then G is either
Hamiltonian or not path-tough.

As in the case of Theorem 6, replacing "path-tough" by "l-tough" in Theorem
8, we find that the lower bound for a2 + A must be at least (3n- 6)/2, as indicated
by the graph Jn, for n _> 11.

Bondy [9] extended Theorems 1 and 2 to independent sets with more than two
vertices as follows.

THEOREM 9. Let G be a k-connected graph. If crk+l _> 1/2((k + 1)(n- 1) + 1), then
G is Hamiltonian.

For l-tough graphs, Fat]bender [16] proved the following extension of Theorem 9
in the case where k 2.

THEOREM 10. Let G be a l-tough graph with n >_ 13 vertices. Ira3 >_ 1/2(3n-14),
then G is Hamiltonian.

(3n-15) showing that the bound in TheoremFor n >_ 13, the graph Jn has a3
10 is the best possible. For path-tough graphs, we obtain the following result.

THEOREM 11. Let G be a path-tough graph on n >_ 3 vertices. If a3 >_ [(9 + /-)/
(6 + x/-)]n, then G is Hamiltonian.

Proof. If 5 _> [3/(6 + x/-)]n, then G is Hamiltonian by Theorem 4. If 5 < [3/
(6 + x/)]n, then a3 > n + 5, and so G is Hamiltonian by the following result of Bauer
et al. [3]. [:]

THEOREM 12 (see [3]). Let G be a 2-connected graph. If a3 >_ n + 5, then G is
Hamiltonian.

The graph Gpq for p q r shows that the lower bound for a3 must be at least
n 2, and the Petersen has a3 n- 1. Again, we refer to Conjecture 1.

Actually, it is not possible to apply the proof concept of Theorems 6 and 8 to
obtain a stronger a3-condition. The reason is that the corresponding condition 1/2a3 +
A _> n does not hold, since the graph Gpq with p n- 6 and q r 3 has
1
O’3 -- A-- (4n- 18)/3.

We now turn to the existence of k-regular spanning subgraphs, called k-factors.
Since every Hamiltonian graph has a 2-factor, the case where k 2 can be seen as
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a relaxation of the Hamilton cycle problem. Proving a conjecture of Chvtal [12],
Enomoto et al. [15] established the next theorem.

THEOREM 13. Let k be a positive integer and let G be a k-tough graph with n
vertices. If n >_ k + 1 and kn even, then G has a k-factor.

Furthermore, they showed that this result is the best possible in the following
sense. Let k be a positive integer and let > 0. Then there exists a (k- )-tough
graph G with n vertices, where n _> k + 1 and kn even, which has no k-factor.

In the case where k 2, we prove that "2-tough" can be replaced by "path-
tough."

THEOREM 14. Let G be a path-tough graph of order n >_ 3. If a3 >_ 7, then G has
a 2-factor.

Note that t(G) >_ 2 implies that 5(G) >_ 4, and therefore a3 >_ 12; so, compared
with Theorem 13, the degree condition is no further restriction. Moreover, it is im-
possible to omit the condition a3 _> 7. To see this, we construct path-tough graphs
without 2-factors as follows. For integers p >_ q >_ 3, let the vertex set of the graph
Hpq consist of the disjoint sets {Vl,..., Vp}, {Ul,..., Uq}, and {Wl, w2, w3}, and let
E(Hpq) {vivj]l <_ < j <_ p} U {uiujll <_ < j <_ q} U {viw{li 1, 2, 3} U {u{wili
1, 2,3}.

We conclude this section with some complexity results. Here we use the termi-
nology of Garey and Johnson [17]. It is well known that HAMILTON CYCLE and
HAMILTON PATH are NP-complete problems. Bauer, Hakimi, and Schmeichel [4]
proved that NOT 1-TOUGH, the decision problem of whether a given graph is not
l-tough, is NP-complete. Let PATH-TOUGH denote the decision problem of whether
a given graph G is path-tough. As for the problems mentioned above, it is easy
to see that PATH-TOUGH is a member of NP (use Proposition 2). Transforming
HAMILTON PATH to PATH-TOUGH, we prove the following results.

THEOREM 15. PATH-TOUGH is NP-complete.
We now consider HAMILTON CYCLE and PATH-TOUGH, restricted to graphs

)n, where > 0 is fixed and n denotes the order of the graph. Thesewith 5 >_ (
restrictions are respectively denoted by HAMILTON CYCLE (5 >_ (- )n) and
PATH-TOUGH (5 _> (1/2- )n).

-)n) is NP-complete for everyTHEOREM 16. HAMILTON CYCLE (5 >_ (
>0.

"easy"Note that HAMILTON CYCLE restricted to graphs with 5 _> n is by
Theorem I.

By Theorem 4, we immediately obtain Theorem 17.
-)n) is NP-complete for every > O.THEOREM 17. PATH-TOUGH (5 >_ (

3. Preliminary results. In this section, we state some results that we use in
the proofs of our main results in the next section.

We start with the following well-known theorem due to Ore [24].
THEOREM 18. Let G be a graph with n vertices and let u, v be a pair of nonad-

jacent vertices. If

(1) dc (u) + dc (v) _> n,

then G is Hamiltonian if and only if G + uv is Hamiltonian.
For a pair u, v of nonadjacent vertices of a graph G, we define Av INa(u) N

NG(v)I, Tv {w e V(G)- {u,v}lu, v NG(w)}, and tv ITvl. If u and v
are clearly understood, we sometimes write instead of ,T instead of T, and t



ON PATH-TOUGH GRAPHS 575

instead of tv. The cardinality of a maximum independent set containing u and v is
denoted by any G)

THEOREM 19. (Ainouche and Christofides [1]). Let u, v be two nonadjacent ver-
tices of a graph G such that

then G is Hamiltonian if and only if G + uv is Hamiltonian.
THEOREM 20 (Ainouche and Christofides [2]). Let u, v be two nonadjacent ver-

tices of a 2-connected graph G such that

(3) da (w) > t + 2 for at least min {t, t + 2- A} vertices w E T;

then G is Hamiltonian if and only if G + uv is Hamiltonian.
Note that both Theorems 19 and 20 generalize Theorem 18.
It was observed in nroersma and Schiermeyer [11] that (3) can be restated in

terms of degree sums of independent triples.
PROPOSITION 3. Equation (3) is equivalent to

(4) d (u) + d (v) + d (w) > n + , for at least min {t, t + 2 ,} vertices w e T.

Our next observation admits a corollary useful in the proof of Theorem 4.
PROPOSITION 4. Equation (4) is equivalent to

(5) IN (u) u N (v)l > n d (w) for at least min {t, t + 2 .} vertices w e T.

Proof. This follows directly from d(u) + d(v) IN(u) u N(v)l + =.. H
COROLLARY 2. Let u, v be two nonadjacent vertices of a 2-connected graph G

such that IN(u) u N(v)l >_ n ; then G is Hamiltonian if and only if G + uv is
Hamiltonian.

The next theorem is due to Bigalke and Jung [6].
THEOREM 21. Let G be a 1-tough graph with n >_ 3 vertices. If

{n5>max ,a-1
then G is Hamiltonian.

We need a similar statement involving a2 instead of 5. This can be obtained by
using the inequality a3 > a2 from the next theorem.

THEOREM 22 (Bauer et al. [5]). Let G be a 1-tough graph with n > 3 vertices. If
0}oa3 > n, then G contains a cycle of length at least min{n, n + a3

COROLLARY 3. Let G be a l-tough graph with n > 3 vertices. If

max {sn, a- },

then G is Hamiltonian.
For disjoint subsets A,B C_ V(G), let odd(A,B) denote the number of com-

ponents H of the graph G- (A U B) with e(H,B) odd and let O(A,B) 21A
+ E,eBdG_A(V)- 21B I- odd(A, B). The following theorem of Tutte [25] character-
izes those graphs that do not contain a 2-factor.
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THEOREM 23. Let G be a graph. Then (i) O(A, B) is even for all disjoint subsets
A, B of V(G), and (ii) G does not have a 2-factor if and only if there exist disjoint
subsets A, B of V(G) with O(A, B) <_ -2.

4. Proofs.
Proof of Theorem 6. Let G be a non-Hamiltonian graph with 5 + A >_ n. We

must show that G is not path-tough. Let u E V(G) be a vertex with d(u) A.
Then d(u) 4. d(v) >_ A 4. 5 >_ n holds for every vertex v V(G). Therefore, by
repeated application of Theorem 18, we have that G is Hamiltonian if and only if
H G 4-{uvlv NG(u)U {u}} is Hamiltonian. Hence U is not Hamiltonian. Clearly,
du(u) n- 1, and thus H- u G- u has no Hamilton path; that is, G is not
path-tough. D

Proof of Theorem 4. Suppose that there is a non-Hamiltonian path-tough graph
G on n vertices with 6 >_ [3/(6 + xfl)]n. We may assume that G is maximal non-
Hamiltonian. Thus, each pair of nonadjacent vertices does not satisfy any of the
conditions of Theorems 18-20 or Corollary 2, respectively. Theorem 6 implies that

(6) A _< n-5- 1.

Since G is path-tough, we have 5 >_ 2 and a _< 1/2n. With Theorem 21, we obtain

n
(7) 4 < 5+2 < a <

Let I be an independent set of size a and let U V(G) I. If G[I, U] is complete,
then d(v) n- c >_ n/2 for all vertices v I, contradicting Theorem 18. Hence, we
may assume that

(8) G [I, U] is not complete.

Claim 1. If u U and v I are not adjacent, then INi(u)l <_ n- 25- 1.
By Corollary 2, we have IN(u) u g(v)l _< n 6 1, and so INi(u)l <_ n 25 1,

since Ni(v) implies that INv(v)l >_ .
Now let U1 {u UIINI(u)I >_ n- 25} and U2 U- U1. Then, by Claim 1,

(9) G [2, U1] is complete.

Furthermore, U2 # by (8) and Claim 1. Let m IU21. Then 1 _< m <_ n- a.
Claim 2. UI 7 and G[U] is complete.
Suppose first that U1 . Then we have with (7)

5 (5 + 2) <_ ha _K e (U, I) <_ (n 26 -1) (n a) _K (n 25 -1) (n 5 2)

implying that 0 _< n2 (35 4- 3)n 4- (5 4- 1)(6 4- 2). This, however, is impossible
for [3/(6 4- /-)]n <_ 6

_
1/2n. Suppose now that x,y e U1 are nonadjacent. Then

axy <_ a <_ Axy by (9), contradicting Theorem 19.
Now let U21 {u ff U21[Nu2(u)[ >_ m + 1}, U22 U2 U2, and p
Claim 3. G[U U21] is complete.
Suppose that x U1 and y U21 are nonadjacent. Then IN(x)

[Nv, uI(X)[ + [Nv2 (y)[ >_ ((n a m 1) + a) + (m 6 + 1) n 6, contradicting
Corollary 2.

Claim 4. rn p >_ 5.
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If m-p _< ti- 1, then we have d(u) >_ (n- a- m- 1) +o/+p n-
(m- p)- 1 _> n- 5 for all u E U1, contradicting (6) and Claim 2.

Claim 5. There exists a vertex u E U1 satisfying

d(u) >_ n-(m-p)- 1 + (m- p) (45- n- m + 1)

For all v U22, we have

INu1 (v)l

_
INI(v)l- INu2 (v)l

_
( (n 25 1) (m 5) 4i n + 1 m,

and so there exists u U1 with

INu.2 (u)l > (m- p)(4i n + 1 m)
n-m-o/

Therefore, by (9) and Claims 2 and 3,

d (u) }Ni(u)l + INu1 (u)l + INu21 (u)l + INu22
(m p)(4i n m + 1)> a+(n-m-o/- 1)+p+

n--m--O/

Claim 6. m < [(V A- 1)/215- 2.
Let l--lull. We have

_< (, u) (, u) + (z, u)
< O/1 + m (n 2i 1) O/1 + (n O/- l) (n 25 1).

Equivalently, since O/+ 2ti n + 1 >_ 3i n + 3 > 0 by Theorem 21,

l>
O/5 (n O/)(n 2(5 1)

O/+ 2i- n + 1

Denote the right-hand side of the last inequality by f(O/). Then f(O/)
(n 2ti 1)(ti + 1)/(O/+ 2i n + 1)2 > 0 by (7). Therefore, f is monotone in-
creasing in O/, and so again by (7)

nh- (n- - 2)(n- 5- 1) nh- (n- 5) 2> fl ((5 -I- 2) 3(5 n + 3
> 3(5 n

where the last estimate follows from n > 2ti + 25/(35 + 2), which is an immedi-
ate consequence of (7). Now let f2(n) (uS- (n- 5)2)/(3ti- n). Then f(n)
((n- 35)2 -ti2)/(35- n)2 < 0 holds, since 25 < n < 35. Therefore, f2 is strictly
decreasing in n, and

f2(n) _> f2(6+x/3
Together with (7), we obtain

m=n-o/-l < 6+
3

2-(5- ((5 + 2)
3-

/- + 1
5- 5-2.

2
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Therefore, Claim 6 is proved.
Now we complete the proof of the theorem as follows. By Claim 5 and (6), we

have

n-6-1> n- (m-p) l +
(10)

(m p)(4 n m -4- 1)>n-(m-p)-l+

(m- p) (45- n- m + 1)

n-m-5-2

where the last estimate follows from (7) and from 45 n m+ 1 > 45 [(6 + /)/3]5
[(x/- + 1)/215 [(9- 5x/-:)/615 > 0, which holds by Claim 6. Now (10) is equivalent
to

(rn-p) (2n- 55- 3)5<
n-m-5-2

which implies, together with m p > 0, that (2n 56 3)/(n m 5 2) > 0, and
thus

(2n- 55- 3)
5<n

n-rn-5-2

Let f3(n) (2n-55-3)/(n-rn-5-2). Then f(n) (35-2m-1)/(n-rn-5-2)2 > 0
by Claim 6. So f3 is monotone increasing in n; hence

5<_ mf3(6+3x/-5) =m (2x/- 3) 5/3 3

(3 + x/-) 5/3 m- 2"

Since we have

m+2< /-+-----lti < x/-:+3
5

2 3

by Claim 6, the denominator and numerator of the fraction on the right-hand side of
the last equality are positive. Finally, using Claim 6, we obtain

) (2x/ 3) 5/3
5< x/+15_2 (2x/-3) 5/3-3 x/+15

(3 + x/) 5/3 (x/ + 1) 5/2
<

2 (3 x/) 6/6

a contradiction.

Proof of Theorem 8. Let G be a 2-connected, non-Hamiltonian graph satisfying

a2 A- > n. We must show that G is not path-tough.
Let u E V(G) be a vertex with d(u) A and let v be a further vertex not

1adjacent to u. If Tv , then (3) of Theorem 20 is satisfied. If d(v) > a2, then
d(u) + d(v) > A + 50-2 _> n, and therefore (1) of Theorem 18 is satisfied. Finally,

d(v) > a2 for all vertices w E Tv.if T #- and d(v) < a2, then d(w) > a2-
Therefore (1) of Theorem 18 is satisfied for u and every vertex w T. Thus it follows
by repeated application of Theorems 18 and 20 that G is Hamiltonian if and only if
H G + {uxlx No(u)t2 {u}} is Hamiltonian. Now the proof can be completed in
the same way as the proof of Theorem 6.

Proof of Theorem 7. The proof follows the lines of the proof of Theorem 4. Again,
we suppose that G is a non-Hamiltonian path-tough graph on n vertices with (72 >
4(n- 1) and that G is maximal non-Hamiltonian. The notation is the same as above5
except with 5 replaced by a2/2. I is an independent set of size , U V(G)- I, U1
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{u UI[NI( )[ n- 2},U2 U-U , and m IU21. The following statements (11)-
(13) are proved analogously to the corresponding statements in the proof of Theorem
4. Use Theorem 8 to obtain (11) and Corollary 3 for (12). We have that

0"2(11) 2’
1 n

(12) 3 < 0"2 -+- 1 < a <

(13) G [I, U] is not complete.

Next, we show that

(14) ( [I, U1]is complete.

Therefore we suppose that u E U1 and v E I are not adjacent. By Proposition 4,
we have IN(u)u N(v)l < n- d(w) for at least one vertex w Tv. Thus we obtain
[Ni(u)[ <_ IN(u) tJ N(v)l d(v) < n (d(w) + d(v)) _< n 02, contradicting u U1.

As in Claim 2 in the proof of Theorem 4, we obtain the facts that

(15) U1 and G [U] is complete.

We note that

(16) m_> 0"2-- 1

since otherwise lUll n- a- 0-2 + 1 and any vertex w U satisfies

A >_ dVl(W)+ dx(w) lUll- 1 + a >_ n-a O’2 0"2- +a--n 2’

contradicting (11).
< e(I U), and thusFrom a >_ 2, we have -aa2

(72a-- _e(I,U)+e(I, U2) _a(n-a-m)+m(n-0-2-1).

By (12), the right-hand side of the above inequality is decreasing in m, since the
hypothesis of the theorem implies that -a + n 0-2 1
1))- 2 < 0 holds. Hence by (16)

0"2 1 0"2 1
(n 0"2 1) aO<_a n-

2 + 2 2

The last expression is decreasing in a, since its derivative with respect to a is n-
1 < n- 20"2 < 0 by (12) and the hypothesis of the theorem. Thus (12)2a- 0"2 +

yields

0_ -+1 n--0"2-- +

4+ - +-
a2-1(n-0"2-1)- (0-22-+1) 0"2.2
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or, equivalently,

2(n-)- +10n<a2< )+ 4 +I0n

4 (n- 1) if n > 6, and yields equality in all aboveThis already contradicts a2 >
estimates for n 6. In the latter case, we especially have a2 4, implying that
rn by (16), also a contradiction. Therefore we have n <_ 5, contradicting (12).

Proof of Theorem 14. Suppose that G satisfies the hypothesis of Theorem 14
but contains no 2-factor. Suppose furthermore that G is chosen edge-maximal with
these properties. By Theorem 23, there exist disjoint subsets A,B of V(G) with
O(A,B) _< -2. We choose A and B such that O(A,B’) > 0 for each proper subset
BIcB.

Claim 7. A- .
Suppose that A contains a vertex x. Since addition of any missing edge incident

with x leaves O(A, B) unchanged, the edge-maximality of G implies that x is joined
to all other vertices of G. Now it follows from the path-toughness of G that G- x
contains a Hamilton path, and therefore G is Hamiltonian, a contradiction.

Claim 8. B is an independent set.
(Note that this follows from a result in [15]; we include the proof for completeness.)
We show that e(x,B- x) 0 for any x B. By the choice of B, we have

O(, B x) _> 0, and thus -2 _> O(, B) O(, B x) dG(x) -t- odd(, B x)
odd(, B) 2, which implies that

(17) odd (, B) odd (, B x) >_ da (x).

Moreover, odd(, B- x) >_ odd(, B)- e(x, V(G)- B) holds, or, equivalently,

(18) odd (, B x) odd (, B) >_ -e (x, V (G) B).

Adding (17) and (18) gives

0 >_ da (x) e (x,V (G) B) e (x,B x) >_ 0.

This proves the claim.
Now we consider two cases.
CASE 1. IBI _> 3.
O(, B) <_ -2 is equivalent to

odd (,B)>_ 2 + E da (v)- 2 IBI,
vB

and aa(G) _> 7 yields -veB do(v) >_ 31B -2 by Claim 8 and IB] _> 3. Therefore
we have odd(,B) _> IB]. On the other hand, the path-toughness of G yields IB[ _>
w(G-B) >_ odd(, B), implying that IBI w(G-B) odd(, B) and -veB da(v)

Now let H1,H2,...,HiB denote the components of G- B. Then we have
e(Hi, B) >_ 3 for any i 1,..., IB], since G is 2-connected and e(Hi, B) is odd.
So, with Claim 8, we obtain

3 IBI- 2- da (v)- e(Hi, B)>_ 3
veB i-l
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This contradiction completes the discussion of this case.
CASE 2. IB]

_
2.

Since O(,) 0, we see that [B 1 or IB]- 2. If IB] 1, say B {x},
then O(, {x})

_
-2 and da(x) >_ 2 imply that odd(, {x}) >_ 2. Therefore G is not

2-connected, a contradiction.
Finally, if IBI 2, say B {Xl,X2}, then we obtain from O(, B) _< -2 that

odd (, B) > 2 + do (xl) + do (x2) 4 > 2.

Also, since G is l-tough, we have

2 _> w (G- B) _> odd (, B).

Thus w(G- B) odd(,B) 2 and dG(x) da(x2) 2. This is impossible,
however, since, for both components H1, Hu of G- B, we have e(Hi, B) >_ 3, 1, 2,
as in Case 7. This contradiction completes the proof of the theorem. [:]

Proof of Theorem 15. We transform HAMILTON PATH to PATH-TOUGH. Let
the graph G be an arbitrary instance of HAMILTON PATH. We now consider the
graph G K1 + G. Clearly, it is possible to construct G from G in polynomial time.

We now show that G has a Hamilton path if and only if G is path-tough. Clearly,
if G is path-tough, then G has a Hamilton path. Suppose now that G has a Hamilton
path, say VlV2""Vn, where n is the order of G. Let u be the unique vertex in V(G)
V(G). Then G G- u has the Hamilton path VlV2...v,, and, for every 1
n, G- vi has the Hamilton path vv2""vi-uvi+’"Vn. Therefore G is path-tough
by Proposition 2.

Proof of Theorem 16. We transform HAMILTON PATH to HAMILTON CYCLE
(5 >_ (1/2 -e)n). Let G1 (V1, El) be a graph with nl vertices making up an arbitrary
instance of HAMILTON PATH. We now construct a graph G (V., E:) by adding

)n2 and 2 /nl/(2). Then2p 1 vertices v, V2,..., V2p--1, where p V(
V2 V 2{v1,v2,...,V2p-1}. Furthermore, let E2 E1 {vvjll <_ <_ p,p+ 1

-)n2 For each fixed > 02p- 1} {vivlv V1, 1 <_ <_ p}. Thus 5(G2) p _> (
the graph G2 has size O(n), which is bounded above by a polynomial function of nl.

Therefore, it is possible to construct G2 from G1 in polynomial time.
If G2 has a Hamilton cycle, then G1 has a Hamilton path, since G2- {Vl,

v2,..., Vp} has p components V+l,..., V2p-1 and G1. If G1 has a Hamilton path,
say UlU2 ""unl, then UlU2 ""UnlVlVpTlV2Vp+2 "’’V2p--lVpUl is a Hamilton cycle in
G2. Thus G1 has a Hamilton path if and only if G2 has a Hamilton cycle.

5. Concluding remarks. The circumference c(G) of a graph G is the length of
a longest cycle. Clearly, a graph G of order n is Hamiltonian if and only if c(G) n.

In view of Conjecture 1, we obtained lower bounds for the circumference of path-
tough graphs satisfying a aa-condition. Our proofs distinguish two situations. First,
if the graph is traceable, then, instead of "path-tough," only "2-connected" is needed
to prove the following result.

THEOREM 24. Let G be a 2-connected graph with n vertices. If G is traceable
and if3 n + 2, then c(G) >_ n- 1.

Second, if the graph is nontraceable, we obtain Theorem 25.
THEOREM 25. Let G be a path-tough graph with n vertices. If G is nontraceable

and a3 >_ n, then every vertex of G is contained in a cycle of length c(G) n 2.
Note that path-tough, nontraceable graphs are usually called hypotraceable. We

are aware of the problem that possibly no graph satisfies the hypotheses of Theorem
25, since no hypotraceable graphs with 5 >_ 4 are known (cf. [10]).
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These theorems have the following corollary.
COROLLARY 4. Let G be a path-tough graph with n vertices. If a3 >_ n + 2, then

c(G) > n- 2.
Hendry [21] posed the problem of determining the maximum number f(n) of

edges in a non-Hamiltonian path-tough graph of order n. He conjectured that there
exist integers N and c such that

2
+c forn>_ N.

This conjecture is disproved by the graph Gpqr with p n-6 and q r 3. Therefore
we see that f(n) >_ (n6) + 12.

Chvtal [12] introduced toughness as a parameter of a graph, and, of course, it
is also possible to introduce the path-toughness 7r(G) of a graph G. We suggest the
following:

(G)=min{#(G_lSI }S) IS ,(a- S) >_

(Note that here S is excluded to avoid the existence of path-tough graphs with
path-toughness 0.) Clearly, the following holds.

PROPOSITION 5. Let G be a connected graph. Then r(G) < t(G).
One motivation for the study of r(G) is Chvtal’s well-known conjecture that

there exists a constant to such that every graph G with t(G) > to is Hamiltonian,
because this conjecture implies the next one.

CONJECTURE 2. There exists a constant tl such that every graph G with r(G) >_
t is Hamiltonian.

Furthermore, it would be interesting to know how large the difference t(G)- r(G)
can be. For example, if someone can prove that there exists a constant c such that
t(G)- r(G) <_ c for all graphs G, then it turns out that Chvtal’s conjecture and
Conjecture 2 are equivalent. The following examples show that c must be at least
3 The corona GoK of a graph G is the graph obtained from G by joining every2"
vertex of G to exactly one new vertex. For positive integers a, b, c, let G(a, b, c)
Ka + b(Kc K1). We may verify that

t(G(a,b,c))- a+(c-1)b
bc

ifa < b,

if a _> b,

and, for c odd,

n(G(a,b,c))

(b(c+ 1)/2- a + 1)-2a

b(c+ 1)
a+(c-1)b

bc

if a <_ b (c + 1)/2- 1,

if b (c + l) /2 _< a _< (c+l)b,

ifa>(c+l) b.

Therefore, if we choose integers d >_ 1, b >_ 1, and c >_ 1, odd, with b(c- 1) > 2d, and let
a- b(c+l)/2-d, we have r(C;(a,b,c)) 1/(d+l)and t(C;(a,b,c)) -(b+2d)/2bc.
Thus, choosing d and c large, the difference t- r can be made arbitrarily close to -3

2 If
we restrict our attention only to path-tough graphs and let a b(c + 1)/2, we obtain

r(G(a, b, c)) 1 and t(a(a, b, c)) /2. So, for path-tough graphs, the difference
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Moreover, note that for the graphs G(a, b, c) thet- r can be arbitrarily close to .
toughness and the path-toughness are equal if the toughness is at least 2. In fact, we
do not know any graph G with t(G) _> 2 and t(G) > (G).

Finally, we think it interesting to investigate bipartite graphs, and so we ask if
there exist bipartite path-tough graphs that are not Hamiltonian.

Notes added in proof. Theorem 16 is also proved in Higgkvist [20]. Recently,
J. van den Heuvel informed us about the following results in Enomoto et al. [14]. (See
also van den Heuvel [22].)

THEOREM 26. Let G be a connected graph on n >_ 3 vertices such that a3 >_ n.
Then, for every path P in G, there exists a cycle C in G such that IV(P) V(C)I <_ 1
or G belongs to a set (n) of non-l-tough graphs.

This theorem implies Theorem 24 even under the weaker condition a3 _> n. There-
fore, Corollary 4 remains true if a3 _> n + 2 is replaced by a3 _> n.

Finally, H. Miiller from Jena (personal communication) informed us about the
existence of a bipartite, path-tough, non-Hamiltonian graph. His example consists of
two vertex disjoint cycles of length 6, say vl, v2, v3, v4, v5, v6 and u, u2, u3, u4, u5, u6
and the additional edges vu, v2u4, v4u2, and v5u5.
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A NEW CLASS OF PYRAMIDALLY SOLVABLE SYMMETRIC
TRAVELING SALESMAN PROBLEMS*

JACK A. A. VAN DER VEEN

Abstract. An instance of the symmetric traveling salesman problem (STSP) is pyramidally
solvable if there is a shortest tour that is pyramidal. A pyramidal tour is a Hamiltonian tour that
consists of two parts; according to the labeling of the vertices in the first part the vertices are visited
in increasing order and in the second part in decreasing order. It is well known that a shortest
pyramidal tour can be found in O(n2) time. In this paper it is shown that the STSP restricted to
the class of distance matrices

]I])NEW D--(d[i,j]) d[i,j]_d[j_l,k] _d[i,k]Td[j,jZ l foralli <j <j-I < k

is pyramidally solvable. Furthermore, it is shown that ]I)NEw )DEMI, i.e., that ][])NEW is not
contained in the class of symmetric Demidenko matrices ]I)DEMI that was, until now, the most
general class of pyramidally solvable STSPs. It is also shown that ]I)DEMI ]I)NEw

Key words, traveling salesman problem, solvable case, pyramidal tour

AMS subject classification. 90C99

1. Introduction. The traveling salesman problem (TSP) is the problem of find-
ing a shortest Hamiltonian cycle (tour) in a complete weighted digraph G- (N, A, d)
with set of vertices N (1,..., n} (throughout we will assume n >_ 4), set of arcs
A {[i,j]li, j E N), and D (d[i,j]) the matrix with distances associated with the
arcs in A. A shortest Hamiltonian cycle is a cyclic permutation of N that solves

n

[TSP] Minimize d () :- d [i, (i)]
i--1

is a Hamiltonian tour /"
Obviously, (i) denotes the successor of a vertex i in the cyclic permutation o. A
more general notation is useful: for any natural number z, we denote the zth successor
(zth predecessor) of/by z(i)(-z(i), respectively), so that 1(i) (i) and, with
(i) i, 99s+t(i) 99s(t(i)) for all integers s and t. A namiltonian cycle will be
denoted by

((90 (1), 1 (l),..., (9n-1 (1))

so that - (il,i2,...,in) is to be interpreted as il 1, (ik) ik+l,k 1,...,n--I,
and (in)= 1.

A pyramidal tour is a Hamiltonian tour of the form

(1, il, i2,... ,ir, n, jl,j2,. ,jn-r-2)

with il < i2 < < ir and jl > j2 > > jn-r--2. A useful characterization of
pyramidal tours is the following. A vertex v is called a peak of a (cyclic) permutation

* Received by the editors December 3, 1990; accepted for publication (in revised form) October
8, 1993.

Department of Quantitative Methods, Nijenrode University, Straatweg 25, 3621 BG Breukelen,
the Netherlands.
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j+l k j/l k

FIG. 1.1 The inequality d[i, j] + d[j + 1, k] <_ d[i, k] + d[j, j + 1].

j/l k j/l k

FIG. 1.2. The inequality d[i, j] + d[j + 1, k] <_ d[i, j + 1] + d[j, k].

if v > MAX {-I(v), q(V)} and a valley if v < MIN {-1(i), (i)}. Let P() denote
the set of peaks, V() the set of valleys, and

I () := N\ (P () U V ())

the set of intermediate points of a permutation . Clearly, the number of peaks of a
permutation is equal to the number of valleys, i.e., IP()I IV()I for every permu-
tation b. A permutation is a pyramidal tour if and only if it contains exactly one
peak (P()= {n}) or, equivalently, exactly one valley (V()= {1}).

It is well known that the TSP is AlP-hard. However, for some special classes of
distance matrices the TSP can be solved efficiently. For an excellent survey see [3].
One of these classes is

I[)pyR {D For every Hamiltonian tour 99
there is a pyramidal tour p such that d (p) < d () ]

For matrices in ]PYR, [TSP] reduces to

[PYR] Minimize {d (qo)Iqo is a pyramidal tour}.

This problem can be solved, using dynamic programming, in (9(n2) time (see [3, p.
100]). In [7] a class of (nonsymmetric) matrices has been identified such that the
running time can be reduced to linear time. If D E I)PYR then the associated TSP
will be called pyramidally solvable.

In [1]-[9] several sets of conditions on distance matrices are introduced and it
is shown that matrices satisfying these conditions belong to ])PYR. This paper deals
with classes of symmetric distance matrices (d[i,j] d[j, i] for all i,j e N) that are
subclasses of )PYR.

In 2 it will be shown that symmetric TSPs (STSPs) restricted to distance ma-
trices in

D (d [i, j])
d [i, j] d [j, i] for all i, j
d[i,j] + d[j + 1, k] < d[i,k] + d[j,j + 1]

for alli<j<j+l<k

are pyramidally solvable, i.e., that I[)NEW C ]I])PYR. In 3 it is shown that I[)NEW
][)DEMI and ]I)DEMI ]I}NEW where I[I)DEMI is the class of symmetric Demidenko ma-

trices, i.e.,

I[)DEMI { D=(d[i,j]) d [i, j] d [j, i] for all i, j
d[i,j] + d[j + 1, k] < d[i,j + 1] + d[j,k] Ifor all < j < j + 1 < k
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b x b x

&

o() o(+)
FIG. 2.1. A 2-interchange.

_<
j+l j+2 j/3 k j+l j/2 j/3 k

j/l

FIG. 2.2. Inequality (2) with p 3.

j/2 k j/l j/2 k

FI(. 2.3. Inequality (3) with p 2.

This is relevant because until now ]I)DEMI was the most general class of symmetric
matrices belonging in DpyR, meaning that all other subclasses of I)pyR known from
the literature belong to IDEMI.

2. The STSP restricted to matrices in ]I])NEw is pyramidally solvable. In
this section we will show that ]I])NEW C IDpyR, i.e., that if D E ]I)NEW then for every
Hamiltonian tour there is a pyramidal tour p such that d(p) <_ d(a). We will use an
"improvement procedure." Starting from an arbitrary Hamiltonian cycle a, a sequence
(a(t))tT=l (with p(1) := a) of Hamiltonian tours is constructed such that

d(((1))
__

d(:(2))
__ __

d((<T))
and T is the smallest index such that () is a pyramidal tour. The tour ((t-l) is
obtained from () by a 2-interchange, i.e., by replacing two edges of (t) by two new
edges (see Fig. 2.1).

A 2-interchange is called feasible if and only if (1) the total length of the two new
edges is no longer than the total length of the removed edges, and (2) the result of the
2-interchange is indeed a Hamiltonian tour, i.e., does not consist of two subtours. In
order to characterize feasible 2-interchanges, consider the following lemma (see Figs.
2.2 and 2.3).

LEMMA 2.1. Let D (d[i,j]) ])NEW, i.e., D is a symmetric matrix such that

(1) d[i,j] +d[j + 1, k] _< d[i,k] +d[j,j + 1]for all < j < j + 1 < k.

For all < j < j + 1 < k the following holds.
(i) For all odd integers p in {1,2,... ,k- j- 1},

(3)

d[i,j] + d[j + p,k] <_ d[i,k] + d[j,j + p]

(ii) For all even integers p in {0,1,2,... ,k- j 1},

d[i,j] +d[j +p,k] <_ d[i,j +p] +d[j,k].
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FIG. 2.4. The Hamiltonian tour (p (1, 3, 5, 4, 8, 10, 7, 9, 11, 12, 6, 2).

Proof. Induction with respect to p will be used.
(i) For p 1, (2) reduces to (1). Assume (2) holds for p P (where P is odd

and at most k- j- 3), i.e.,

d[i,j] + d[j + P,k] <_ d[i,k] + d[j,j + P]

From(1) wehave (withj+P<j+P+l<j+P+2<k)

(5) d[j + P,j + P + l] + d[j + P + 2, k] <_ d[j + P,k] + d[j + P + l,j + P + 2]

Also from(l) (withj<j+P<j+P+l<j+P+2),

(6) d[j,j + P] + d[j + P + 1,j + P + 2] _< d[j,j + P + 2] + d[j + P,j + P + 1].

Adding inequalities (4)-(6) and canceling

d[j,j + P] + d[j + P,k] + d[j + P,j + P + 1] + d[j + P + 1,j + P + 2]

from both sides gives (2) for p P + 2.
(ii) For p 0 equality holds. Assume (3) holds for p P (where P is even and

at most k- j- 3), i.e.,

(7) d[i,j] +d[j + P,k] <_ d[i,j + P] +d[j,k].

From(l) (withi<j+P<j+P+l<j+P+2) wehave

(8) d[i,j + P] + d[j + P + 1,j + P + 2] _< d[i,j + P + 2] + d[j + P,j + P + 1].

Adding inequalities (7), (8), and (5) and canceling

d[i,j + PI + d[j + P,j + P + 1] + d[j + P,k] + d[j + P + 1,j + P + 2]

from both sides gives (3) with p P + 2. Cl

Let F() := {[i,(i)]1(i) > i} denote the set of forward edges and B() :=

{[i, (i)]1(i) < i} the set of backward edges of a tour . A pair of edges ([a, b]; Ix, y])
is called a transformable edge pair (TEP) of the tour if and only if the following two
conditions hold.

(1) [a, b] and Ix, y] are in the same direction set of , meaning that either [a, b]
and Ix, y] are both in F() or [a, b] and Ix, y] are both in B().

(2) Assuming a MIN {a, b, x, y} and x MIN {x, y}, either a < x < b < y and
b- x is even or a < x < y < b and y- x is odd.

By TEP() we will denote the set of all transformable edge pairs of . A tour
is said to contain a TEP if and only if TEP() # 0. The definition of a TEP is

justified by the following lemma.
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FIG. 2.5. The subtour r (1, 5, 4, 10, 7, 12).

LEMMA 2.2. If the tour contains a TEP then there is a feasible 2-interchange
on .

Proof. Let ([a, b]; Ix, y]) e TEP(a) and a’ the tour that arises from a by replacing
[a, b] and Ix, y] by [a, x] and [b, y] and reversing the path from b to x. From Lemma 2.1
it follows that d[a, b] + d[x, y] >_ d[a, x] + d[b, y]. Since D is symmetric it follows that
d(a’) _< d(a). Because [a, b] and Ix, y] are in the same direction set, a’ is a Hamiltonian
tour.

In order to use the above-described procedure it has to be shown that a Hamilto-
nian tour contains a TEP if and only if it is not pyramidal. To that end the following
concepts are introduced. A path [il,..., ik] is an ordered path in a Hamiltonian tour
a if and only if

(1) it a(it-1) for t 2,... ,k, and
(2) all edges [it-, it](t 2,..., k) are in the same direction set of
A Hamiltonian tour a can be divided into 21P(a)l ordered paths as follows. There

are IP(a)l ordered paths with all edges in one direction set starting at a vertex in Y(a)
and ending at a vertex in P(a), and IP(a)l ordered paths with all edges in the other
direction set starting at a vertex in P(a) and ending at a vertex in V(a).

Example. Let a (1,3,5,4,8,10,7,9,11,12,6,2). See Fig. 2.4. So, V(a)
{1,4,7},P() {5, 10, 12},I()= {2, 3, 6, 8, 9,11}, F() {[1,3]; [3,5]; [4,8]; [8,10];
[7, 9]; [9, 11]; [11, 12]}, and B() {[5, 4]; [10, 7]; [12, 6]; [6, 2]; [2, 1]}. The 21P()I 6
ordered paths in are [1, 3, 5]; [4, 8, 10]; [7, 9, 11, 12] with edges in F() and [5, 4];
[10, 7]; [12, 6, 2, 1] with edges in B().

Let r be the (sub)tour that arises from a Hamiltonian tour by deleting all
intermediate points, i.e., the 21P()I ordered paths in are replaced by edges with
the same endpoints as the ordered paths. For the in the example above this gives

(1, 5, 4, 10, 7, 12). See Fig. 2.5.
LEMMA 2.3. For any Hamiltonian tour , let [a,b] and Ix,y] be any two edges

in the same direction set of such that a < x < b and let [a io, i,i2,...,ik-,
ik b](k >_ 1) and Ix jo,jl,j2,...,jl-l,jt y](l >_ 1) be the two corresponding
ordered paths in . The following holds. If ([a,b];[x,y]) E TEP() then there is an
r E {0,... ,k- 1} and an s {0,... ,l- 1} such that ([ir,ir+l];[js,js+]) TEP().

Proof. According to the definition of a TEP we distinguish between two cases.
(1) Assume a < x < y < b. Since y- x is odd, there is an s {0,...,1 1} such

that js+l -js is odd. Define u {0,..., k- 1} such that i is the largest smaller than
j8 and v E {0,..., k- 1} such that iv is the smallest i larger than js+l. If v u+ 1 then
([i, i+]; [js, j+l]) TEP() because i < j < j+l < i+1 and j+x -j is odd. If
v > u + 1 then we have i < j < i,+ <_ iv-1 js+l iv. If iu+l j is even then
([iu, iu+l]; [js,js+]) TEP() because iu js iu+l js+l and iu+l -is is even. If
js+ iv- is even then (I/v-I, iv]; [js, js+]) TEP() because js iv-
and js+ iv-1 is even. If both i+ j and js+l iv-1 are odd then iv-1 iu+l
is odd. So there is a w {u + 1,..., v- 2} such that iw+l iw is odd. In this case
([i, i+]; [j, j+l]) E TEP() because j < i < i+1 < j+ and iw+l i is odd.

(2) Assume a < x < b < y. Without loss of generality we may assume that a
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FIG. 2.6. Part of the tour r.

x- 1 (this follows from the fact that ([a, bl; Ix, y]) is a TEP if and only if (Ix- 1, b]; [x, y])
is a TEP). Since b-x is even, b-a(= b-x+l) is odd. So there is an r G {0,... ,k-l}
such that i+1 i is odd. In a similar way as in the first case it is possible to find an
s e {0,...,/- 1} such that ([i, i+1]; [fi,j+l])

Note that the opposite of Lemma 2.3 does not always hold. For instance the
ordered paths [1, 4, 7] and [2, 6] (with edges in the same direction set) contain a WEB;
(([1, 4]; [2, 6]) is a WEB and so is ([2, 6]; [4, 7])) but ([1, 7]; [2, 6]) is not a TEP.

LEMMA 2.4. TEP() 0 if and only if is a pyramidal tour.

Proo If is a pyramidal tour then it does not contain a TEP because there are

no two edges [a, b] and [x, y] in such that these are in the same direction class and

Assume p is not pyramidal. It has to be shown that contains a TEP. From
Lemma 2.3 it follows that if contains a TEP then contains a TEP. So it suffices to
show that r contains a TEP. Let p be the smallest peak of (and hence of ). Con-
sider the vertices 2(p),(p),(p), and (p). Note that l(p),(p) e V()
and 2(p), (p) p(). Furthermore, MAX {u(p), r(p)} < p (p is a peak), and
MIN {2(p), (p)} > p because u2(p) and r(p) are both (not necessarily differ-
ent) peaks, p is the smallest peak and (since is not pyramidal) p < n. The following
holds: either ([l(p),p]; [u(p),(p)])
TEP().

It is obvious that [ui(p),p] and [u(p), u(p)] are in the same direction class
and that [u2(p), (p)] and , (p)] are both in the other direction class. Which
of the two pairs is a TEP depends on

(i) whether i(p) < (p) or l(p) > (p) and
(ii) whether p- MAX {u(p), (p)} is odd or even.

For instance when ul(p) < (p) < p < 2(p) < u(p) and p- u(p) is odd then
([u2(p), ul(p)]; , (p)]) e WEP(u). See Fig. 2.6. The other cases are left to the
reader.

The improvement procedure can now be described more formally.

Procedure IMPROVE
Input: A Hamiltonian tour .
Output: A pyramidal tour.
Step 0 [Initialization]

Set (1) := and t 1. Go to Step 1.
Step 1 If TEP ((t)) q) then stop" (t) is a pyramidal tour.

Else find ([a, b]; Ix, y]) E TEP ((t)) and go to Step 2.
Step 2 Obtain (t+l) from (t) by replacing [a, b] and [c, d] by [a, x]

and [b, y] and reversing the path from b to y.
Return to Step 1 with t := t + 1.

Lemma 2.4 assures the existence of a TEP until a pyramidal tour is found. By
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Lemma 2.2 the 2-interchange in Step 2 is feasible. It remains to show that proce-
dure IMPROVE ends after a finite number of steps for any initial Hamiltonian tour.
Intuitively, this means that we have to show that o(TM) is "more pyramidal" than
o(t).

Define the pyramidality number K(o) of a Hamiltonian tour o as follows.

pEP(o) vEV(cp)

With the o in the example above, K() (5 + 10 + 12) (1 + 4 + 7) 15. For every
Hamiltonian tour it holds that In/2] [n/2 _> K(o) _> n- 1. The upper bound is tight
for Hamiltonian tours of the type

(1,n, 2, n- 1,3, n- 2,.--).

Furthermore, K(o) n- 1 if and only if is a pyramidal tour. So, the lower
the "more pyramidal" is. An alternative way to define K(o) is as follows. Let
k(i), 1,..., n 1, denote the number of edges It, v] of such that MIN {u, v} _<
i < i + 1 _< MAX {u, v}. Note that k(i) is even and _> 2 for all i. It follows that

For instance with the example above we have k(1) k(2) k(3) k(5)
k(6) k(10) k(ll) 2 and k(4) k(7) k(8) k(9) 4, so K(o) 15.

LEMMA 2.5. Let {o(t)} be a sequence produced by procedure IMPROVE. If o(t)
is not a pyramidal tour then K(o(t+)) < K((t)).

Proof. In Step 2 of procedure IMPROVE [a, b] and Ix, y] are replaced by [a, x]
and [b, y]. So k(+l)(i) k()(i)- 1 for i= x,..., MIN {y, b} 1, hence

K (99(t+l)) K (qo(t)) -(MIN {b, y} x),

or equivalently

K ((t+)) K ((t)) x MIN {b, y} < 0. S

By Lemma 2.5, I4[(9(T)) n- 1 for some finite integer T and (T) is a pyramidal
tour. So procedure IMPROVE ends after a finite number of steps. The results in this
section are summarized in the following theorem.

THEOREM 2.6. ]I)NEW C ]I}pYR.

3. INEW is not a subclass of I)DEMI. As mentioned in 1, A matrix D is a
symmetric Dernidenko matrix (D E IDEM) if and only if

d [i, j] + d [j + l, k] <_d[i,j+l]+d[j,k] for alli<j<j+l<k.

This condition is the symmetric equivalent of the conditions introduced in [2] (see
also [3, p. 102]). In [9] a simple proof is given for ]I}DEMI C ]I}PYR. Until now ])DEMI
WaS the most general class of matrices belonging to ]I)pyR, meaning that all other
subclasses of ]I)pyR known from the literature belong to ]I)DEMI. The purpose of this
section is to show that II}DEMI I[I)NEW and ]I)NEW II}DEM.
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Matrices in IX)NEW can be constructed in a similar way as was shown in [9] for
matrices in ]I)DEMI. It is easy to construct matrices that are in ]I)NEW but not in )DEMI
or matrices that are in ]I)DEMI but not in ][])NEW or any value of n. For details we refer
to [8]. Here we give an example for n 4.

Example. Consider the following two matrices.

4 0 0 1
D2=

4 0 1 0
2 0 0 0 4 1 0 0
4 1 0 0 2 0 0 0

It is easy to check that D1 E ][])NEW and D1 ]I)DEMI and that D2 E )DEMI and
D2 IDNEw.

Acknowledgments. A substantial part of the research for this paper was done
while the author worked at the department of Econometrics of the University of
Groningen, the Netherlands. An (anonymous) referee gave the upper bound on K()
in 2 and other useful remarks.
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DRAWING GRAPHS ON SURFACES *

ARJANA 2ITNIK

Abstract. Every graph that is 2-cell embedded in a closed orientable surface can be drawn in
some fundamental polygon of the surface so that the boundary of the polygon consists of edges and
vertices of the graph; it can also be drawn so that all the vertices of the graph are inside the polygon
and no edges cross the boundary of the polygon more than once. A necessary and sufficient condition
is found to determine whether or not a given embedding of a graph in a surface has one or the other
representation in the standard polygon of the surface, the one of the form al bl a-( b-[ a2b2a b
This leads to a polynomial-time algorithm, assuming that the surface is fixed.

Key words, graphs, embeddings, drawing graphs, polygons, algorithms

AMS subject classifications. 05C10, 05C75, 05C85, 68R10

1. Introduction. The definitions used in this paper are more or less standard
and can be found in [2], [3], [7I. We assume graphs to be finite, connected, and
undirected. A surface will always stand for an orientable surface and we denote the
oriented surface with k > 0 handles by Sk.

A standard method of depicting a graph embedded on a surface is to draw the
graph on the fundamental polygon of the surface, e.g., a polygon in the plane with
its sides oriented and labeled to indicate how the boundary of the polygon can be
identified to recover the surface. Of course, all the edges cannot lie inside the polygon.
Some of them may lie on the boundary of the polygon; some may cross over the
boundary of the polygon. The problem is that some edges may repeatedly cross over
the polygon’s boundary, making the drawing unclear and difficult to visually verify
the desired adjacencies.

We avoid such problems in the following two cases.
The boundary of the polygon consists exclusively of the vertices and edges of

the graph. We say that the graph is compounded in the polygon (see Fig. 1).
All the vertices of the graph are inside the polygon and each edge is allowed to

cross the polygon’s boundary once at most. If a graph G is drawn in a polygon P in
this way, we say that G is drawn nicely in P.

Every embedding of a graph G can in both cases be depicted in some fundamental
polygons of the surface. In the first case we paste together all the faces of the graph
G in some way to obtain a single polygon. In the second case we paste together all
the faces of the dual graph and then draw G in this polygon--the vertices of G inside
the faces of G* and the edges of G cross the edges of G* in the middle.

We can represent a surface of genus k with a polygon in the normal form, the
polygon with edges identified in order a bla-lb- akbka- b- 1. We call this polygon
the standard polygon of the surface Sk and denote it by Pk. The number of different
polygons representing the same surface increases with the genus of the surface. Some
of them may have very many edges on the boundary. For this reason we consider only
the drawings of graphs in standard polygons. Unfortunately, not every graph with a

* Received by the editors December 28, 1992; accepted for publication (in revised form) October
29, 1993.
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FIG. 1. A drawing of K7 in the polygon P1 which represents the torus.

given embedding can be drawn nicely or compounded in the standard polygon of the
surface. We first give the rather obvious condition whether a 2-cell embedded graph
can be compounded in the standard polygon of the surface. As the main point of
this article we present a necessary and sufficient condition for a graph with a given
embedding to be drawn nicely in the standard polygon of the surface. For every
surface of fixed genus this leads to a polynomial-time algorithm, which is at present
practically useful only for the torus.

2. Main result. Throughout this section G will denote a graph that is 2-cell
embedded on the surface Sk.

Let B be a graph embedded on the oriented surface Sk. We call it a bouquet of k
crossing cycles or a k-bouquet, if it consists of 2k cycles, intersecting at one vertex, say
v, and the cyclic order of edges around v is the following: e1,l,e2,1,el,2, el,2,e2,2,...,
e2k-l,1, e2k,1, e2k-l,2, e2,k,2. Here ei,1 and el,2 denote the edges of the ith cycle which
have v as an endvertex (el,1 and el,2 may be a single edge, a loop).

If a graph can be compounded in the standard polygon Pk, it contains a k-
bouquet, which is the boundary of the polygon. The converse also holds: if a graph
embedded in Sk contains a k-bouquet Bk, we can cut Sk along the edges of Bk and
obtain the polygon Pk. This proves the following lemma.

LEMMA 2.1. Let a graph G be embedded in Sk, k > O. Then G can be compounded
in the standard polygon Pa if and only if it contains a k-bouquet as a subgraph.

COROLLARY 2.2. If a graph G does not contain a vertex of degree 4k or more, it
cannot be compounded in Pk.

The dual graph of a 2-cell embedded graph G (relative to this embedding) is a
graph G* embedded on Sa such that the vertices of G* correspond to the faces of
G and every edge of G* corresponds to precisely one edge of G. We denote the edge
corresponding to an edge e E E(G) by e*. Two vertices of G* are adjacent if and
only if the boundaries of their corresponding faces of G share a common edge. G* is
embedded in the following way: on each edge of G we choose a point--it is called the
midpoint of the edge. We put a vertex of G* in each face of G and connect it to all
the midpoints on the boundary of the face.

LEMMA 2.3. We can draw a graph G on the standard polygon P nicely with no

faces split in more than two parts, except the one in the corner of the polygon, which is
split in 4k parts, if and only if the dual graph of G can be compounded in the standard
polygon Pk.

Since the proof is obvious, we omit it.
There exist embedded graphs that can be drawn nicely on the standard polygon,

but their dual graphs cannot be compounded in it. The following example will show
this. Let K be the embedded graph K7 from Fig. 2; we only add a vertex on the
edge e that is cut twice. We get a nice embedding of K. The dual graph of K7 cannot
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5

FIG. 2. An alternative drawing of K7 in

FIG. 3. The rule .for the construction of the associated graph.

be compounded in P1, since all its vertices are of degree 3. We get the graph K*
from K by only adding a parallel edge to e* which is embedded in the same way. So
we cannot find a 1-bouquet in K* and therefore K* cannot be compounded in the
standard polygon P1.

Let fl,..., fj be the faces of the embedded graph G, with di edges on the bound-
ary for 1-.. j. We construct another graph that is embedded in Sk by putting a
"net" with max{[d/4J, [(d- 4k)/2J} layers and d sides in each face f, i 1---j,
of graph G, so the boundary of the face is the 0th layer (see Fig. _3). We call this
(embedded) graph the associated graph of graph G. We denote it by G. The associated
graph is obviously simple, provided that the initial graph does not have any vertices
of degree one.

THEOREM 2.4. We can draw a graph G on the standard polygon Pk nicely if and
only if the dual graph G of the associated graph can be compounded in the standard
polygon Pk.

Proof. If (* can be compounded in Pk, we can draw ( on the polygon Pk nicely
by Lemma 2.3. Since G is a subgraph of G, it can be drawn on the polygon in the
same way; the superfluous edges simply are omitted.

The other way is a little more complicated. First, let all the faces of G be simple;
that means that no edge occurs on the boundary of the same face twice. Each edge of
G corresponds to a layer of vertices of * in two faces of G. We denote these vertices
by triples (e, f, i), where e is the label of the edge, f is the label of the face, and is
the number of the layer. The layer that is nearest to the boundary of the face of G
has number 1. We denote the vertex of * in the middle of the face f simply by (f).
Suppose G is drawn nicely on Pk with syrnbolic description alblab- aabka-b-.
We can construct a k-bouquet in * using the drawing of G in Pk. Let f be the
face of G by the corner of the polygon; let el,e2,..., ejl be the cut edges; and let
f2, f3,..-, fjl be the cut faces in the same order as they appear along the side al of
the polygon. All the edges ei are different, but some faces may be the same.
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Some new notation is now needed. Let d be the number of edges on the boundary
of f and l max{[d/4J, [(d- 4k)/2J} the number of layers in the face. Let w be
a segment of the boundary of f+ that contains the edges e and e+. There are two
such paths, we take the shorter one. With s we denote the number of edges between
e nd e+l on w, including e and e+. Let s [s/2J denote the layer we use to
come from the vertex (e, f+l, 1) of the graph 0* to the vertex (e+, f+, 1) in the
face f+ of the graph G. Let e+ be the edge that follows e on w and let e-+ be the
edge before e+l.

Now we can construct one of the cycles, say C, of the k-bouquet. Since 0* is a
simple graph, we can represent C by a sequence of vertices as follows"

(fl) (el,fl,ll) (el,fl,ll 1) (el, fl, 1) (el, f2, 1)

(e2, f2, Sl) (e2, f2, 81 1) (ca, fa, 1) (e, f3, 1) (e, f, 1)
(ej, fl, 1) (e, fl, 2) (j, fl, 1 (fl).

We construct the other 2k- 1 cycles similarly. If some faces are not simple, we
need an additional label to tell us on which side of the edge a layer of vertices of G*
belongs. If e is an edge that appears on the boundary of the face f twice, we represent
the "cut" by an edge (e, f, 1, side1) (e, f, 1, side2) in the cycle. If G contains vertices
of degree one, G* is not simple. Let v be vertex of degree one that is connected to
G with an edge e. Then G* has parallel edges between the vertices (e, f, 1, side1) and
(e, f, 1, side2). Since it does not make any difference which one of these two edges we
take, we will not make distinction between them. We construct the cycles as before.
The cycles obviously intersect at (f) in the right way.

Suppose we cut the surface S along some cycle in such a way that we cut no edges
of G more than once. Let u1,..., u, be the boundary walk of some face, which is cut.
Say that we cut it from the edge Ul to the edge ui. Then we cannot cut this face from
edge u to ut, if 1 < k < i and < < m, because we would have to cross the first
cut and then we would not have a cycle. That implies that Ci, i 1,..., 2k really are
cycles and that they intersect only at vertex (fl). El

An algorithm for determining whether or not a graph which is 2-cell embedded
in S can be nicely drawn in the standard polygon P is derived easily. We have to
construct the graph (* and find k-bouquet in it. If a k-bouquet does not exist, then
G cannot be drawn in P nicely. Otherwise G can be drwn nicely in P and, having
the k-bouquet, we can actually draw G in the polygon, using some polynomial-time
algorithm for drawing plane graphs, for example [1], [6].

We reduce the problem of how to find a k-bouquet to the k disjoint paths problem,
which is the following: given a graph G and pairs (s,tl),..., (sk,tk) of vertices, are
there k paths joining the corresponding pirs of vertices (si with ti) that re vertex
disjoint? Robertson and Seymour proved (see [4]) that for every fixed k there exists
polynomial-time algorithm for the k disjoint pths problem. Its running time is

O(IV(G)I).
Using the algorithm of Robertson and Seymour, we can find a k-bouquet in (*

in polynomial time regarding the number of vertices and edges of G. All the other
steps are obviously polynomial. So if the genus of the surface is fixed, the algorithm is
polynomial-time. A similar algorithm can be derived for compounding graphs in the
standard polygon of the surface that has to find a k-bouquet in the graph G.

We have to mention that the k disjoint paths algorithm of Robertson and Seymour
is not useful in practice, since it involves enormous constants. So far there are efficient
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algorithms for finding two disjoint paths, for example the one of Y. Shiloach [5], which
needs O(n2) time. So the algorithm can be efficiently implemented at least for the
torus, using the algorithm of [5] to find two disjoint paths.

3. Some other problems. If a 2-cell embedded graph G can be drawn nicely
in the standard polygon of the surface it is embedded nicely on the surface and we call
the embedding of G nice. We have only considered the problem of whether a given
embedding of a graph is nice. Another problem is how to embed a graph nicely on a
surface. There are graphs that can be 2-cell embedded in a surface S, however, none
of these embeddings is nice. An example of such graph is KT, which can be 2-cell
embedded in the torus, but it does not have a nice embedding in it. The question is
if for every graph there exists a surface in which G can be 2-cell embedded nicely.
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ON UNIVERSAL CYCLES FOR k-SUBSETS OF AN n-SET*
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Abstract. A universal cycle, or Ucycle, for k-subsets of In] (1,..., n} is a cyclic sequence of
() integers with the property that each subset of [n] of size k appears exactly once consecutively in
the sequence. Chung, Diaconis, and Graham have conjectured their existence for fixed k and large n
when nl(). Here the Ucycles for k 3, 4, 6 and large n relatively prime to k are exhibited.

Key words, universal cycle, de Bruijn cycle
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1. Introduction. In 1894 the following binary sequence was discovered by Flye-
Sainte Marie [M]:

00011101.

The interesting property of this sequence is that, when regarded as a cyclic sequence,
every binary triple appears uniquely as a consecutive block of digits. Indeed, 000,
001,011,111,110, 101,010, 100 is the corresponding list of binary triples. It was also
discovered that for all n and k analogous k-ary sequences exist listing k-ary n-tuples
uniquely. This result went largely unnoticed until the sequences were rediscovered in
1946 by de Bruijn [B] and Good [G], and they have come to be known as de Bruijn
cycles. For interesting results, generalizations, applications, and history see IF], [HI.

Recently, Chung, Diaconis, and Graham [C] have generalized such sequences so
as to list combinatorial families other than k-ary n-tuples including permutations of
In], partitions of In], k-subsets of In], and k-dimensional subspaces of an n-dimensional
vector space over a finite field. They call such sequences universal cycles, or Ucycles.

In this paper we discuss only the case of Ucycles for k-subsets of In]. An example
with k 3, n 8 is as follows.

1356725 6823472 3578147 8245614 5712361 2467836 7134583 4681258

The list of subsets begins with 135,356,567,..., and ends with 258,581,813. (Of-
ten, we will leave out the brackets in set notation to improve readability.) And, of
course, there are () 56 digits in the sequence, one for each subset. In the example
above, spaces were used only to help the reader notice that each block is just an ad-
ditive translation of the previous block. That is, we add 5 modulo 8 to the digits of
one block to obtain the digits of the next block. This will be an important feature of
Ucycle construction.

We first remark that any ordering of [hi is a Vcycle both for 1- and (n- 1)-subsets.
These we call trivial Ucycles. Also, any listing of the vertices of an Eulerian circuit in
the complete graph Kn (n odd) is a Ucycle for 2-subsets of In]. Thus, we shall always
assume that k > 3 and n > k + 2.

Next, we notice that each integer must occur equally often in a Ucycle since each
integer is in equally many k-subsets of In]. So for the existence of such Ucycles we

* Received by the editors August 6, 1991; accepted for publication November 8, 1993.
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have the following necessary condition

(NC) n divides

Equivalently, we may write that k divides n-1(k-l)" This carries the interpretation that
any digit in the Ucycle is in k k-subsets and any integer is in n-1(_1) k-subsets, so
n--1(k-1)/k is the number of occurrences of each integer in the Ucycle. Notice that (NC)
holds whenever n is relatively prime to k. Indeed (n n--1k) n(k_l)/k is an integer and n

and k have no common factors, so (-)/k must be an integer. Also notice that (NC)
fails whenever n is a multiple of k.

2. Results. In [C] Chung, Diaconis, and Graham made the following conjecture,
for which $100 is offered.

CONJECTURE 1. For all k there is an integer no(k) such that, for n >_ no(k),
Ucycles for k-subsets of In] exist if and only if (NC) holds.

In [J1] we find the following results.
THEOREM 2. Ucycles for 3-subsets of In] exist for all n >_ 8 not divisible by 3.
THEOREM 3. Ucycles for 4-subsets of In] exist for all odd n >_ 9.

Theorem 2 is a verification of conjecture 1 for k- 3.
In order to verify the conjecture for k 4 one would need to construct Ucycles

for n 2 mod 8. No examples of this case have ever been found, nor have any with
k 5. The purpose of this paper is to prove the following theorem.

THEOREM 4. For k 3, 4, 6 there is an integer no(k) such that, for n >_ no(k),
Ucycles for k-subsets of In] exist whenever n is relatively prime to k.
This theorem includes both results of Jackson and unifies them in one setting together
with the case k 6.

3. Terminology. Let S {Sl,... ,Sk},S < S+l, be a k-subset of In]. Define
its ordered difference set, or d-set, D(s) (dl,...,dk) by d s+- s, where
indices are modulo k and arithmetic is modulo n. Two d-sets are equivalent if one
is a cyclic permutation of the other. Thus, we say that any additive translation
of S belongs to the same d-set as S, where an additive translation of S is any set
S + r {Sl + r,..., sk + r} modulo n. Two d-sets will belong to the same d-class
whenever one is any permutation of the other. Thus the family of all d-classes is simply
the family of all unordered partitions of the integer n into k parts. Each d-class in
turn defines a partition of k according to the number of parts of the same size. We
say that two d-classes belong to the same d-pattern if they define the same partition
of k. A d-pattern is good if some part has size 1 and bad otherwise. Let us offer some
examples with k 5 and n- 40.

There are 7 d-patterns (1, 1, 1, 1, 1}, (2, 1, 1, 1), (3, 1, 1), (4, 1), (5), (2, 2, 1), and
(3, 2), of which only (5) and (3, 2) are bad. (3, 2) contains the d-classes [2, 2,
2, 17, 17], [4, 4, 4, 14, 14],..., and [12, 12, 12, 2, 2]. [2, 2, 2, 17, 17] contains the d-sets
(2,2,2,17,17) and (2,2,17,2,17). (2,2,17,2,17)contains the sets {1,3,5,22,24},
{2, 4, 6, 23, 25},..., and {40, 2, 4, 21, 23}. The notation of braces, parentheses, brack-
ets, and angles will be maintained throughout to distinguish the objects from one
another.

4. Proof of Theorem 4. We first prove the following lemma.
LEMMA 5. No bad d-patterns exist if and only if k 3, 4, or 6 and gcd(n, k) 1.
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FIG. 1. 7,3.

Proof. If r gcd(n, k) then the d-pattern (r, r,..., r> is bad unless r 1. If k > 3
is odd then (t,t + 1) is bad, where k 2t + 1 and t > 1, and if k > 6 is even then
(3, t, t + 1) is bad, where k 2t + 4 and t > 1. Finally, it is easy to verify that if
k- 3, 4, or 6 and gcd(n, k) 1 then no bad d-patterns exist.

Next we define the transition graph Tn,k, which is dependent upon the choices of
representations for each d-class. Given the d-set (d,..., d_, d) we distinguish one
of its coordinates (which we may assume to be dk because of cyclic permutations) in
the representation (dl,..., dk-1; dk) so as to imply the ordering {i, i + d,..., i + d

+ dk-1 } of all its sets. The use of the semicolon in the representation is to identify
which of the k differences is not to be used.

The representation of a d-class by [dl,... ,dk-1; dk] signifies that dk is distin-
guished (unused) in each of its d-sets. Thus, to avoid ambiguity, it is important that
d be unique, in particular that the corresponding d-pattern be good. For example,
with k 4 and n 11, we can choose [2, 2, 1; 6] to represent [2, 2, 1, 6]. This deter-
mines the representations (2, 2, 1; 6), (2, 1, 2; 6), and (1, 2, 2; 6) of its three d-sets, of
which (2, 1, 2; 6) denotes the (ordered) sets {1, 3, 4, 6}, {2, 4, 5, 7},... and {11, 2, 3, 5}.

Given the d-set representation (dl,...,dk-;dk) we call the terms ((dl,
..,dk-2)) its prefix and ((d2,...,dk-1)) its sujfix. We use double parentheses to

denote that these are vertices in the transition graph T,k whose directed edges are
precisely the representations involved.

For example, Fig. 1 shows the transition graph T8,3 which was used to construct
the Vcycle for 3-subsets of [8] above. The d-sets are represented by (1, 1; 6), (2,2; 4),
(3, 3; 2), (1, 2; 5), (2, 1; 5), (1, 3; 4), and (3, 1; 4). The d-set (2, 1; 5) corresponds to the
directed edge ((2)) - ((1)), and so on. The Eulerian circuit 2211331 corresponds to
a listing of all d-sets and produces the differences in the first block, 1356725, along
with the first digit, 6, of the next block. Since the sum 2 + 2 + 1 + 1 + 3 + 3 + 1
5 mod 8, each block shifts by 5, and since 5 is relatively prime to 8 each integer occurs
as the starting digit of some block. Hence, each 3-subset of [8] occurs exactly once.
As we shall see, it is an unnecessary luxury that the sum (5) is relatively prime to

(8).
LEMMA 6. If Tn,k is Eulerian for some choice of representations of d-classes,

then there exists a Ucycle for k-subsets of Inf.
Proof of Lemma 6. ((1, 1,..., 1)) is always a vertex of Tn,k and there is al-

ways a loop at that vertex representing the d-set (1, 1,..., 1;d). This is because
there is no other way to represent the d-class [1, 1,..., 1, d], because we would be
unable to distinguish which 1 would be set apart by a semicolon if we tried. Let
$1 {1,2,...,k},$2 {2,3,...,k + 1} $1 + 1, and in general, let S+ S + 1
be the sets belonging to this representation. Starting at Si we follow along the edges
of an Eulerian circuit in Tn,k until we return to our original loop. Repeating the loop
now determines the set Si + r for some 0 <_ r < n. Retrace the circuit repeatedly until
we finally reach S again, now having used the sets S, Si + r, Si + 2r,..., and S r, in
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that order. Call the cycle produced Ui. Now let s gcd(r, n). Then if s 1 we have
actually produced our Ucycle since we have used each of the n sets from every d-set
(our initial example with n 8 and k 3 has r 5 and s 1). Otherwise, we have
constructed s disjoint cycles U1, U2,..., Us, which must somehow be hooked together
to form one. We do this by a method we call insertion, showing how to insert Ui+l
into Ui. Actually, the general case is the same as the first, so we merely show how to
insert U2 into U1. Given

and

we insert as below.

U1 1,2,... ,k 1, k,x,... ,y

U2 2,3,...,k,k + 1, x + 1,...,y + 1

1,2,3,...,k,k + 1, x + 1,...,y + 1,2,3,...,k- 1, k,x,...,y

Induction then completes the proof. D
Next we take a closer look at Tn,k by defining the graph T,k(C) for each

d-class C [dl,..., dk-1; dk]. It is merely the restriction of T,k to edges that are rep-
resentations of d-sets belonging to C. We now introduce the class graph -n,k, whose
vertices are all possible d-classes and whose undirected edges join d-classes whose rep-
resentations differ by one entry. For example, [2, 2, 1, 3, 6; 7] and [1, 1, 2, 2, 3; 12] are
connected in ’21,6.

LEMMA 7. If ’n,k i8 connected and there are no bad d-patterns for k-subsets of
In], then Tn,k is Eulerian.

Proof of Lemma 7. If the d-class C [dl,...,dk-1; dk] belongs to a good d-
pattern, then Tn,k(C) is a disjoint union of cycles. This is so because no di equals
dk and so all distinct permutations of the entries dl,..., dk-1 can be partitioned into
cyclic permutations of a fixed few. For example, with C [1, 1, 2, 2, 3; 12] we obtain
the d-sets (1, 1,2,2,3; 12), (1, 1,2,3,2; 12), (1, 1,3,2,2; 12), (1,2, 1,2,3; 12), (1,2, 1,3,2;
12), and (1, 3, 1,2,2; 12), along with all their five cyclic permutations each. Those of
the last d-set induce the cycle of edges

((1,3,1,2,2)) -- ((3,1,2,2,1)) - ((1,2,2,1,3))-- ((2, 2, 1, 3, 1)) - ((2, 1, 3, 1, 2)) -- ((1, 3, 1, 2, 2))

in T21,6(C). An example of why this breaks down for bad d-patterns is the d-class C
[1, 1, 4, 4] for 4-subsets of [10], containing only the two d-sets (1, 1, 4, 4) and (1, 4, 1, 4).
If we try to use the representation [1, 1, 4; 4], then that induces the representations
(1, 1, 4; 4) and (1, 4, 1; 4), which are the edges ((1, 1)) - ((1, 4)) ((4, 1)) in T0,4(C).
We can never form cycles this way.

We quickly see from this that if Tn,k is connected, then it is Eulerian, being
a union of cycles. Two d-classes C1 and C2 being connected in Tln,k means that
Tn,k(Ci) and Tn,k(C2) share many of the same vertices. In particular, if C1 and C2
share dl,..., dk-2, then their corresponding graphs share every permutation of them
as vertices. For example, ((2, 2, 1, 3)), ((2, 2, 3, 1)), and ((2, 1, 2, 3)) are the shared
vertices of [2, 2, 1, 3, 6; 7] and [1, 1, 2, 2, 3; 12] above. However, this does not mean that
the union of the two graphs Tn,k(C1) and Tn,k(C2) is connected, although since Tln,k
is connected, we do get paths to and from every d-set and (1, 1,..., 1), so that the
union over all d-classes produces the connected graph Tn,k. [:]
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A3

A2 B3

B2

A1

FIG. 2. Connectedness of 7-ln,3.

LEMMA 8. Let n0(3) 8, no(4) 9, and no(6) 17. Then ’n,k i8 connected for
k 3, 4 and 6 with n > no (k) and gcd(n, k) 1.

Proof of Lemma 8.

Case k 3. We assume n > 8 and break up the d-classes into the following
types.

(A) &pattern (2, 1)" [a, a; b]
(1) a=l
(2) a > 1, b 1 (for n odd only)
(3) a>l,b>l

(B) d-pattern (1, 1, 1}" [a, b; c]
(1) 1-a<b<c
(2) l<a<b<c
(3) 2=a<b-l=c(fornoddonly)

We show that 7-/,3 is connected by displaying the path of edges from the d-classes of
each type to the type A1 in Fig. 2. If n is odd, then A2 -. B3 B1 by [a, a; 1]
[2, a; a 1] -- [1, 2; c]. Then A3 - B1 by [a, a; b] - [1, a; c], B2 -- B1 by [a, b; c --[1, b; d], and B1 - A1 by [1, b; c] -- [1, 1; d].

Case k 4. We assume n >_ 9 and break up the d-classes into the following
types.

(A) d-pattern/3, 1}" [a, a, a; b]
(1) a=l
(2) a>3, b-1
(3) a>1, b>1

(B) d-pattern (2, 1, 1}" [a, a, b; c]
(1) a--l,1 <b<c
(2) a>l,l=b<c
(3) a>l,l<b<c

(C) d-pattern (1, 1, 1, 1)" [a, b, c; d]
(1) 1-a<b<c<d
(2) l<a<b<c<d

We show 7-/,a is connected by displaying the path of edges from the d-classes of each
type to the type A1 in Fig. 3. A2 B3 --, C1 by [a,a,a; 1] - [a,a, 2;a- 1]
[1, 2, a; b], C2 - C1 --. B1 by [a, b, c; d] - [1, b, c; e] -- [1, 1, c; f], A3 -- B2 -- B1 by
[a, a, a; b] --. [a, a, 1; c] --. [1, 1, a; d], and B1 -- A1 by [1, 1, a; b] -- [1, 1, 1; c].

Case k 6.
We assume n >_ 17 and break up the d-classes into the following types.
(A) d-pattern (5, 1)" [a, a, a, a, a; b]

(1) a-1
(2) a>1,b>1
(3) a>1, b=1

(B) &pattern (4, 1, 1}" [a, a, a, a, b; c]
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A2

C4

A3

B3 B1
C2C1

FIG. 3. Connectedness of 7-ln,4.
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FIG. 4. Connectedness of 7"n,6.

D1

A1

(1) a=l,1 <b<c
(2) a>l,l<b<c-2
(3) a > 1,1 b< c-2
(4) a> 1, b=c+l

(C) d-pattern (3, 2, 1, 1): [a, a, a, b, b; c]
(1) a>b
(2) a<b,c>l
(3) 2<a<b,c=l
(4) 2=a<b,c=l

(D) d-pattern (3, 1, 1, 1): [a, a, a, b, c; d]
(1) a=l,l<b<c<d
(2) a> 1,1=b<c<d
(3) a>l,l<b<c<d

(E) d-pattern (2, 2, 1, 1): [a, a, b, b, c; d]
(1) l=a<b,l<c<d
(2) l<a<b, 1 <c<d
(3) l<a<b,l=c<d

(F) d-pattern (2, 1, 1, 1, 1}: [a, a, b, c, d; e]
(1) a=l,l<b<c<d<e
(2) a> 1,1=b<c<d<e
(3) a> 1,1<b<c<d<e

(G) d-pattern (1, 1, 1, 1, 1, 1): [a, b, c, d, e; f]
(1) l=a<b<c<d<e< f
(2) l<a<b<c<d<e< f

We show 1n,6 is connected by displaying the path of edges from the d-classes of
each type to the type A1 in Fig. 4. C4 --, B4 B3 by [2, 2, 2, b, b; 1] --. [2, 2, 2, 2, b;
b- 1] [2,2, 2, 2, 1;c],A2 83 -. C1 by [a, a, a, a, a; b] --. [a,a,a,a, 1;c] [a,a,a, 1,
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1;d], A3 -, B2 by [a, a, a, a, a;1] --, [a,a,a,a, 2;a- 1], and C1 - C2 D2 by [a,a,a,
b,b;c] - [b,b,b,a,a;d] -- [b,b,b,l,a;e]. B2 -- D2 - E1 by [a,a,a,a,b;c] [a,a,a, 1,
b; d] [1, 1, a, a, b; el, C3 - E3 by [a, a, a, b, b; 1] - [a, a, b, b, 1; el, and E2 --, E3 - E1
by [a,a,b,b,c;d] - [a,a,b,b, 1;e] - [1,1, a,a,b;f]. D3-F2 by [a,a,a,b,c;d] -[a,a,l,b,d;e],F3 -- F2 - E1 by [a,a,b,c,d;e] - [a,a,l,c,d;f] -- [1,1, a,a,d;g], and
G2 - G1 - F1 by [a, b, c, d, e; f] - [1, b, c, d, e; g] - [1, 1, c, d, e; hi. And finally E1 -D1 by [1,1, b,b,c;d] - [1,1,1, b,c;d],F1 - D1 by [1,1, b,c,d;e] - [1,1,1, c,d;f], and
D1 -, B1 A1 by [1,1,1, b,c;d] - [1, 1, 1, 1, b;e]- [1, 1, 1, 1, 1; f].

Proof of Theorem 4. The proof follows from Lemmas 5-8.
We finally note that Jackson [J2] has recently found by computer Ucycles for the

values of (n, k) equal to (10, 4), (8, 5), (9, 5), (10, 6), (11, 6), (10, 7), (11, 7), and (11, 8).
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FURTHER RESULTS ON T-COLORING AND FREQUENCY
ASSIGNMENT PROBLEMS *

ARUNDHATI RAYCHAUDHURI

Abstract. A graph coloring problem (called T-coloring) is investigated in which integers are

assigned to the vertices of a graph G, under the constraint that the absolute value of the difference
between integers assigned to adjacent vertices does not belong to a forbidden set (called the T-set).
The T-coloring problem has applications in the radio frequency channel assignment problem. T-sets
of the form {0, s, 2s,..., ks}US, where s, k _> 1 and S C_ {s + 1, s + 2,..., ks- 1}, are considered. This
set has been named the k-multiple of s set. Values of interest are the minimum cardinality, XT(G),
and the minimum span, sPT(G), of the set of assigned integers, over all possible T-colorings of G. A
greedy algorithm, which T-colors perfectly orderable graphs in XT(G) colors with span sPT(G (for
a k-multiple of s set), is given.

Key words, vertex coloring, T-coloring, frequency assignment, minimum span, greedy algo-
rithm, perfectly orderable graphs

AMS subject classifications. 05C15

1. Introduction and definitions. Efficient frequency assignment, which uses
a minimum number or a minimum span of channels or frequencies assigned to a system
of transmitters, has been motivated by the increasing scarcity of available radio fre-
quency spectrum. In this context, T-coloring was first introduced by Hale [1980], who
formulated in graph-theoretic terms the most general form of the channel assignment
problem, with k levels of interference. In this paper we investigate this T-coloring
problem when assigning channels for one level of interference only. We describe the
problem below.

There are n transmitters xl, x2,..., Xn situated in a region. To each transmitter
xi, a channel f(xi) (a fixed positive integer), is to be assigned. Some of the transmit-
ters interfere because of proximity, meteorological, or other reasons. Two interfering
transmitters must be given frequencies such that the absolute value of the difference of
their frequencies does not belong to a forbidden set T of nonnegative integers. Our ob-
jective is to make a frequency assignment that is efficient according to certain criteria
(to be defined later in this section), while satisfying the above constraint.

To formulate this problem graph-theoretically, we define a graph G with V(G)
{Xl,X2,... ,Xn}, and an edge between transmitters xi and xj iff they interfere. Given
G and a T-set, a set of nonnegative integers, a T-coloring for G is a function f:
V(G) Z+ (the set of positive integers), such that

{x, y} e E (G) - If (x) f (Y)I T.

We assume that 0 E T, otherwise the problem becomes trivial. However, if T- {0},
then the problem reduces to the ordinary coloring problem.

* Received by the editors October 2, 1989; accepted for publication (in revised form) December
27, 1993.

Department of Mathematics, College of Staten Island (CUNY), 2800 Victory Boulevard, Staten
Island, New York 10314. Portions of this work are included in the author’s Ph.D. dissertation
completed under the supervision of Prof. Fred S. Roberts, Department of Mathematics, Rutgers
University, New Brunswick, New Jersey 08903.
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Previous work on the topic of T-coloring has been done by Cozzens and Roberts
[1982]. They have studied T-sets of the form {0, 1, 2,..., r}US, where S is any set that
does not contain any multiple of (r + 1). They call this set an r-initial set. Cozzens
and Wang [1984] investigated T-sets where S may include some multiples of (r + 1).
Tesman [1989] studied the T-coloring problem with two interference levels on nested
unit interval graphs with corresponding T-sets {0} and {0, 1}. More recently D. Liu
has given a useful characterization of T-sets for which sPT(G sPT(Kx(G))(sPT(G _<
SPT(Kx(G))) for any graph G (see Thm. l(a), (ii)). A useful survey on generalized
graph coloring including T-coloring and their applications can be found in Roberts
[1989].

In the case of radio frequency assignment the forbidden T-set8 can be very
complex and difficult to model (see Middlekamp [1978] for a discussion of such T-
sets). Here we 8hall primarily deal with one such T-set, the k-multiple of s set.
The k-multiple of s set is of the form {0, s, 2s,..., ks} tA S, where s and k

_
1 and

s c_ {s + 1, s + 2,..., ks- 1}. Some practical forbidden sets, such as those that arise
in UHF-TV, are very similar to k-multiple of s sets.

For any T-set, it is easy to find a T-coloring. If a is the largest entry of T,
then one could use a different channel for each transmitter, choosing channels from
{1, a + 2,2a + 3,...}. However this will not be very efficient in terms of the difference
between the smallest and largest channels used. Our objective is to find efficient
assignments for various graphs and T-sets. So let us at this point define some criteria
for efficient channel assignment.

Given any graph G and a T-set, the order of a T-coloring f is the number of
distinct integers f(x), and the span is the maximum value of If(x)- f(y)[ over all
vertices x and y. The minimum order (or the T-chromatic number) and the minimum
span (or the T-span) over all T-colorings for any graph G and a given T-set T are
denoted by XT(G) and sPT(G), respectively.

It is interesting to note that the above two criteria of optimization may not be
satisfied by a single T-coloring, as pointed out by Cozzens and Roberts [1982]. The
example in Fig. 1 illustrates this. Here G is a cycle on five vertices and T {0, 1, 2, 6}.
Figure l(a) shows a minimum span assignment (of span 6) that uses five colors, the
least possible number of colors to attain this span, and Fig. l(b) shows a minimum
order assignment that uses three colors and has a span of 7, the least possible span to
attain this order.

This motivates us to define the restricted span and the restricted chromatic num-
ber of a T-coloring. Restricted span or rsPT(G is the minimum span of a T-coloring
of G which uses XT(G) colors. Restricted chromatic number, x(G), is the minimum
order of a T-coloring of G whose span is sPT(G).

The rest of this paper is organized as follows. Section 2 presents a study of
sPT(Kn and sPT(G), where T is a k-multiple of s set. In 3 we discuss the numbers
Xr(G) and rsPT(G). In 4 we give a greedy algorithm that colors perfectly orderable
graphs in XT(G) colors for any T-set, with span sPT(G), if T is an r-initial set or a
k-multiple of s set.

Additional notation used in this work are defined below:

x(c) The chromatic number of G
A complete graph on n vertices

Maximum size of a clique in G.
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1 1

5 4 8 J 4

4 ’ 1

(a)
(b)

FIG. 1. Two T-colorings of G for T {0, 1, 2, 6} for two different optimality criteria.

We end this section by mentioning a result of Cozzens and Roberts [1982] involving
XT(G) and sPT(G), which we have used extensively in this paper.

THEOREM 1 (a) (Cozzens and Roberts [1982]). For all graphs G and all T-sets T,
(i) xT(G) x(G),

and if XT(G) m and w(G) l, then
(ii) sPT(K < sPT(G < sPT(gm).
THEOREM 1 (b) (Cozzens and Roberts [1982]). If T is an r-initial set, then

sPT(G spr(Kx(a) (r + 1)(x(G) 1).

2. The numbers sPT(Kn) and sPT(G), where T is a k-multiple of s set.
In this section we shall study the numbers SPT(Kn) and sPT(G where G is any

graph and the T-set is a k-multiple of s set. Since by Theorem l(a), (ii), sPT(G
lies between the minimum spans of two complete graphs we shall first concentrate on
finding sPT(Kn for any complete graph Kn. In Theorem 2 we shall show that for a
k-multiple of s T-set we can produce a T-coloring of Kn of span SPT(Kn) if we use a
greedy algorithm. In Theorem 3 we shall show that sPT(G equals sPT(Kx(G) (the
upper bound for sPT(G as stated in Theorem l(a), (ii)), where T is a k-multiple of
s set. So we can conclude that for any G with known chromatic number x(G), and a
k-multiple of s T-set, we can produce a T-coloring of G of span sPT(G using a greedy
algorithm.

The greedy algorithm for T-coloring is as follows. Let Xl,X2,... ,xv be any
vertex ordering of G. Color Xl with 1, i.e., let f(Xl) 1. Having assigned col-
ors f(xl),f(x2),...,f(xp), let f(xp+l) be the smallest positive integer such that
I(Xp+l)- f(xk)l T, where k < p and {Xp+l,Xk) e E(G). Note that this algo-
rithm produces a legitimate T-coloring of any graph G and any T-set T. However, it
may not always give a coloring of minimum order or minimum span. For example, if
T {0, 1, 4, 5}, and G is a K3, the greedy algorithm uses colors 1, 3, 9 whereas colors
1, 4, 7 give a minimum span T-coloring. The following theorem is the main result of
this section, which says that in case of a k-multiple of s T-set the greedy algorithm
does produce a coloring of Kn of minimum span.

THEOREM 2. Suppose T {0, s, 2s, 3s,..., ks} U S, where s, k > 1, and S c_
{s + 1,..., ks- 1}. Then the greedy algorithm produces a T-coloring of Kn of span
sPT(Kn). Moreover, if n st, t e {1, 2, 3,...}, then sPT(Kn st +skt- sk 1,
and if n st + l, {1, 2,..., s 1}, then sPT(Kn st + skt + l- 1.
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Proof. Let G Kn and T be a k-multiple of s set. Color the vertices of G with
the following colors, until all the vertices have been colored.

1, 2, 3,4,...,s- 1, s,

(k + 1)s + 1,(k + 1)s + 2,..., (k + 2)s,
(k + 1) 2s + 1, (k + 1) 2s + 2,..., (2k + 3) s, etc.

That is, start with colors 1, 2,..., s, then skip ks colors to s + ks + 1 (k + 1)s + 1
and use consecutive colors through (k / 1)s + s (k + 2)s, then skip another ks colors
to (k + 1)2s + 1 and so on. For j 1,2,..., the (js + 1)th color has a difference of
ks / 1 from the jsth color. This is a valid T-coloring because the difference between
any two colors from the above set E {1, 2,..., s- 1}, or is a number _> ks + 1. Note
that in choosing these colors for T-coloring Kn, we have used the greedy algorithm.
We shall now find the span resulting from this T-coloring.

Suppose n st + l; where t E {1, 2, 3,...} and {0, 1, 2,..., s 1}. Then the
span of Kn as generated by the greedy algorithm can easily be seen as follows.

Case 1: n st. Span of Kn (as generated by the greedy algorithm) [(t- 1)k +
tls- 1 st + skt- sk- 1.

Case 2" n st + {1, 2,..., s- 1}. Span of Kn (as generated by the greedy
algorithm) [(t 1)k + t]s + ks + 1 st + skt + 1.

Next, we shall show that the above assignment is a minimum span assignment.
Consider a valid T-coloring of Kn of span sPT(Kn). In this T-coloring two colors Cl
and c2 are said to be of the same type if c =_ c2 modulo s. Therefore if c is + j
and c2 i2s + j are two colors of the same type (namely type j) in a valid T-coloring
of Kn then ICl -c21 _> s(k + 1), since the T-set is a k-multiple of s set.

If n st then there are st distinct colors in this coloring, since 0 T. Also
there are at most t colors of any type used. Otherwise, if there are t / 1 or more
distinct colors of the same type, then sPT(Kn >_ ts(k + 1), since any two colors of the
same type must differ by at least s(k + 1). However, sPT(Kn <: st + skt- sk- 1 <
st +skt- 2. So no more than t colors of any type have been used. Since each type of
color contains <_ t colors and there are at most s types, it must be that out of the st
distinct colors, there are exactly t colors of each type 1, 2,..., s 1, 0.

If n st + l, {1, 2,..., s 1}, then we claim that at most t + 1 colors of any
type have been used, since any color type with >_ t + 2 colors in it would imply that
SPT(Kn :> (t + 1)s(k + 1) skt + st + sk + s >_ st + skt + s + 1. But we know that
sPT(Kn

_
st -- skt + 1 <_ st + skt + s 2. Again, we can argue that since no type

has > t / 1 colors and there are at most s types of colors, among the distinct st +
colors there must be at least types of colors il, i2,..., it with exactly t + 1 colors of
each type.

Let ai be the smallest color of type i,i {1,2,...,s- 1,0} if n st, and
i {il,i2,...,it} ifn st+l. Without loss of generality, al < Cg2 < < O/s--1 < O0,
if n st, and a < O/i2 < < Olil if n st + 1. Let 0 and/it be the highest colors
of types 0 and it, respectively, used in these two cases. Then, if n st, sPT(Kn

_
(/0 c) (0 c0) + (a0 c) >_ (t 1)s(k + 1) + (s 1) st + skt sk 1.
(0, c0 are two colors of the same type and there are exactly t colors of this type;
also, a0 al _> s 1 since al, c2,..., as-i, c0 are distinct.) On the other hand,
if n st + l, then sPT(Kn >_ (it air) (it cit) + (cit cit) >_ ts(k + 1) + 1
st + skt + 1. (it and cit are two colors of the same type and there are exactly t + 1
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colors of this type.) Therefore in both cases n st and n st+l, E {1,2,...,s-1},
the spans of Kn produced by the greedy algorithm are as stated in Theorem 2. rl

COROLLARY 2.1. Suppose G is any graph and T is a k-multiple of s set. If
w(G) st + m and x(G) sq + n,t,q e {1,2,3,...} and m,n e {0,1,...,s 1},
then,

(1) if m O ands=O, then st + skt sk l _< SpT(G)_<sq+skq-sk-1.
(2) if m T O ands=O, then st + skt + m- l _< SpT(G)_<sq+skq-sk-1.
(3) if m O ands7 0, then st + skt sk l <_ SpT(G)<_sq+skq+n-1.
(4) if raTiO and n T O, then st + skt + m l _< SpT(G)_<sq+skq+n-1.
Proof. By Theorem l(a), (ii), sPT(K(G) _< sPT(G _< sPT(Kx(G) ).
THEOREM 3. Suppose T is a k-multiple of s set. Then for any graph G,

sPT(G SPT(Kx(G) ).
Proof. We shall prove this by showing that if f is any T-coloring of G of

span sPT(G), we can change it to another T-coloring g of G, where g(x) <_ f(x)
for all x in V(G), minimum g(x) minimum f(x), and g(x) uses exactly those col-
ors used by the greedy algorithm when coloring Kx(). Thus sPT(G span of the
T-coloring g SPT(Kx(G)) by Theorem 2.

Let f be a T-coloring of G of span sPT(G). Without loss of generality f uses
color 1. In order to define the new g T-coloring from the fT-coloring we shall partition
the set of positive integers into certain sets as follows.

I1,1 The set of integers in the interval [ls + (1- 1)ks + 1,1s + lks] for
1, 2,3,...
I2, {ls + lks + 1;/= 0, 1, 2,...}
I3, {ls + Iks + 2;/= 0, 1,2,...}

I8, {ls + lks + (s- 1);/- 0, 1,2,...}
+ 1)k ; 2, 3,...}.

Note that Ii,t U I2,t U... U I0,l cover the entire set of positive integers. This is
because

{I2,o U I3,o U... U 18,o} {1,2,...,s 1}
{I0,1 U I1,1 U I2,1 U"" U I8,1 } {8, [8 -[- 1, 8 + k8],8 + k8 + 1,..., s + ks + s 1}
{10,2 U I1,2 U 11,3 U--" U 18,2}

(2s + ks, [2s + ks + 1,2s + 2ks],2s + 2ks + 1,...,2s + 2ks + s- 1}

and so on.
Thus every f(x) belongs to Ij, for some j in (0,1,2,...,s} and some in

(0, 1, 2,...}. From f(x) define another T-coloring g(x) as follows.
If f(x) I1, let g(x) f(x).
If f(x) e I1, and f(x) t modulo s, then let g(x) largest integer i < f(x), i

I1, and i t modulo s. Such an always exists since (I2,0 U--. U I8,0 U I0,1) contains
(1, 2,..., s} and the least positive integer in Ii,l is s -t- 1. We claim that g(x) is again
a valid T-coloring. We now prove this claim.

Note that for all x in V(G),g(x) I1,. Hence for all Xl,X2 e Y(G),g(xl) and
g(x2) are of one of the following forms.

(i) g(xl),g(x2) are of the same class (i.e., belong to/j, for same j,j 7 1). Then
Ig(xl) g(x2)l (11 -/2)s(1 -t- k), where 11,12 are nonnegative integers such that
11 -12 e (0,1,2,...). So Ig(xl)- g(x2)l is either 0 or a positive integral multiple of
(k + 1)s.
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(ii) g(xl), g(x2) are of different classes, but neither of them belong to Io,t. Then
Ig(xl) g(x2)l (11 -12)s(k + 1) + (Hi n2) where 11,12 are nonnegative integers
such that (/1-/2) E {0,1,2,...} and Hi,n2 {1,2,...,s- 1},nl n2. Note that
11-12 0 implies that ni > n2. So Ig(Xl)--g(x2)l either {1,2,... ,s-2} or is > ks.

(iii) g(xi) and g(x2) are of different classes and one of them belongs to I0,t, namely
g(xl) Io,t and g(xl) > g(x2). Then Ig(xl)-g(x2)l (ll-12)s(k+l)-ks-n, where
11,12 are nonnegative integers such that (11 -/2) e (1, 2,...} and n e (1, 2,..., s 1}.
So Ig(xl) g(x2)l either e (1,2,...,s- 1} or > (k + 1)s.

(iv) g(xl),g(x2) are of different classes and g(xl) e Io,t and g(x2) > g(xl). Then
Ig(xl) g(x2)l- (ll -12)s(k + 1) + ks + n where/1,/2 are nonnegative integers such
that (11 -/2) e (0,1,2,...) and n e (1,2,...,s- 1}. So Ig(xl)- g(x2)l > ks.

It can be verified that in all the above cases Ig(xl)-g(x2)l

_
interval Is, ks]. Thus

it will suffice to show that (x, y} e E(G) ---, Ig(x)- g(Y)l = O. Among all the above
cases, Ig(x) g(Y)l could equal 0 only in case (i) when g(x) and g(y) belong to some

Ij,t for same j( 1) and same 1. This will be the case only if If(x) f(Y)l-- 0 which
implies that (x, y)

_
E(G). This proves the claim that g(x) is a valid T-coloring.

Now, minimum g(x) minimum f(x) 1, and g(x) <_ f(x), for all x in V(G).
Thus the span of the T-coloring g _< span of the T-coloring f sPT(G). So the span of
the T-coloring g sPT(G). Let us list all the colors in Io,t t2 I2,t t2... t2 Is,t in ascending
order. Let 1 0/1 < 0/2 < be those colors. Note that these are exactly the colors
used by the greedy algorithm when T-coloring Kn (where T is a k-multiple of s set) as

explained in the proof of Theorem 2. So, by Theorem 2, the greedy algorithm produces
a coloring of Kx(G) of span- sPT(Kx(G) and uses the colors 0/1,0/2,... ,0/x(G)" The
T-coloring g of G described above also uses colors from the set Io,t U I2,t J"" Is,t,
namely colors 1 0/(1) < 0/(2) < < 0/(p), where i(p) >_ p >_ X(G). Thus the
span of the T-coloring g 0/(p) 1 _> 0/x(G)- 1 sPT(Kx(C) (by Theorem 2).
So, sPT(G span of the T-coloring g >_ sPT(Kx(G) ). But, sPT(G _< SPT(Kx(G)) by
Theorem 1 (a), (ii). Therefore sPT(G sPT(Kx(G) ). [

3. Restricted span and restricted chromatic number. In this section we
shall study in some detail the numbers Xr(G) and rsPT(G which we introduced in

1. It follows easily from the definitions that Xr(G) x(G)iff rsPT(G) sPT(G)
(rsPT(G) sPT(G there is a T-coloring that uses x(G) colors and has span equal
to sPT(G X(G) x(G)). We have mentioned earlier that for some graphs G
and some forbidden sets T, we cannot achieve by a single coloring the minimum order
and the minimum span that are possible for that G and T. In this section, however,
we show that for weakly x-perfect graphs (graphs for which x(G) w(G)) with any
T-set, and for any G with an r-initial or a k-multiple of s T-set, both these efficiency
criteria can be achieved in the same coloring. We state that result in Theorem 4.

THEOREM 4. For any G and any T, rsPT(G sPT(Kx(G) ).
P ooI. ( )rsvp(a) <_
Consider a T-coloring of K() of span sPT(Kx(a) ). Suppose it uses colors

0/1,0/2,..., 0/x(G)" Consider any T-coloring of G that uses XT(G) X(G) colors, namely
/1, 2, ,/x(G). Find another legitimate T-coloring g of G by interchanging the colors
/i with 0/i. Then rsPT(G _< span of T-coloring g----sPT(Kx(G)).

(b) rsPT(G _> sPT(Kx(G) ).
Consider a T-coloring of G that uses exactly x(G) colors (namely 0/1 < 0/2 <
< 0/x(G)) of span rsPT(G). Let us divide the vertices of G into x(G) color classes of

colors 0/1,0/2,..., 0/x(a). Between any pair of color classes 0/i and o/j, there must be an

edge joining a vertex in color class 0/i to a vertex in color class 0/j. Otherwise we could
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x y z w

FIG. 2. An obstruction.

merge the two color classes resulting in a partition of V(G) into (x(G) 1) indepen-
dent sets, which is a contradiction. So, al, a2,..., ax(a may form a T-coloring for
gx(a). So, rsPT(G an(a al

COROLLARY 4.1. For all weakly x-perfect G and any T, rspT(G sPT(G and
x (G)

Proof. By Theorem 4, rsPT(G sPT(Kx(G) and by Theorem l(a), (ii), for
all weakly x-perfect G, spT(Kx()) sPT(G). So rsPT(G sPT(G and therefore

COROLLARY 4.2. For all G, and T an r-initial set or a k-multiple of s set,
rsPT(G sPT(G and X(G)=

Proo By Theorem 4, rsPT(G sPT(K(a) and sPT(Kx(a) sPT(G for any
G and T an r-initial set (by Theorem l(b)) and for any G and T a k-multiple of s
set (by Theorem 3). So for both these T-sets, rspT(G) sPT(G and consequently

4. Greedy algorithms for perfectly orderable graphs. In this section we
shall discuss T-coloring for perfectly orderable graphs, which is a very broad class of
graphs including transitively orientable, rigid circuit, and complements of rigid circuit
graphs. In Theorem 5 we shall show that for all perfectly orderable graphs G, a greedy
algorithm results in a T-coloring of G in XT(G) colors. In particular if the T-set is
either an r-initial or a k-multiple of s set then the span produced by this greedy
algorithm equals SPT (G).

Let Xl,X2,... ,Xv be any ordering of V(G). Using the greedy algorithm on this
ordering, let us assign colors f(xj) to the vertices of G such that adjacent channels
get different colors. Then the largest integer appearing as f(xj) is called the Grundy
number of this ordering. Obviously, the Grundy number of any ordering _> X(G). An
ordering Xl, x2,..., xv is perfect if, for each generated subgraph H of G, the Grundy
number of H is equal to x(H). A graph G is perfectly orderable if V(G) admits a

perfect order.
An ordering Xl, x2,..., xv on V(G) is called admissible if the acyclic orientation of

E(G) implied by this ordering creates no generated obstruction, where an obstruction
is the digraph shown in Fig. 2.

Chvatal [1981] showed that a graph G is perfectly orderable iff V(G) admits an
admissible order. He has also pointed out that transitively orientable graphs, chordal
graphs (for definitions, see Golumbic [1980]), and complements of chordal graphs
belong to the class of perfectly orderable graphs. In a transitively orientable graph,
a transitive orientation creates no obstruction. In a chordal graph a reversed perfect
elimination ordering is an admissible ordering. In a complement Gc of a chordal graph
G, a perfect elimination ordering of V(G) is an admissible ordering of V(Gc).

LEMMA 1 (Chvatal [1981]). Let G be a perfectly orderable graph with an admis-
sible or perfect order < on V(G). Let Q be a clique in G such that each vertex w in
Q has a neighbor p(w) and these neighbors form an independent set. If p(w) < w for
all w in Q, then some p(w) is adjacent to all vertices in Q.

THEOREM 5. Suppose G is a perfectly orderable graph and xl, x2,..., x is a per-
fect ordering of V(G). Then for all T-sets the greedy algorithm produces a T-coloring
of G in XT(G) x(G) colors.

Proof. If we use the greedy algorithm to T-color the complete graph K,, we



612 ARUNDHATI RAYCHAUDHURI

shall use m different colors, say 1 OZl < 0/2 < < OZm. Now if we apply the
greedy algorithm to T-color the vertices of a perfectly orderable graph G (for which
x(G) m) using the order Xl,X2,... ,x., we shall show (by induction on IV(G)I v)
that we use at most the colors 1, c2,...,

Clearly f(xl) 1. Suppose that the assertion is true for all perfectly orderable
graphs G with IV(G)I < v. Take such a graph with ]V(G)] v and T-color its vertices
using the greedy algorithm. Consider the vertex x. Let Z’ {x in {Xl,X2,..., X-l}:
x is adjacent to x and x is of color ci}, 1,..., m. If X’ is b for any i, then the
greedy algorithm will choose the smallest such ai for x. Let us therefore assume
that X for any i 1,...,m. Suppose that zi E X, for 1,...,m. Note
that {zl,z2,...,z,,x} cannot form a clique since in that case w(G) >_ m + 1
X(G) + 1. Therefore suppose that j is the smallest number among 1, 2,..., m such
that {zj,zj+x,...,Zm, X} forms a clique of G. By the preceding remark, j > 1. Let
w be any vertex in {zj,zj+x,... ,Zm, Xv}. Since the colors are assigned by the greedy
algorithm, w must have a neighbor p(w) in G which has been previously colored with
color cj_. Since p(w) was previously colored, the subscript of p(w) < the subscript
of w, i.e., p(w) precedes w in the perfect ordering. Thus {zj,zj+l,...,Zm, X,} is a
clique of G, each of whose members has a neighbor with a vertex labeled less than
that of itself, and these neighbors form an independent set (since they are all colored
with (j-1 and 0 E T). So by Lemma 1 one of these neighbors, say zj-1, is adjacent to
each element of {zj, Zj+l, Zm, Xv }. Thus {zj_ 1, zj, Zj+l,. Zm, x } forms a clique,
which is a contradiction to our assumption that the maximum clique size is m. Thus

X’ must be empty for some i 1, 2,..., n, so that one of the colors
will be available for coloring the vertex x.

Thus if we use the greedy algorithm we shall always T-color (for any T-set) a
perfectly orderable graph G using colors from the set {(1, a2,..., (m}. Since XT(G)
x(G) m, the greedy algorithm uses exactly these colors and achieves a coloring with
XT(G) colors. [3

COROLLARY 5.1. Suppose G is a perfectly orderable graph and x, x2,..., Xv is a
perfect ordering of V(G) and suppose T is either an r-initial set or a k-multiple of s
set. Then the greedy algorithm produces a T-coloring of G of span equal to sPT(G).

Proof. (a) Suppose T is an r-initial set. By Theorem 5, the T-coloring of G
produced by the greedy algorithm has span [(X(G)- 1)r+x(G)]- 1 (x(G)- 1)(r+
1) since it uses the same colors used for T-coloring Kx(a) by the greedy algorithm.
However, by Theorem l(b), sPT(G (x(G) 1)(r + 1) for any G and T an r-initial
set. Thus the span produced by this algorithm equals sPT(G).

(b) Suppose T is a k-multiple of s set. Let us enumerate all the colors in the set
I0,1 t2 I2,1 t3... t3 Is,t (as defined in the proof of Theorem 3) in ascending order. Let
1 al < OZ2 < be such an ordering. These colors are used by the greedy algorithm
to color any complete graph. So by Theorem 5, the T-coloring of G produced by the
greedy algorithm has span ax(a) 1 since the colors used to T-color G are identical
to those used for T-coloring Kx(a) by the greedy algorithm. However, according to
Theorem 3, sPT(G SPT(Kx(G) and by Theorem 2, SPT(Kx(G) Ox(G) 1. Thus
the span produced by this T-coloring spT(G). I-1

Remark. Note that Corollary 5.1 is applicable to chordal graphs, transitively
orientable graphs, and complements of chordal graphs.

We illustrate Corollary 5.1 on Fig. 3 where we show a perfectly orderable graph G
with an ordering a < b < c < d of V(G) which is not an admissible order. If T {0, 2},
then the T-coloring of G produced by the greedy algorithm using this ordering has
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(a) a < b < c < d, not an admissible order,
gives a span of 4. a c

1 2
d b
5 1

(b) a < c < d < b, am. admissible order,
gives a span of 1.

G

a c d b
1 2 1 2

FIG. 3. T-coloring of G by greedy algorithm for T {0, 2} using two orders.

span equal to 4. However, the greedy algorithm on the ordering a < c < d < b, which
is an admissible order, would give a T-coloring of span 1 sPT(G).

5. Concluding remarks. It has been shown that for any k-multiple of s T-set
and any complete graph, the greedy algorithm leads to a T-coloring of minimum span
with any ordering of the vertex set. The same is true for a perfectly orderable graph
with a perfect ordering of the vertex set. For any other G and a k-multiple of s T-set,
as long as x(G) is known, we can find a T-coloring of minimum span. A constructive
procedure is given for such a T-coloring in the proof of Theorem 3.

Acknowledgments. The author thanks the reviewers for their very helpful com-
ments and suggestions. The author also thanks her thesis advisor, Professor F. S.
Roberts, for his guidance and The College of Staten Island for partial research sup-
port.
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Abstract. A structure theorem is proved for the class of graphs of bounded average genus,
which leads to a linear-time algorithm for isomorphism of such graphs.
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1. Introduction. The problem of deciding whether two given finite graphs are
isomorphic is known as the graph isomorphism problem. At present there is no known
algorithm for determining if two arbitrary graphs are isomorphic with a running time
that is asymptotically less than exponential. Finding the complexity of this problem
remains an open problem on the list of Garey and Johnson [8].

It is known that for a few restricted classes of graphs, the isomorphism prob-
lem can be solved in polynomial time. Hopcroft and Tarjan [14] gave a linear-time
algorithm for tree isomorphism and an O(n log n) time algorithm for planar graph
isomorphism. A linear-time algorithm for isomorphism of planar graphs was later
obtained by nopcroft and Wong [15]. Filotti and Mayer [6] demonstrated that, for
every genus graph, there is a polynomial-time algorithm whose degree rises with the
genus. Furst, Hopcroft, and Luks [7] gave a subexponential-time algorithm for 3-
regular graph isomorphism. Luks [16] improved this to show that for any fixed value
of maximum valence, there is a polynomial-time algorithm.

A topological approach has recently been suggested by Gross and Furst [9] to solve
the graph isomorphism problem with a probabilistic algorithm. They define a hier-
archy of increasingly large topological invariants of isomorphism or homeomorphism
type from which one might extract a polynomial-sized sample. Average genus is at
the low end of this hierarchy. Gross and Tucker [13] demonstrated that "stratified
graphs," which are further up in the hierarchy, are actually a complete invariant of
homeomorphism type. Chen and Gross [1]-[5] studied the average genus of a graph
for potential applicability to isomorphism testing and showed that a given value of av-
erage genus is shared by at most finitely many nonhomeomorphic cutedge-free graphs.
Therefore, the average genus of graphs can be a possible criterion, perhaps combined
with some other graph invariants, for graph isomorphism candidacy.

The present paper describes an initial effort at combining topological invariants
with combinatorial analysis to design efficient graph isomorphism algorithms. We
consider the class of graphs whose average genus is bounded by a fixed constant.
Interesting graph classes of bounded average genus include trees, cactuses, necklaces,
and many others. In particular, there are infinitely many nonplanar graphs that have
bounded average genus. In fact, for each fixed integer g, there are infinitely many
graphs of average genus less than 2g whose minimum genus equals g.

By strengthening the techniques recently developed in topological graph theory,
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specifically, those in [2]-[5], we are able to sharpen some of the results in those papers
(occasional corollaries are repeated when they follow immediately from the sharpened
theorems). These sharpened results are then used to prove that all graphs of bounded
average genus share only finitely many nonhomeomorphic "frames." Therefore, two
graphs of bounded average genus are isomorphic if and only if their frames are iso-
morphic and the distributions of their remaining edges on the frames are identical.
This leads to a linear-time algorithm for isomorphism of graphs of bounded average
genus.

We should remark that a polynomial-time algorithm for isomorphism of graphs of
bounded average genus is implied by the algorithm of Filotti and Mayer [6]. Indeed,
the average genus of a graph is at least as large as its minimum genus. However,
Filotti and Mayer’s algorithm runs in time O(nC’"in), where c > 300 is a constant,
and the degree rises with the minimum genus ’)’min. On the other hand, in the time
complexity of our algorithm, only the multiplicative coefficient increases with the
value of the average genus, and the algorithm always runs in linear time.

The paper consists of five sections. Section 2 contains definitions and some basic
results in topological graph theory. Section 3 proves several lemmas on the relationship
of average genera of a cutedge-free graph and its subgraphs. Section 4 discusses
the structure of cutedge-free graphs whose average genus is bounded. A linear-time
algorithm is presented in 5 for testing isomorphism of graphs of bounded average
genus.

2. Terminology and preliminaries. It is assumed that the reader is somewhat
familiar with topological graph theory, and we briefly review the fundamentals. For
further description, see Gross and Tucker [12] or White [20].

A graph may have multiple adjacencies or self-adjacencies. An edge e of a graph G
is a cutedge if the removal of e will disconnect the graph. A graph is cutedge-free if it
contains no cutedges. An imbedding of a graph on a surface must have the "cellularity
property" that the interior of every region is simply connected. The closed orientable
surface of genus n is denoted Sn.

A rotation at a vertex v is a cyclic permutation of the edge-ends incident on v.
Thus, a d-vMent vertex admits (d- 1)! rotations. A list of rotations, one for each
vertex of the graph, is called a rotation system.

An imbedding of a graph G in an orientable surface induces a rotation system,
as follows: The rotation at vertex v is the cyclic permutation corresponding to the
order in which the edge-ends are traversed in an orientation-preserving tour around
v. Conversely, by the Heffter-Edmonds principle, every rotation system induces a
unique imbedding of G into an orientable surface. The bijectivity of this correspon-
dence implies that the number of different ways to imbed a graph of valence sequence
d1,..., dn into a closed, orientable surface is

n

H(e - 1)!.
i=1

Henceforth, we do not distinguish an imbedding of a graph from its corresponding
rotation system. Given a rotation system R of a graph, we denote by ,(R) the genus
of the corresponding imbedding surface and simply call it "the genus of the rotation
system R."

For any graph G, if the number of imbeddings in the surface Sk is denoted gk,
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FIG. 1. Two necklaces of type (3, 2).

then the sequence

gO gl g2

is called the genus distribution of G. The maximum genus max(G) of G is the largest
integer r such that gr > 0. The average genus of G is defined to be the value

i=o i :_gia)

It is easy to see that both the minimum genus and the maximum genus of a tree
are 0. Therefore, all trees have average genus 0. The following construction, developed
by Klein (see Gross, Klein, and Rieper [10]), gives infinitely many cutedge-free graphs
whose average genus is less than 1.

A necklace of type (d, 0) is a graph N(d,O) (V, E), such that Y (vl, v2,..., V2d},
the vertex v2j-1 is connected by a single edge to the vertex v2j, j 1,..., d, and the
vertex V2j_2 is connected by two multiple edges to the vertex v2y-1, where we let v0
be V2d. A necklace of type (d, s) is the necklace N(d,O) of type (d, 0) plus s self-loops
added to s distinct interior points of those non-multiple edges of N(d,O) (in an arbitrary

The graphs in Fig. 1 are two necklaces of type (3, 2). Although there is a unique
necklace of type (d, 0) up to isomorphism, there is more than one nonisomorphic
necklace of type (d, s) for d > 1 and s > 1.

THEOREM 2.1 ([10]). The average genus of any necklace of type (r,s) is 1-
r )s.
The technique of ear adding is useful in our discussion. We state the result for

the technique as follows. The interested reader is referred to Ringeisen [17] for more
detailed discussion.

Let G be a graph. A simple pathp {u,...,us) is an ear to G if its two
endpoints u and us are vertices of G and none of its interior vertices belong to G.
Suppose that we add the ear p to an imbedding I(G) of G to obtain an imbedding
I(G + p). There are two different cases.

If the ear p is added to the imbedding I(G) so that its two endpoints u and us
are inserted between two corners of one face F in I(G), then the ear p splits the face
F, and the imbedding I(G + p) has the same genus as that of I(G). Moreover, every
vertex of the added ear p has two corners belonging to different faces in the imbedding
I(G + p). On the other hand, if the ear p is added to I(G) so that its endpoints u
and us are inserted between corners of two different faces, then both those faces are
merged into one larger face, and the imbedding I(G + p) has genus one larger than
that of I(G).
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Let G be a subgraph of a graph G. Denote by G G the graph obtained from
G by first deleting all edges in G and then deleting all isolated vertices. A rotation
system R of G is an induced rotation system of a rotation system R of G, if R is
obtained by deleting all edges in G- G (and then deleting all isolated vertices) from
the rotation system R. Let F be the set of rotation systems of G whose induced
rotation system of G is R, and let F and F be the sets of rotation systems of G and
G, respectively.

THEOREM 2.2. The set F is a disjoint union of the sets F over all rotation
systems R of G. Moreover, IF’I IFI IFI for any rotation system R of G.

Proof. Since each rotation system R of G has a unique induced rotation system
of G, two sets F and F are disjoint for two different rotation systems R and R2Rx
of G. Therefore, the set F is a disjoint union of the sets F over all rotation systems
RofG.

Now let V {u,...,us} be the set of vertices of G that are in both G and
G G, and let V2 {v,..., vt} be the set of vertices of G that are not in G. Then
the number of rotation systems of G in the set F, which is equal to the number
of different ways to construct a rotation system of G from R, depends only on the
valences of the vertices of V in the graphs G and G- G and the valence of the
vertices of V2 in the graph G’-G. More precisely, if we denote by val (v) and val2(v)
the valences of the vertex v in the graphs G and G G, respectively, then for each
uk V, the number of ways to construct a rotation at u for the graph G based on

nval2()-i (vall(uk)+ i) and for each vj E V2 the numberthe rotation at uk in R is 11i=0
of ways to construct a rotation at vj for G’ based on R is (val2(vj)-1)!. Consequently,
the number of ways to construct a rotation system of G from R is equal to

(n II (val(u) + i) (val(v)- 1)!
k=l i=0

which is a number independent of the rotation system R. Therefore, all sets I-’, for
R E 1-’, contain the same number of rotation systems of G. Consequently, II"l
Irl. irl for every rotation system

COROLLARY 2.a. The average 9ens of 9raph is not less than the average enus
of any of its subgraphs.

Proof. We follow the notations used in Theorem 2.2. It is easy to see that each
rotation system of G in the set F has genus at least ,(R). By Theorem 2.2,

Ir’l
> E er IrWIn(R)

Ir’l

A graph with two vertices and n edges adjoining them is called a dipole and is
denoted Dn. A graph with one vertex and n self-loops is called a bouquet and is
denoted Bn.

COROLLARY 2.4. A cutedge-free graph that is not a simple cycle has average
genus at least -.

Proof. Every cutedge-free graph G that is not a simple cycle contains either a
subgraph homeomorphic to the bouquet B2 or a subgraph homeomorphic to the dipole
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D3. It is easy to check that %vg(B2) 1/2 and ?avg(D3) 1/2. Thus -)’avg(G) >_ 1/2 by
Corollary 2.3.

Given two disjoint graphs G and H, the bar-amalgamation of G and H is the
result of running a new edge (called the "bar") from a vertex of G to a vertex of H.
The following theorem is a direct consequence of Theorem 5 of Gross and Furst [9].

THEOREM 2.5. The average genus of a bar-amalgamation of two graphs equals
the sum of their average genera.

A maximal cutedge-free subgraph of a connected graph G is called a cutedge-free
component of the graph G. The following slight generalization of Theorem 2.5 can be
easily proved by simple induction.

THEOREM 2.6. The average genus of a connected graph equals the sum of the
average genera of its cutedge-free components.

3. On the average genera of a graph and its subgraphs. We present a few
lemmas concerned with the following problem: Given a graph G and a subgraph H
of G with some particular combinatorial property, what can we say about the values
of the average genus of them?

The beautiful theory of bridges and attachments, as presented by Tutte [18] in
his classic study of graph connectivity, is needed for our discussion in this section. We
slightly modify the terminology used in [19].

Let H be a subgraph of a graph G. An attachment of H in G is a vertex that lies
both in H and in G- H.

If some edge of G- H has both its endpoints in the subgraph H, then it is called
a trivial bridge of G- H. Let W be the (possibly not connected) subgraph of G
obtained by deleting all vertices (and the edges incident on them) in V(H) from G
and let D be a connected component of W. Let B be the subgraph of G obtained
from D by adjoining to it each edge of G with one endpoint in D and one in H,
together with the end-vertex of that edge in H. Then B is called a nontrivial bridge
of G- H. A subgraph B of G is called a bridge of G- H if B is either a trivial bridge
or a nontrivial bridge.

Let B be a bridge of G- H. Then B is a connected subgraph of G. Moreover, a
nontrivial bridge with some of its attachments deleted is also a connected subgraph
of G. These follow directly from the definitions. For further discussion of bridges and
attachments, see Tutte [19].

A graph is smooth if it does not contain 2-valent vertices.
Let H be a subgraph of a graph G. Recall that a simple path P in G- H is

an ear to H, if the endpoints of P are vertices in H and none of the interior vertices
of P are contained in H. An ordered collection [P1, P2,..., Pr] of simple paths in
G- H is called a sequence of ears in G- H if, for 1 _< <_ r, the path Pi is an ear to
H-i- PI +’"-i- Pi-1.

LEMMA 3.1. Let H be a subgraph of a graph G, and let [P, P] be a sequence of
ears in G- H, such that one endpoint of P is at an interior vertex of P. Then

/avg(H + P + P’) >_ %vg(H) + 5"

Proof. Let H H + P, and H H + P + P. Suppose that the two endpoints
of P are v and u, where v is an interior vertex of P.

Given a rotation system R of the graph H, let F be the set of rotation systems
of the graph H whose induced rotation system of H is R. Each rotation system R"
of H in the set F can be obtained by first attaching the path P to the rotation
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system R, resulting in a rotation system R of the graph H, then attaching the path
P to the rotation system R. There are two different cases.

1. The path P merges two different faces of the rotation system R. Then
/(R’) "),(R) + 1. Hence, no matter how we attach the path P’ to the rotation
system R’, we always have -(R") >_ (R’) "(R) + 1.

2. The path P splits a fce of the rotation system R. Then, attaching the path
P to R does not increase the genus. However, the two corners of the vertex v, which
is an interior vertex of the path P, belong to different faces of the resulting rotation
system R. Now we attach the path P to R by inserting its two endpoints to corners
of the vertices v and u in R, respectively. If v u, then for each corner c of the
vertex u in the rotation system R, at least one of the two corners of the vertex v in
R is contained in a face that does not contain the corner c. Therefore, if the endpoint
u of P is inserted to the corner c, then at least one of the two wys to insert the
other endpoint of P to a corner of v makes P merge two different faces in R, thus
increasing the genus by 1. Consequently, in this case, at least half of the ways to
attach the path P to the rotation system R increase the genus by 1. In the other
case, if v u, then in the six ways to attach the simple cycle P to the vertex v in
R, exactly two of them merge two different faces and thereby increase the genus by
1.

Therefore, for each rotation system R of H obtained by attaching the path P
to the rotation system R, at least one third of the rotation systems of H that are
obtained by attaching the path P to R have genus at least (R) + 1. Consequently,
at let one third of the rotation systems in the set F have genus greater than or
equal to (R) + 1. Note that no rotation system in the set F has genus less than
(R).

Let F and F be the sets of rotation systems of the graphs H and H", respectively.
Then

+ + (R")

E er E ,,er 

>

Eer(7(n) + 1/3)

where we hve used the facts that F" is the disjoint union of the sets F over all
R F, and that IF"] ]F]. F for every rotation system R of the subgraph H.

LEMMA 3.2. Let H be a subgraph of a cutedge-ffee smooth graph G such that
G- H contains a nontrivial bridge. Then there is a sequence of two ears [P, P] in
G- H such that

avg(H + P + P’) >_ "avg(H) - 3"

Proof. Suppose that B is a nontrivial bridge of G- H. Since G is cutedge-free,
the bridge B contains a simple path P that is an ear to H. The path P cannot be
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a single edge, since P is putatively contained in the nontriviM bridge B. Moreover,
the graph G contains no 2-valent vertices. Therefore, we must be able to find another
simple path P in B from an interior vertex of the path P to another vertex, which
is either an interior vertex of P or an attachment of the subgraph H, such that no
interior vertex of P lies on H + P. Thus the collection [P, Pq is a sequence of ears
in G- H and the ear P has an endpoint at an interior vertex of P.

By Lemma 3.1, we have

1"avg(H -t- P + P’) >_ /avg(H) + .
A suspended chain C (or simply a chain) of a graph G is a simple path in G such

that all interior vertices of C have valence 2. A suspended chain C of G is maximal
if neither of its end-vertices has valence 2.

Let G be a cutedge-free smooth graph and let H be a subgraph of G. Two trivial
bridges in G-H overlap on a chain C ofH if either they share a common attachment
that is an interior vertex of C, or one of the bridges has two distinct endpoints p and
P2 on the chain C, and the other bridge has an endpoint q between p and p2 on the
chain C such that q p, P2.

LEMMA 3.3. Let H be a subgraph of a cutedge-free smooth graph G such that
G- H contains two trivial.bridges B and B overlapping on a chain C of H. Then

%vg(H + B + B’) _> "avg(H)+ 1/2.
Proof. We first suppose that the bridge B has two distinct endpoints p and p2

on the chain C and that the bridge B has an endpoint q between p and p2 on the
chain C such that q - p, P2. Consider the graph H H- C + B, which is obtained
by deleting the subchain C adjoining p and p2 on the chain C, then adding the edge
B to the resulting graph. It is obvious that the graph H is homeomorphic to the
graph H and H + B + B H’ + C’ + B’. Moreover, [C’, B’] is a sequence of ears
in G- H such that one endpoint q of B is at an interior vertex of the path C. By
Lemma 3.1, we have

"avg(H + B + B’) vg(H’ + C’ + B’)
_> /avg(H’) + 5 /avg(H) + 5"

For the other case, suppose that the two trivial bridges B and B share a common
attachment a that is 2-valent in H. There are three possible subcases:

1. Neither of the bridges B and B is a self-loop;
2. Exactly one of the bridges B and B is a self-loop;
3. Both the bridges B and B are self-loops.
To complete the proof, it suffices to show that in each of these three subcases,

adding the bridges B and B to the subgraph H raises its average genus by at least 5"
The considerations are similar for all three subcases, and we presently provide details
for subcase 3.

Subcase 3. We consider all the ways to extend an arbitrary imbedding of H by
adding first B and then B, and we see that at least one third of them increase the
genus. If the vertex a lies on two faces of the imbedding of H, then two of the six

ways to attach the self-loop B already increase the genus, thereby assuring that the
genus increases for at least one third of the ways to add both B and B. Therefore,
let us suppose that the vertex a lies on only one face of the imbedding of H, so that
none of the six ways of adding self-loop B increases the genus. In four of these six
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Vl Vii T vi2 Via Vr

FIG. 2. The edge B2 splits a face in R2.

imbeddings of H + B, the self-loop B bounds a monogon, and six of the 20 ways to
add self-loop B increase the genus. In the other two imbeddings of H + B, eight of
the 20 ways to add self-loop B increase the genus. Thus, of the 120 ways to add both
B and B’, 40 (i.e., 4.6 + 2.8) increase the genus. [:]

A trivial bridge B in G- H is a T-hanging ear on a maximal chain C of the
subgraph H if one endpoint of B is at an interior vertex of C, whil.e the other endpoint
of B is at a vertex of H that is not an interior vertex of C.

LEMMA 3.4. Let H be a subgraph of a graph G. Suppose that B1, B2, and B3 are
three T-hanging ears on a maximal chain C of H such that no two of them overlap
on C. Then

7avg(H - B1 - B2 + B3)

_
7avg(H) - .Proof. Suppose that C VlV2... yr. Since the bridges B1, B2, and B3 do not

overlap, we can suppose, without loss of generality, that vl, v2, and v are the three
endpoints of B1, B2, and B3 on the chain C, respectively, with 1 < i < i2 < i3 ( r.
Let H2 HWB2, H12 H+B+B2, H23 HWB2WB3, and H123 H+BI-B2WB3.

Let FR denote the set of rotation systems of H123 whose induced rotation system
of H is R. Every rotation system in the set FR can be obtained by attaching the
three edges B, B2, and B3 to the rotation system R.

For any rotation system R of H, since every interior vertex of C is 2-valent in H,
the chain C gives rise to two directed sides

such that each of the directed sides is a subwalk of the boundary of a face in the
rotation system R. Now attaching the edge B2 to R results in a rotation system R2
of H2. If B2 merges two different faces in R, then (R2) 7(R) + 1. Therefore, an
arbitrary way of attaching the edges B1 and B3 to R2 results in a rotation system
R123 of H123, such that ")’(R123)

_
’(R2) (R) + 1.

For the other case, suppose that B2 splits a face in R. Without loss of generality,
we suppose that one endpoint of B2 is inserted to vi from the directed side C__. and
the other endpoint of B2 is u. See Fig. 2. Since the two sides of B2 appear in different
faces of the resulting rotation system R2 of H2, the two walks v... vi.., vi.u and
uvi..., vi.., vr are subwalks of boundaries of different faces of R2. Consequently, in
the rotation system R2, there are a corner c of the vertex vi and a corner c3 of the
vertex vi such that c and c3 belong to different faces. On the other hand, since the
bridge B2 is a T-hanging ear on the chain C, the vertex u is not an interior vertex of
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the chain C. Therefore, the other directed side C_ (yr... v3 v..., vl Vl) of
the chain C is still a subwalk of a face boundary in the rotation system R2. Thus the
other corner c of the vertex vii and the other corner c of the vertex vi3 belong to
the same face. Therefore, at least one of the vertices v and v has its two corners
belonging to different faces in the rotation system R2. Without loss of generality,
suppose that the two corners Cl and c of v belong to different faces in R2 (the case
that the two corners of vi belong to different faces can be proved similarly). Then,
as we analyzed in the proof of Lemma3.1, at least half of the ways to attach B1 to

R2 increase the genus by 1. Because arbitrarily attaching the edge B3 then does not
decrease the genus, we conclude that at least half of the ways to attach the edges B1
and B to the rotation system R2 result in a rotation system R123 of H123 satisfying

> +
Therefore, at least half of the rotation systems in the set FR have genus at least

,(R) + 1 (and no rotation systems in FR have genus less than /(R)).
Now, by a calculation completely similar to that in the proof of Lemma 3.1, we

are able to conclude that

> + 1/2.
4. Cutedge-free graphs of bounded average genus. We recall that a dipole

Dn is a graph with two vertices and n edges adjoining them, and a bouquet Bn is a

graph with one vertex and n self-loops.
nLEMMA 4.1. For every integer n _> 3, 3’avg(Dn) _> .

Proof. In Chen and Gross [2], it was proved that

n (Hn+l +(_1)n
1

7avg(Dn) 2’ 2n(n + 1)

Ek---1 "for every integer n >_ 1, where Hn is the harmonic number defined by Hn n

n Moreover,For the values 3 < n < 6, it can be easily checked that ")’avg(Dn) > .
since, for n >_ 7, we have _> H+1/2 + (-1)n/(2n(n + 1)), thus 3’avg(Dn) _> for
n>7.

LEMMA 4.2. For every integer n >_ 2, "vg(B) >_ n/6.
Proof. Let g,(n) be the number of imbeddings of the bouquet Bn in the surface

S,. Gross, Robbins, and Tucker [11] have shown that

(n + 1)gm(n) 4(2n- 1)(2n- 3)(n- 1)2(n 2)gm-l(n- 2)
(1)

+4(2n- 1)(n- 1)gm(n- 1)

with the boundary conditions

gm(n)=O if m<0 or n<0,

g0(0) g0(1) 1 and gin(O) gin(l) 0 for m > 0,

g0(2)=4, g1(2)=2, gm(2)=0 forrn>l.

Moreover, by Xuong’s theorem on the maximum genus of a graph [21], it is easy to
see that ")’max(Bn) Ymax(Bn-2) + 1 for all n >_ 3.

From (1), we have

(n + 1)g0(n)= 4(2n- 1)In- 1)g0(n- 1).
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Thus it is easy to check, by induction, that

(2) go(n) 2n(2n- 1)! (2n- 1)!< for n > 3.
(n + 1)1 3

n for n > 2. The inequality can be easily checked forNow we prove %vg (Bn) >_ -g
the case where n 2, 3, so we suppose that n >_ 4. We have

"yavg (Bn) i=1 igi(n) EM(n) (i 1)gi(?’t)q--i--1 A.i-"l gi(n)
(2n- i)! (2n- 1)!

where we have abbreviated -Ymax(Bn) by M(n). By (2), we have

Ehl(n) 2i= gi(n)
=1-

go(n) >_
(2n- 1)! (2n- 1)! 3"

Moreover, by (1), we have

(n + 1)gin(n) > 4(2n- 1)(2n- 3)(n- 1)2(n- 2)gm_(n- 2).

Therefore,

%vg(Bn)>
4(2n- 1)(2n- 3)(n- 1)2(n- 2)pM(n)(i- 1)gi-l(n- 2)

(n + 1)(2n- 1)!
4(2n- 1)(2n- 3)(n- 1)2(n- 2),M(,-2)z-i=0 igi(n- 2) 2

(n + 1)(2n-- 1)! 3
n-1 2
n + 1%vg(B,-2) + .

2
3

Here we used the facts that M(n) M(n- 2) + 1 and that the number of rotation
systems of Bn-2 is (2n- 5)!. By the inductive hypothesis, %vg(B-2) _> (n- 2)/6.
Therefore,

%vg(Bn). > (n 1)(n 2) 2 n

6(n + 1) + > "
We remark that Chen and Gross [2] showed that for every sufficiently large number

nn and %vg (B,) >n, "Yavg(Dn) >_ g
In the rest of this paper, we let A > 0 be a fixed reM number. Denote by FA]

the 8mMlest integer that is not le88 than A.
LEMMA 4.3. Let G be a cute@e-free smooth graph of average genus less than A.

Then G has a cutedge-free subgraph H with the following properties: (1) H has at
most 12[A] vertices of valence greater than 2, and at most 18/A] different maximal
chains; (2) all bridges of G- H are trivial bridges; (3) no two trivial bridges of G- H
overlap on a chain of H; and (4) no three T-hanging ears are on a single maximal
chain of H.

Proof. We begin by selecting a subgraph H0 of G that is a simple cycle. Then we
construct a sequence of cutedge-free subgraphs Hi, 0, 1, 2,..., of G inductively.
Suppose that we have obtained a subgraph Hi of G. We augment Hi in any one of
the following three ways, if any of them is applicable, to produce the subgraph Hi+l.
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1. If there is a nontrivial bridge in G- Hi, then by Lemma 3.2, we can find a
sequence [Pi, P] of two ears in G- Hi such that P has an endpoint on an interior
vertex of Pi. We let Hi+l Hi + Pi + P.

2. If there are two trivial bridges Bi and B in G- Hi that overlap on a chain
of Hi, then we let Hi+l Hi + Bi + B.

3. If there are three T-hanging ears Bi, B, and B in G-Hi on a maximal chain
C of Hi such that no two of them overlap on C, then we let Hi+ Hi + Bi +B+B.

Since each Hi constructed above is a subgraph of the graph G, it follows from
Corollary 2.3 that the average genus of Hi is less than A. Moreover, by Lemma 3.1,
Lemma 3.3, and Lemma 3.4, the increment in average genus from Hi to Hi+ is
at least 1/2. Therefore, there is an index I, I < 3[A], such that none of the above
conditions apply to the graph Hx.

Now we count the number of vertices of valence greater than 2 and the number
of different maximal chains in HI. The graph HI is obtained by adding a sequence
S of ears in G- H0 to the simple cycle H0. In case 1 and case 2, adding two ears
increases the average genus by at least 1/2 (Lemma 3.1 and Lemma 3.3), and in case 3,
adding three ears increases the average genus by at least 1/2 (Lemma 3.4). Therefore,
on average, adding an ear in the sequence S increases the average genus by at least- Consequently, the sequence S consists of at most 6[A] ears, since the average6"
genus of the graph HI is less than A. Because adding an ear to a graph increases the
number of vertices of valence greater than 2 by at most 2 and increases the number
of maximal chains by at most 3, and the graph HI is obtained by adding at most
6[A] ears to the simple cycle H0, we conclude that the graph HI contains at most
2.6[A] 12[A] vertices of valence greater than 2 and at most 3.6[A] 18[A]
different maximal chains. D

Two multiple edges e and e2 in a graph G are called a pair of twin multiple edges,
if e and e2 are the only edges adjoining two distinct 3-valent vertices in G.

Let G be a graph and let H be a cutedge-free subgraph of G such that all bridges
in G H are trivial bridges. A trivial bridge e in G H is a U-hanging ear on a
maximal chain C in H, if e does not overlap any other edges in G- H on C, and
either the two endpoints of e are identical and located at an interior vertex of C, or
the two endpoints of e are located at two adjacent interior vertices of C. We observe
that a U-hanging ear in G-H is either a self-loop located at a vertex that has valence
4 in the graph G, or an edge in a pair of twin multiple edges in the graph G.

DEFINITION 4.4. Let G be a cutedge-free graph. A frame F(G) of G is a graph
obtained in the following way:

1. If e is a self-loop in G whose endpoint is of valence 4, then delete e. Reiterate
until no such self-loops remain;

2. For each pair of twin multiple edges in G, delete either one of the twin edges.
Reiterate until no twin multiple edges remain.

In other words, a frame F(G) of G is obtained from G by deleting a maximum
set of U-hanging ears. We observe that a frame of G is not uniquely defined since,
for a pair of twin multiple edges, either of them can be contained in a frame of G.
However, all frames of G are homeomorphic and have the same number of different
maximal chains.

THEOREM 4.5. Let G be a cutedge-free smooth graph of average genus less than
A. Then any frame F(G) of G contains at most (8[A)3 different maximal chains.

Proof. By Lemma 4.3, we can find a cutedge-free subgraph H of G, which has
c <_ 12[A vertices of valence greater than 2 and <_ 18[A different maximal chains,
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such that all bridges in G- H are trivial bridges, no two trivial bridges in G- H
overlap on a chain of H, and no three T-hanging ears are on a single maximal chain
of H. Therefore, every edge e in G- H must lie in one of the following four possible
classes:

1. e is a T-hanging ear on a maximal chain in H;
2. e is a self-loop at a vertex of valence greater than 2 in H;
3. e has its two endpoints at two different vertices of valence greater than 2 in

H;
4. e is a U-hanging ear in G- H.

We now consider how many edges in G- H can belong to classes 1-3.
By the construction of the graph H, there are at most two T-hanging ears on

each maximal chain in H. Therefore, there are at most 2. _< 36[A edges in G- H
that belong to class 1.

Let the vertices of valence greater than 2 in H be ul, u2, us. Suppose that
there are h(ui) self-loops in G-H located at the vertex ui. Without loss of generality,
suppose that h(u) >_ 2 for 1,2,...,c’, and h(uj) _< 1 for j ’ + 1,...,a.
Consider the subgraph G that consists of a spanning tree of G and the self-loops
in G- H located at vertices of valence greater than 2 in H. By Theorem 2.6, the
average genus of the graph G is the sum of the average genera of the a bouquets
Bh(ul), Bh(u2), Bh(u,), where the bouquet Bh(ui) consists of the vertex u and the
h(u) self-loops in G- H that are located at u. Therefore, we have

7avg(G’) 7avg(Bh(,)) + %vg(Bh(2)) +"" + 7avg(Bh())
> %v(B()) + (B()) +... + %(B(o,))
> h(ul) + h(u2) +... + h(u,,)

6

n for n > 2 has been used. Now sincewhere the result of Lemma 4.2 that %vg(Bn) _>
G’ is a subgraph of G, by Corollary 2.3, %vg(G’) < A. Therefore, the total number
of edges in class 2 is (note h(uj) <_ 1 for j a’ + 1,..., c0

Finally, for each pair of vertices of valence greater than 2 in the subgraph H,
the number h of multiple edges that can be attached is at most 6[A]. Otherwise,
what would result is a supergraph G" of the dipole Dh, whose average genus is, by
Lemma 4.1, at least , which is greater then [A. This would contradict Corollary 2.3,
since the graph G" is a subgraph of the graph G. Therefore, there are at most
6[A] () _< 432[A] 36[A] edges in class 3.

Let H be the subgraph of G obtained by adding to the graph H all edges in
G-H that are in classes 1-3. We calculate the number of maximal chains in H. The
graph H’ is obtained by adding at most 36[A] edges in class 1, at most 18[A edges
in class 2, and at most 432[A3- 36[A] 2 edges in class 3. Since there are at most
two T-hanging ears on each maximal chain of H, at most two new vertices of valence
greater than 2 are created on each maximal chain of H, thus each maximal chain
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of H is subdivided into at most three maximal chains in the graph H. Moreover,
each edge in classes 1-3 becomes a maximal chain in H. Therefore, the number of
different maximal chains in the graph H is less than or equal to

3 + 36[A] + 18[A + (432A 3 36[A] 2)
_

504[A] 3 < (SFA1).
A > 0, thus [A] k 1 is used here.

By the construction of the graph H, all edges in G- H are U-hanging ears in
G- H. Since a U-hanging ear e in G- H does not overlap any other edge in G- H,
it follows that the edge e is also a U-hanging ear in G- H. Therefore, all edges in
G- H are U-hanging ears in G- H. Since a frame of G is a subgraph of G obtained
by deleting a maximum set of U-hanging ears, we conclude that the graph H contains
a subgraph F that is a frame of G. Thus the number of different maximal chains of
F is also less than (8rA]) 3. The theorem is proved, because all frames of G have the
same number of different maximal chains.

5. The algorithm. We present in this section a linear-time algorithm for iso-
morphism of graphs of bounded average genus.

Given a cutedge-free smooth graph G, let F(G) be a frame of G. All edges in
G- F(G) are U-hanging ears. There are two kinds of U-hanging ears: self-loops
and edges with two distinct endpoints (they are called closed ears and open ears,
respectively). Since no two U-hanging ears in G-F(G) overlap on a maximal chain of
F(G), the U-hanging ears on a maximal chain C of F(G) can be ordered (el, e2,..., er)
in such a way that if we travel the maximal chain C from one end-vertex to the other
end-vertex, we encounter the endpoints of el first, then the endpoints of e.,..., and
finally the endpoints of er. Call the ordered sequence (x(el),x(e2),... ,x(e)) the
distribution of U-hanging ears on the maximal chain C, where x(ei) "open," if ei
is an open ear, and x(ei) "closed," if ei is a closed ear.

Let G1 and G2 be two graphs, and let CF be an isomorphism from a frame F(G1)
of G1 to a frame F(G2) of G2, such that for every maximal chain C of F(GI), the
distribution of U-hanging ears on C is identical to the distribution of U-hanging ears
on CF(C). Then, obviously the isomorphism bF can be extended to an isomorphism
from G1 to G2 in the following way: (e) CF(e) for every edge e in F(G1). For each
maximal chain C of F(G), if the distributions of U-hanging ears on C and CF(C)
are

(X(el),x(e2),...,X(er)) and (x(el),x(e2),...,x(e)),

i=1 r.respectively, where x(ei) x(e) for 1,...,r, then let (ei) ei,
The isomorphism from G1 to G2 is said to be induced by the isomorphism CF from
F(G) to F(G2). It is easy to see that an isomorphism from G to G2 is induced
by an isomorphism CF from F(G) to F(G2) if and only if CF is the restriction of
on F(G1).

THEOREM 5.1. Let F(GI) and F(G2) be two arbitrary frames of two graphs
G1 and G2, respectively. If the graphs G and G2 are isomorphic, then there is an

isomorphism from GI to G2 that is induced by an isomorphism from F(G) to F(G2).
Proof. Let be an isomorphism from G to G2. We construct an isomorphism ’from G and G2, such that ’ is induced by an isomorphism from F(G) to F(G2).
For any edge e of G1 such that either e E F(G1) and (e) E F(G2), or e F(G)

and (e) F(G2), we let ’(e) (e). If, for an edge e of G, either e F(G) and
(e) F(G2), or e F(G) and (e) F(G2), then e must be an edge in a pair
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of twin multiple edges of G1. Let e be the partner of e in G1. Then we also have
either e’ F(G) and (e’) e F(G2), or e’ e F(G) and (e’) F(G2). So we let

’ (e) (e’) and ’ (e’) (e).
It is easy to see that is also an isomorphism from G and G2. Moreover, by

the construction of ’, an edge e in G is in F(GI) if and only if ’(e) is in F(G2).
Therefore, the restriction of ’ on the frame F(G) is an isomorphism from
to F(G2). Consequently, is an isomorphism from G to G2 that is induced by the
isomorphism from F(G) to F(G2). [:]

Let G1 and G2 be two graphs of average genus less than A. We first suppose that
both graphs G and (2 are cutedge free and smooth. The following algorithm is used
to test the isomorphism of G and G2.

ALGORITHM 1.
1. Construct two arbitrary frames F(G) and F(G2) of G and G2, respectively.
2. For each isomorphism CF from F(GI) to F(G2), do step 3.
3. If, for every maximal chain C of F(G), the distribution of U-hanging ears

on C equals the distribution of U-hanging ears on CF(C), then the graphs
and G2 are isomorphic. Construct the isomorphism from G to G2 induced
by the isomorphism el.

We remark that Algorithm 1 not only tests the isomorphism of two given graphs,
but also lists all isomorphisms of the two graphs that are induced by isomorphisms of
the frames F(G) and F(G2).

By Theorem 5.1, if G1 and G2 are isomorphic, then there is an isomorphism from
G1 to G2 that is induced by an isomorphism from F(GI) to F(G2). Conversely, if
there is an isomorphism of G1 and (2 that is induced by an isomorphism of the frames
F(G) and F(G2), then of course G1 and G2 are isomorphic. Therefore, Algorithm 1
correctly tests the isomorphism of two cutedge-free smooth graphs G1 and G2.

Now we discuss the time complexity of the algorithm. The frames F(G) and
F(G2) can easily be constructed in linear time, assuming a reasonable encoding of
the graphs. Moreover, given an isomorphism Cf from F(G) to F(G2), it is possible
in linear time to check for every maximal chain C of F(G) that the distribution of
U-hanging ears on C is identical to the distribution of U-hanging ears on CF(C), and
then to construct the induced isomorphism from G1 to G2. Finally, since the graphs
G and G2 have average genus less than A, it follows from Theorem 4.5 that each of
the frames F(G) and F(G2) has at most (8[A)3 different maximal chains. Since an
isomorphism from F(G) to F(G2) must map a maximal chain of F(G) to a maximal
chain of F(G2), we can list all isomorphisms from F(GI) to F(G2) by systematically
enumerating all possible matchings from the maximal chains of F(G) to the maximal
chains of F(G2). Since there are at most ((8[A])3)! different such matchings, step 3
is executed at most (8[A)3)! times. In conclusion, Algorithm 1 runs in linear time.

Simple modifications on Algorithm 1 result in a linear-time algorithm for iso-
morphism of cutedge-free graphs, which are not necessarily smooth. We sketch the
modifications here and leave the details to the interested reader.

Given two cutedge-free graphs G and G2, we first construct two smooth graphs
W and W2 that are obtained from G and G2, respectively, by smoothing all 2-valent
vertices. Moreover, we also assign a "weight" to each edge in W1 and W2, which equals
the number of interior vertices of the corresponding maximal chain in G and G2. It
is easy to see that the graphs G1 and (2 are isomorphic if and only if there is an
isomorphism from W to W2, regarded as unweighted graphs, such that every edge in
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W1 is mapped to an edge in W2 with the same weight.
To construct a frame F(W) of a weighted graph W, we delete all self-loops in W

that are located at a 4-valent vertex of W, and for each pair of twin multiple edges
in W, we delete the one with the smaller weight (if the two twin edges have the same
weight, delete either one).

The distribution of U-hanging ears in W- F(W) on a maximal chain C of F(W)
is defined to be an ordered list

where x(ei) "open" or "closed" depending on whether ei is an open or a closed ear,
and w(e) is the weight of the edge e such that, if we travel the maximal chain C
from one end-vertex to the other end-vertex, we encounter the endpoints of the edge
el first, then the endpoints of the edge e2, and so on.

With these modifications, it is easy to see that Algorithm 1 still runs in linear
time, and tests the isomorphism of cutedge-free, smooth, and weighted graphs of
average genus less than A. It thereby tests the isomorphism of cutedge-free graphs of
average genus less than A.

Finally, we discuss the case in which the graphs G and G2 are not necessarily
cutedge free.

By Theorem 2.6, the average genus of a graph G equals the sum of the average
genera of its cutedge-free components. Therefore, if the average genus of G is less
than A, then the average genus of every cutedge-free component of G is also less
than A. Moreover, if a cutedge-free component D of G is not a simple cycle (call D a
noncycle cutedge-free component of G), then, by Corollary 2.4, the average genus of D

Consequently, the graph G contains at most 3[A] noncycle cutedge-freeis at least .
components.

The idea is to replace each noncycle cutedge-free component of G1 and G2 by a
planar graph, so that G] and G2 are isomorphic if and only if the two resulting planar
graphs are isomorphic.

A wheel W(c; vl,..., vs) consists of an s-cycle C8 (v,..., vs), together with an
extra vertex c joined to the s vertices of C8 by s edges. The vertex c is called the
center of the wheel. A vertex v of a cutedge-free component D of a graph G is called
an outer vertex of D, if v is an endpoint of some cutedge of G.

Let GI and G2 be two graphs of average genus less than A.

ALGORITHM 2.
1. Find all noncycle cutedge-free components of G] and G2. If the number of

noncycle cutedge-free components of G1 is not equal to that of G, G1 and
G2 are not isomorphic. Otherwise, let

Dx,D2,...,Dk and D,D2,...,D

be the noncycle cutedge-free components of G and G2, respectively. Con-
struct a frame F(D) for D and a frame F(D) for D, i= 1,..., k.
For each permutation r of (1,..., k) and each list (1, 2,..., Ck), where i is
an isomorphism from D() to D induced by an isomorphism from F(D())
to F(D), 1,...,k, do step 3 and step 4.
For i 1,2,... ,k, suppose that v,l,... ,v,t are the outer vertices of Dr(i),
and that v,,..., vi,t are the outer vertices of D, such that i(vi,.i) vi,j,
for j 1,..., t. Replace the cutedge-free component D(i) in G1 by a wheel
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FIG. 3. Replacing a noncycle cutedge-free component by a wheel.

W(ci;v,l,... ,v,t), and replace the cutedge-free component D in G2 by
wheel W(c; v,1,. v,t), where c and c are new introduced vertices (see Fig.
3 for illustration of this transformation, where vl,..., v4 are outer vertices of
the noncycle cutedge-free component, and el, e7 are cutedges incident
on the outer vertices). Moreover, add 2i self-loops to each of the centers ci

and add twoadd one self-loop to each of the vertices v,l andand ci,
if and exist. Let theself-loops to each of the vertices v,2 and v,2, v,2 v,2

resulting graphs be H1 and H2, respectively.
If the graphs H1 and H2 are isomorphic, then the graphs G1 and (2 are
isomorphic.

We analyze the algorithm. Since the number of noncycle cutedge-free components
of G, 1, 2, is less than 3[A, then k < 3[A. Therefore, the number of permuta-
tions of (1,..., k) is bounded by a constant that is independent of the size of G1 and
(2. For each permutation r of (1,..., k), the number of different isomorphisms from
D() to D that are induced by isomorphisms from F(D()) to F(D) is bounded

by ((8[A)3)!, for 1,... ,k, as we have discussed in the analysis of Algorithm 1.
Therefore, the number of lists (1, 2,..., Ck), where is an isomorphism from D()
to D induced by an isomorphism from F(D()) to F(D), is also bounded by a con-
stant independent of the size of G1 and G2. Consequently, the loop of steps 3-4 is
executed at most constant many times.

Step 3 can be easily done in linear time. To determine the isomorphism of the
graphs H1 and H2, note that every cutedge-free component of H1 and H2 is planar,
since it is either a wheel plus a few self-loops, or a simple cycle. Therefore, the graphs
H1 and H2 are planar graphs. Using the linear-time algorithm by Hopcroft and Wong
[15], we can test the isomorphism of H1 and H2 in linear time.

Therefore, Algorithm 2 runs in linear time.
To see the correctness of the algorithm, note that if G1 and G2 are isomorphic,

then there is an isomorphism from G1 to G2, and a permutation r of (1, 2,... ,k)
such that, for i 1,..., k, the restriction of on F(D()) is an isomorphism from

F(D()) to F(D). The list (1,...,k) of these isomorphisms will eventually be
found in step 2 of Algorithm 2. Based on this list, we construct a mapping from
H1 to H2 in the following way: For the wheel W(c; vi,1,..., v,t), which corresponds

and maps toto the cutedge-free component D() of G1, maps c to c, v,j

v,t) is the wheel in H2 corresponding to thefor j 1,...,t, where W(c;v,l,.
cutedge-free component D such that v,j (v,j), j 1,..., t. For other vertices
and edges that do not belong to any noncycle cutedge-free component, is identical
with . It is easy to see that is an isomorphism of H1 and H2.
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Conversely, suppose that for some permutation of (1,... ,k), and some list of
isomorphisms (1,..., Ck), where i is an isomorphism from D.(i) to D induced by
an isomorphism from F(D(i)) to F(n), for i 1,... ,k, the graphs Hi and H2
constructed in Algorithm 2 are isomorphic. Let be an isomorphism of H and

v,t) of H andH2. Consider the two wheels W(ci;vi,,...,vi,t) and W(c;vi,1,.
H2, which correspond to the two noncycle cutedge-free components D(i) and D,
respectively. Since the vertices ci and ci are the only vertices in H and in H2, respec-
tively, that have 2i self-loops, the isomorphism must map ci to c. Furthermore,

inthe vertices vi,1 and vi,. are the only two vertices that are adjacent to ci and ci
H and in H2, respectively, and have a single self-loop on them, so must map vi,

Now, by the structure of a wheel, mustto v Similarly, maps vi,2 to vi,2,,.
map vi,j to v,i, for j 3,...,t. Therefore, if we let be the mapping from G1
to G2 that is identical with on the vertices of H that are not the center of the
wheels W(ci;vi,,..., vi,t), i 1,... ,k, and is identical with i on the vertices in the
noncycle cutedge-free component D.(i), for 1,... ,k, then it is easy to see that b
is an isomorphism from G1 to G..
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OPTIMAL PARALLEL ALGORITHMS FOR STRAIGHT-LINE GRID
EMBEDDINGS OF PLANAR GRAPHS*

MING-YANG KAO, MARTIN FORER$, XIN HE, AND BALAJI RAGHAVACHARI

Abstract. A straight-line grid embedding of a planar graph is a drawing of the graph on a plane
where the vertices are located at grid points and the edges are represented by nonintersecting seg-
ments of straight lines joining their incident vertices. Given an n-vertex embedded planar graph with
n >_ 3, a straight-line embedding on a grid of size (n- 2) (n- 2) can be computed deterministically
in O(log n log log n) time with n/log n log log n processors. If randomization is used, the complexity
is improved to O(log n) expected time with the same optimal linear work. These algorithms run on
a parallel random access machine that allows concurrent reads and concurrent writes of the shared
memory and permits an arbitrary processor to succeed in case of a write conflict.

Key words, planar graphs, straight-line grid embeddings, parallel algorithms

AMS subject classifications. 05C10, 05C85, 68Q22, 68Q25, 68R10

1. Introduction. A planar graph is one that can be drawn on a plane where the
vertices are located at points, and the edges are indicated by nonintersecting curves
joining their endpoints [3], [4], [5], [12], [16], [21], [32]. A straight-line grid embedding
of a planar graph is a drawing where the vertices are located at grid points, and each
edge is represented by a segment of a straight line. Such embeddings on reasonably
small grids are very useful in visualizing planar graphs on graphic screens and have
wide applications in CAD/CAM and computer graphics [11], I34].

Wagner [35], Fry [13], and Stein [31] showed that every planar graph has a
straight-line embedding. Since then, many embedding algorithms have been reported
[6], [11], [26], [33]. The earlier ones all suffer from two serious drawbacks that render
them useless in practice. First, they require high-precision real arithmetic relative to
the size of the input graph, and therefore cannot be used even for a graph of moderate
size. Second, in the drawings produced by them, the ratio of the smallest distance to
the largest distance between vertices is often so small that it is extremely difficult to
view those drawings on graphic screens.

In view of these drawbacks, Rosenstiehl and Tarjan [27] posed the problem of
computing a straight-line embedding on a grid of polynomial size. Schnyder [29]
proved that an n-vertex planar graph with n >_ 3 has an embedding on a grid of
size (2n- 4) (2n- 4). Independently, de Fraysseix, Bach, and Pollack [10] showed
that a straight-line embedding on a grid of size (2n 4) (n 2) can be computed
in O(n log n) sequential time. The running time of their algorithm was improved
by Chrobak and Payne [7] to optimal O(n) while the grid size remained the same.
Schnyder [28] further proved the existence of an embedding on a smaller grid of size
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(n- 2) x (n- 2) and gave an algorithm [30] to compute such an embedding in optimal
O(n) sequential time.

In an earlier paper [14], we showed that a straight-line embedding on a grid of size
(n- 2) x (n- 2) can be computed in O(log n log log n) time with n/log n processors on
a parallel random access machine (PRAM). If randomization is used, the complexity
is improved to O(log n) expected time with the same nonoptimal O(n log log n) work.

This paper presents two optimal linear work algorithms for computing straight-
line embeddings on grids of the same small size. We assume that a combinatorial
embedding of the input graph is part of the input. (A combinatorial embedding [3], [4],
[5], [12], [16], [21], [32] is a specification of the exterior boundary and the cyclic order of
the edges incident with each vertex in a drawing of a planar graph.) Our deterministic
algorithm runs in O(log n log log n) time with n/log n log log n processors, and our
randomized algorithm runs in O(logn) expected time with n/logn processors. The
model of parallel computation is a parallel random access machine (Arbitrary-CRCW
PRAM [18]) that allows concurrent reads and concurrent writes of the shared memory,
and permits an arbitrary processor to succeed in case of a write conflict. Currently, the
best parallel algorithm for computing a combinatorial embedding of a planar graph
runs deterministically in O(log n) time with O(n log log n) work, and if randomization
is used, it runs in O(log n) expected time with O(n) work [25].

Our parallel embedding algorithms build upon the sequential embedding algo-
rithm of Schnyder [30]. His algorithm exploits the elegant notion of a realizer of
a planar graph [29]. Intuitively, a realizer is a partition of a triangular embedded
planar graph into three well-structured trees. Given a realizer, a straight-line grid
embedding can be computed, very surprisingly, simply by counting the numbers of
vertices in subtrees and tree paths of the realizer. To find a realizer, suitable edges of
the input graph are contracted one at a time until the graph is of constant size and
has a realizer which can easily be computed. Then, from that realizer, a realizer of
the original input graph can be constructed iteratively by adding back the edges and
vertices lost in the previous contractions. This useful technique of sequential edge
contraction was developed from the works of Wagner [35], Fry [13], Stein [31], and
Kampen [17].

To compute a straight-line grid embedding in parallel, we first show that once
a realizer is obtained, a desired embedding can be found with the optimal linear
work by processing the trees of the realizer with classic tree-contraction techniques
[1], [2], [8], [19], [23], [24]. Next, to compute a realizer, we parallelize the edge
contraction technique mentioned above. Note that individually contractible edges
need not be simultaneously contractible. Our parallelization techniques make use
of fundamental properties of planar graphs. The properties ensure that a constant
fraction of the edges in a planar graph are suitable for simultaneous contractions. By
contracting such a large set of edges, the size of the input graph can be reduced by a
constant fraction. Proceeding recursively, in O(log n) iterations of contracting edges,
the input graph becomes a constant-size graph and has a trivial realizer. That realizer
is then expanded into one for the original input graph in O(log n) iterations of undoing
the previous edge contractions. The O(log n) bound on the number of iterations is
sufficient for obtaining an NC algorithm. However, we wish to find a realizer with the
optimal O(n) work. To this end, we develop several subroutines that compute a large
set of simultaneously contractible edges with various degrees of efficiency, sometimes
in constant time. Using load-balancing techniques, we can organize these subroutines
to compute a straight-line embedding on a grid of size (n- 2) x (n- 2) within the



634 KAO, FORER, HE, AND RAGHAVACHARI

desired O(n) total work.
The above discussion has highlighted the major ideas used in our parallel embed-

ding algorithms. We describe the algorithms as follows. Section 2 reviews the notion
of a realizer of a planar graph. It also shows how to compute a straight-line grid
embedding from a given realizer and outlines our parallel algorithms for computing
straight-line grid embeddings.

The key contribution of our parallel algorithms is finding a realizer with the
optimal O(n) work. Section 3 presents an algorithm that computes a realizer by
contracting simultaneously contractible edges. Section 4 shows how to compute a
large number of simultaneously contractible edges. Section 5 combines the results
of the preceding two sections to compute a realizer with the desired O(n) work.
Section 6 concludes this paper by proving that a straight-line embedding on a grid of
size (n- 2) (n- 2) can be found, indeed, within the claimed O(n) work bound.

2. Computing a straight-line grid embedding from a realizer. Through-
out this paper, let G denote an n-vertex triangular embedded planar graph with n >_ 4.
For simplicity, our discussion of how to compute a desired grid embedding focuses on
such G and deals with the general case only in 6.

Let vl, v2, v3 be the three exterior vertices of G in the clockwise order. A realizer
of G is a partition of the interior edges into three sets T1, T2, T3, together with an
orientation of the interior edges such that the following properties hold:

1. For each i E {1, 2, 3}, all interior edges incident to the exterior vertex vi are
in Ti and are directed toward vi.

2. For each interior vertex u in G, the edges incident with u appear around u
clockwise in the following pattern"

one edge in T1 leaves u; a set (maybe empty) of edges in T3 enters u;
one edge in T2 leaves u; a set (maybe empty) of edges in T1 enters u;
one edge in T3 leaves u; a set (maybe empty) of edges in T2 enters u.

An example of a realizer is given in Fig. 1. The next theorem makes the notion
of a realizer widely applicable and gives some useful tree structures of a realizer.

THEOREM 2.1 (see Schnyder [30]). Every triangular embedded planar graph has
a realizer. For each i E { 1, 2, 3}, the edge subset T forms a tree in G that is rooted at
vi with all its edges pointing toward the root and consists of all interior vertices and
exactly one exterior vertex vi.

A straight-line grid embedding can be computed with the following formulas.
For each {1,2, 3} and for each vertex u in Ti,

let Pi(u) be the directed tree path in Ti from u to the root vi of Ti;
let pi(u) be the number of vertices in the path Pi(u).

For each i {1,2,3},
for each vertex u in Ti, let ti(u) be the number of vertices in the subtree of
Ti rooted at u, and for each exterior vertex vj vi, let ti(vj) 1;
for each interior vertex u, let

+ t (x) +
xEPi- (u) xEP+ (u)

where Po(u) denotes P3(u), and P4(u) denotes P1 (u).
The following theorem is the core of Schnyder’s algorithm for straight-line grid

embeddings.
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FIG. 1. Example of a realizer.

THEOREM 2.2 (see Schnyder [30]). A straight-line embedding of G on a (n-
2) (n- 2) grid is given by assigning each interior vertex u to the grid point (r2(u)
pl (u), rl (u) p3 (u)) and assigning v, v2, v3 to (1, n 2), (n 2, 0), (0, 1), respectively.

Figure 2 shows an example of an embedding given by the above theorem. Fig-
ure 3 outlines Schnyder’s sequential embedding algorithm based on the theorem. Our
parallel algorithms implement this algorithm. It assumes that the combinatorial em-
bedding of G is encoded by a doubly linked circular list of the edges incident with
each vertex in the clockwise order. The most difficult part of our parallel algorithms
is in showing that at step 1 in Fig. 3, a realizer of G can be computed efficiently. With
a realizer found, the integers p(u), t(u), r(u) can be computed in step 2 in O(log n)
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3

FIG. 2. Example of a straight-line embedding.

Input: G.
Output: a straight-line embedding of G on a grid of size (n 2) (n 2).
begin

1. Find a realizer T1, T2, T3 of G.
2. For all interior vertices u, compute pi(u), ti(u), ri(u) for 1, 2, 3.
3. For all interior vertices u, assign u to (r2(u)- p(u), rl (u)- p3(u)).
4. Assign v, v2, v3 to (1, n 2), (n 2, 0), (0, 1), respectively.

end.

FIG. 3. Computing a straight-line grid embedding.

time with n/logn processors by processing T1, T2, T3 with tree contraction [1], [2],
[8], [19], [23], [24]. These integers can then be used to compute the coordinates of
the vertices in Steps 3 and 4 in O(1) time with n processors. The rest of the paper
focuses on finding a realizer of G efficiently in parallel with O(n) work.

3. Computing a realizer by contracting a large set of edges. In 3.1, we
generalize Kampen’s notion of a contractible edge [17] and analyze the conditions
under which several edges can be contracted simultaneously. In 3.2, we show how to
undo these contractions to compute a realizer.

3.1. Two types of simultaneously contractible edge sets. An edge e

{u, v} of G is contractible if e is an interior edge and the two endpoints of e have
exactly two common neighbors. Let x and y be the two common neighbors of u and
v. The contraction of e is performed by merging u and v into a new vertex z. The
edges {u,x} and {v,x} are replaced by a single edge {z,x}. Similarly {u,y} and
{v, y} are replaced by {z, y}. All other neighbors of u and v are made adjacent to z.
Note that the graph stays triangular after the contraction.

Next, we introduce two types of sets of contractible edges that are suitable for
efficient parallel contraction.

An independent set of an undirected graph is a set of vertices that are not adjacent
to one another. Let S be a set of contractible edges of G. S is type-A compatible if
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FIG. 4. Incompatible contractible edges.

there exists an independent set I of interior vertices of degree three in G such that S
consists of one edge incident to each vertex in I. Contracting the edges of S is the
same as removing I from G along with the incident edges. The resulting graph is
again triangular.

A quadrangle of G is a simple cycle of four edges. Contractible edges on opposite
sides of a quadrangle may not be contractible simultaneously since contracting one of
the edges might make the other edge uncontractible. For example, in Fig. 4 the edges
{u, v} and {x, y} are individually but not simultaneously contractible. In light of this
observation, two contractible edges of G are type-B compatible if they do not share
a common vertex and are not on the opposite sides of a quadrangle in G. A set of
contractible edges is type-B compatible if its edges are pairwise type-B compatible.

A set S of contractible edges in G is compatible if it is type-A compatible or type-
B compatible. Let G/S denote the graph obtained by contracting S in G. It is easy
to see from the definition of compatibility that G/S is a triangular planar graph and
its combinatorial embedding induced from that of G is unique. Also, if S contains m
edges, then G/S contains exactly n- m vertices.

LEMMA 3.1. Let S be a compatible set of contractible edges in G. Given S and
G, the unique embedded planar graph G/S can be computed deterministically in O(1)
time with n processors.

Proof. There are two cases: S is type-A or type-B compatible.
Case 1. S is type-A compatible. Let I be the set of interior vertices of degree

three in G that induces S. Then the graph G/S can be constructed from G by deleting
all vertices in I. Also, each interior face of G/S contains at most one vertex of I.
Based on these observations, each vertex of I can be deleted locally in O(1) time by
a processor allocated to that vertex. Thus the total complexity is as desired.

Case 2. S is type-B compatible. Let G be the embedded planar graph constructed
from G by topologically shrinking each edge in S into a single vertex. Then G/S can
be constructed by deleting redundant multiple edges in G. Because the edges in S
are disjoint, G and its combinatorial embedding can be computed in O(1) time with
n processors. Each multiple edge in G has exactly two copies, and they are on the
boundary of a face of size two. Therefore, the redundant multiple edges in G can be
deleted in O(1) time with n processors, and the total complexity is as stated. [:]

3.2. Undoing the contractions of compatible sets. By Theorem 2.1, both
G/S and G have realizers. Given a realizer T1,T2,T3 of G/S, we can compute a
realizer of G by applying to each edge in S a replacement procedure to be described
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below.
Because the edges in S are interior edges, the exterior vertices of G are not con-

tracted with one another in G/S. Thus, G and G/S have the same exterior vertices.
The realizer T1, T2, T3 and the reMizer of G to be computed by the replacement pro-
cedure are rooted at the same exterior vertices in the same clockwise order. Hence,
for notational simplicity, we use the same notations T1, T2, T3 for the desired realizer
of G.

To describe the replacement procedure, additional notations are in order. Let e
be an edge in S. Let x and y be the endpoints of e. Let u and w be the two common
neighbors of x and y in G. Assume that x, u, y, and w are in the clockwise order on
the quadrangle formed by them.

Let z be the vertex in G/S that is contracted from x and y. Let u and w be the
vertices in G/S that are contracted from u and w or are u and w themselves. Note
that u and w are different vertices in G/S because by the compatibility of S, there
is no edge in S between u and w.

Let d be the directed edge in T t2 T2 t2 T3 between u and z. Let d2 be the
directed edge in T t2 T2 U T3 between w and z. Let E be the set of edges in G/S
that are different from d and d2, and are originally incident with x in G.

To obtain a realizer for G, the edges dl and d2 in T, T2, T3 need to be replaced
with the five edges in G between x, y, u, and w. This replacement is done for the d
and d2 of each e in S. All other edges keep their directions and remain in the same
trees T.

The five edges in G between x, u, y, and w need to be assigned appropriate
directions and trees Ti. The assignments are determined by the following four factors:

which of T1, T2, and T3 the edges d and d2 belong to;
the directions of d and d2;
whether x is an exterior vertex in G;
whether E contains at least one outgoing edge from z.

The appropriate directions and trees Ti for the five edges between x, u, y, and w in
G are detailed in the case analysis in Fig. 5. The analysis covers all possible cases up
to the symmetries of rotating T1, T2, T3 and rotating x, u, y, w.

LEMMA 3.2. The replacement rules in Fig. 5 correctly produce a realizer of G.
Proof. The correctness of the replacement rules is by straightforward verification

based on the following observations concerning cyclic edge patterns of a realizer.
First, in each of the cases in Fig. 5, dl is replaced by two directed edges between

u and x, y. The crucial fact is that the subpattern formed by dl in the cyclic edge
pattern around u is preserved by the subpattern formed by the two substitute edges
around u. Therefore, from the standpoint of u, the replacement for d preserves the
cyclic edge pattern around u that is required for a realizer. The same preservation
of a cyclic edge pattern holds from the standpoint of w.

Similarly, in each of the cases in Fig. 5, z is split into x and y. The subpattern
formed by d2, Ex, d in the cyclic edge pattern around z is preserved by the three
edges between y and w, x, u around y. Thus, from the standpoint of y, the splitting
of z into x and y maintains the cyclic edge pattern around z that is required for a
realizer. The same pattern preservation holds from the standpoint of x.

These pattern preservations together with the cyclic edge patterns of T, T2, T3,
ensure that the replacement rules in Fig. 5 indeed produce realizer for G.

LEMMA 3.3. Let S be a compatible set of contractible edges in S. If G, S, G/S,
and a realizer of G/S are given, then a realizer ofG can be computed deterministically
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1. If dl u z E T1 and d2 w -- z E T1, and if either x is an exterior vertex of G
or Ex contains at least one outgoing edge from z, then replace d and d2 with the
following edges: y --, x T, u --+ x T, y --, u T2, y --* w T3, w --, x E T.

":. z ":.. "’.

"...
2. If dl u’ -- z T and d2 w ---* z T2, then replace d and d2 with the

following edges: x -- y Ta, u x T, y u E T, y w T, w x T.

Z

"

3. If d u’ z T and d2 z w T1, then replace dl and d2 with the
following edges: y + x E T2, x + u T3, u --, y T, y + w T, x + w T.

Z ..’’’’’’"

W

4. If d u’ -- z E T1 and d2 z ---, w T2, then replace d and d2 with the
following edges: x + y T, x --, u T3, u + y T, y + w E T2, x --, w T2.

Z .. x "-. .." y .
5. If d u’ --, z T1 and d2 z w T3, then replace dl and d2 with the

following edges: y + x T, u --, x E T, y -- u T2, y --* w T3, x -, w T3.

6. If d z --, u’ T and d2 z --+ w E T2, then replace dl and d2 with the
following edges: y x Ta, x u T1, y -- u T1, y w T, x w E T.

V w ":z-"

FIG. 5. Replacement rules for undoing contractions.
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in 0(1) time with n processors.
Proof. In light of Lemma 3.2, we use the replacement rules in Fig. 5 to produce a

realizer for G. The four determining factors for each edge in S can be computed within
the desired complexity. Then, because there is only a constant number of replacement
rules, the right rule for each edge can also be determined within the desired complexity.
Next, the replacement at each edge is simple enough to be performed locally at that
edge within the desired complexity.

4. Computing a large set of simultaneously contractible edges. We have
shown that a compatible set can be contracted and expanded to compute a realizer
in parallel. It remains for us to show how to find such sets with a constant fraction
of the edges in G. Our approach is to compute a large independent set of G that has
useful neighborhood properties. We then use this independent set to compute two
compatible sets that together consist of a large number of edges in G.

4.1. Finding a large independent set. Let J be an independent set of G. For
x E J, a neighbor y of x is a bad neighbor if y is also a neighbor of another vertex in
J, otherwise y is a good neighbor. Let G (V, E). For x e V, let deg(x) denote the
degree of x in G. Let V {x e V deg(x) i} and Vii,j] {x e Vii <_ deg(x) _< j}.
The vertices in 0,29] are the light vertices of G; the vertices in ]/30,] are the heavy
vertices.

In our embedding algorithms, we wish to find a large independent set of interior
vertices such that for every vertex in that set, all its neighbors are good. Unfortu-
nately, this is not always possible. Instead, we adopt the following weaker approach.
The independent set J is sparse in G if the following conditions hold for all x J:

deg(x) _< 6;
all light neighbors of x are good;
if deg(x) 4, then at least two neighbors of x are light;
if deg(x) 5, then at least four neighbors of x are light;
if deg(x) 6, then all neighbors of x are light.

Below we describe a construction of nine steps that finds a large sparse indepen-
dent set for G. It actually works for ny planar graph with a minimum degree of at
least three nd has been used for five-coloring a planar graph [15].

1. Let U4 {x V4 Ix has at least two light neighbors}.
2. Let U5 {x E V5 x has at least four light neighbors}.
3. Let U6 {x e V6 all neighbors of x are light}.
4. Let U V3 t2U t2U5 U6.
5. Let G (V[3,291, E) be the subgraph of G induced by V[3,291.
6. Let G (3,291, E) be the graph such that (x, z) E if nd only if there

is a vertex y such that both (x, y), (y, z) E.
7. Let G2 (v3,291, E1 U E).
8. Let G3 be the subgraph of G2 induced by the set U.
9. Let J be an independent set of G3.
LEMMA 4.1. Every independent set J of G3 is a sparse independent set of G.
Proof. First of all, because U C_ V[3,291, Steps 5, 7, and 8 ensure that J is an

independent set of G. By steps 8 and 9, the vertices in J are of degree six at most.
By steps 6, 7, and 8, all light neighbors must be good. By step 1, if a vertex x e J
is of degree four in G, then x has at least two light neighbors in G. By step 2, if a
vertex x E J is of degree five in G, then x has at least four light neighbors. By step
3, if a vertex x J is of degree six in G, then all neighbors of x are light. [3

LEMMA 4.2. The set U defined above contains at least [n/48] vertices.



STRAIGHT-LINE GRID EMBEDDINGS 641

Proof. This proof relies on the fact that the minimum degree of G is at least
three. Let ni -IVI, n[,j] -Ii,j]l, and p -lUll. We need to show

n
n3 + P4 + P5 + P6 > 4-"

If n3 > , we are done. Thus we assume that n3 < . We first show the following
inequality by contradiction:

(1) n[30,o] < -.
If n[30,] > n/8, then the sum of the degrees of all the vertices is at least

n 7n
30.g + 3.- > 6.

This is a contradiction because by Euler’s formula any planar graph has at most 3n-6
edges; hence the sum of the degrees of the vertices cannot exceed 6n- 12.

By counting the edges between V[30,o] and (Va Ua) U (V5 Uh) U (V6 U6),

3(n4 -p4) + 2(n5 -P5)+ (n6 -p6) < deg(x).

Thus,

t3 -f- 3n4 + 2n5 + n6 (n3 A- 3pc + 2p5 + P6) <

Therefore,

3 -- 3n4 + 2n5 + n6 + deg(x) + deg(x) (n3 + 3p4 + 2p5 + P6)
xV[3,fi] xeV[7,29]

<_ deg(x) 21E <_ 6(n3 + n4 + n5 + n6 + n[7.29] -4- n[30,ol).
xv

Simplifying this inequality yields

n3 -4- n4 + n5 + n6 + n[7,291 (n3 + 3p4 + 2p5 + P6) 3n3 _< 6n[30,o1.

Hence,

(2) n3 -4- 3p4 + 2p5 + P6 > n- 7n[30,o1 3n3.
nBy (1) and (2) and the assumption that n3 < --,

1 1( 7 3n) n
n3 + P4 + P5 + P0 >_ 5(n3 + 3p4 + 2p5 + P6) > 5 n- n- - -.
For a constant c > 0, an independent set of an m-vertex graph is c-large if it

contains at least c.m vertices.
LEMMA 4.3. Given a constant c > O, every c-large independent set J of G3 is a

C-large sparse independent set of G.48
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Proof. The sparse independence of J has been shown in Lemma 4.1. The lower
bound on the cardinality of J follows directly from Lemma 4.2.

LEMMA 4.4.

(1) A sparse independent set of (n) interior vertices in G can be computed
deterministically in O(log n) time with n/ log n processors.

(2) A sparse independent set of (n) interior vertices in G can be computed
deterministically in O(log* n) time with n processors.

(3) A sparse independent set of interior vertices in G can be computed in O(1)
expected time with n processors on a probabilistic PRAM. The independent set found
has (n) vertices with probability at least a positive constant.

Proof. We employ the nine-step procedure described earlier to compute desired
independent set for G. Because the degrees of the vertices of V[3,29] are bounded
by a constant in G, the graph G3 can be constructed in O(log n) time with n/log n
processors, or in O(1) time with n processors.

Next we compute a large J with three methods. These methods all rely on the
fact that the maximum degree of G3 is bounded by a constant. The first method
decomposes G3 into a constant number of trees and computes J by two-coloring these
trees in O(log n) time with n/log n processors with tree contraction [1], [2], [8], [19],
[23], [24]. The second method computes J in O(log* n) time with n processors with
parallel symmetry-breaking techniques [15]. The third method computes J with one
iteration of Luby’s Monte Carlo Mgorithm for finding a maximal independent set [22].
One iteration of Luby’s algorithm runs in O(1) time with IG31 processors and finds
J of (IG31) vertices with probability at least positive constant.

By Lemma 4.3, J is also a large sparse independent set of G. If J contains an
exterior vertex, we simply delete that vertex, in O(log n) time with n/log n processors
or in O(1) time with n processors, to get a large sparse independent set of interior
vertices of G. Therefore a sparse independent set of gt(n) interior vertices in G can
be computed within the stated complexity bounds.

4.2. Computing contractible edges from an independent set. Let I be
a large sparse independent set of interior vertices of G. Below, we will show how to
compute from I a type-A compatible set Sa and a type-B compatible set Sb of G. We
will also prove that Sa and Sb hold two useful conditions: (1) no edge of Sb disappears
in GISt; and (2) Sb remains a type-B compatible set in G/Sa. We call such S and
Sb an AB-pair of G, and will contract first Sa and then Sb to compute a realizer of
G. The two conditions ensure that S fits for simultaneous contractions after S is
contracted. Let n be the number of vertices in G. Let n and nb be the numbers of
edges in Sa and Sb, respectively. By the first condition, there are n na -nb vertices
in the new graph resulting from contracting S and Sb. We will show that the AB-pair
computed from I contains a large number of edges. Thus, the contractions reduce the
size of G by a constant fraction.

Given I, the set S is computed as follows: for each vertex in I that has degree
three, find an edge in G incident with that vertex and include that edge in S.

LEMMA 4.5. Sa is a type-A compatible set of G. Given I and G, it can be
computed deterministically in O(1) time with n processors.

Proof. This lemma follows from the fact that every edge incident with an interior
vertex of degree three in G is contractible.

Next we show how to compute Sb. For brevity, a neighbor y of an interior vertex
x in G is contractible if the edge {x, y} is a contractible one in G.
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LEMMA 4.6 (see Kampen [17]). In a triangular embedded planar graph, every
interior vertex has at least two contractible neighbors.

Given I, the set Sb is constructed by choosing an edge in G incident with each
vertex of I with degree four, five, or six as follows.

Case 1. deg(x) 4. If x has a light contractible neighbor y, then add the edge
{x, y} to Sb. If x has no light contractible neighbor, then it has two light neighbors p
and r, and the other two neighbors q and s are contractible. As p is not contractible,
it shares three neighbors with x. These must be q, r, and s. Likewise r shares the
neighbors p, q, and s with x. Hence, either q or s is in the interior of the triangle
C formed by p, r, and x. If q is in the interior of C, then add the contractible edge
{x, q} to Sb. If s is in the interior of C, then add the contractible edge {x, s} to Sb.

Case 2. deg(x) 5 or 6. Choose a light contractible neighbor y of x and add the
edge {x, y} to Sb. The existence of such y follows from Lemma 4.6 and the definition
of a sparse independent set.

LEMMA 4.7. Sb is a type-B compatible set of G.
Proof. First, every edge in $5 is contractible because the construction of Sb always

selects a contractible neighbor for each given x. To show Sb is type-B compatible,
consider any two vertices x and x2 in I with degree four, five, or six. Let e
{x,y} and e2 {x2,y2} be the two edges in Sb that are chosen for x and x2,

respectively. If y is a good neighbor of x, then e and e2 cannot share a common
vertex. Furthermore, if y is a good neighbor of x, then by the independence of I,
e and e2 cannot form opposite sides of a quadrangle in G. Symmetrically, if y2 is
good neighbor of x2, then the same claims are true.

Based on the above discussion, below we assume that y is a bad neighbor of
x and that y2 is a bad neighbor of x2. Then, deg(x) deg(x2) 4 by the con-
struction of Sb. Let p,y,r,s be the four neighbors of x in the clockwise order.
Let P2, Y2, r2, 82 be the four neighbors of x2 in the clockwise order. Since y is a
bad neighbor of x, y cannot be light by the definition of a sparse independent set.
Then, because y is selected for x, the following separation properties must hold:
(1) x,p,r form a triangle C; (2) y is in the interior of C; and (3) s is in the
exterior of C. Similarly, since y2 is a bad neighbor of x2 and is selected for x2, the
following separation properties must hold: (4) x2,p2,r2 form a triangle C2; (5) y2

is in the interior of C2; and (6) s2 is in the exterior of C2. By planarity and these
separation properties, e and e2 cannot share an endpoint and cannot form opposite
sides of a quadrangle.

LEMMA 4.8. Let n denote the number of vertices in G. Given I and G, the set
Sb can be found in O(1) time with n processors.

Proof. For each x I of degree four, five, or six, we first determine all light
neighbors of x. With all light neighbors of x determined, we then determine which
of them are contractible. Because the degrees of x and its light neighbors are all
bounded by a constant, these two steps take O(1) time with n processors. Hence Sb
can be computed in the desired complexity.

LEMMA 4.9. S and Sb for?7 an AB-pair of G with

Proof. The AB-pair property follows from the fact that G/S can be obtained
by deleting from G the vertices of I that have degree three in G. The size property
follows from the fact that S and Sb together consist of an edge incident with each
vertex in I.

LEMMA 4.10.
(1) An AB-pair of G with 12(n) edges can be deterministically computed and con-
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tracted in O(log n) time with n/ log n processors.
(2) An AB-pair of G with (n) edges can be deterministically computed and con-

tracted in O(log* n) time with n processors.
(3) An AB-pair of G can be computed and contracted in O(1) expected time with

n processors on a probabilistic PRAM. The AB-pair found has (n) edges with prob-
ability at least a positive constant.

Proof. This lemma follows directly from Lemmas 4.4, 4.5, 4.8, and 4.9. [l

5. Parallel complexities for computing realizers. Here we give determinis-
tic and randomized complexities for computing a realizer in parallel.

5.1. Deterministic parallel complexity for computing realizers.
THEOREM 5.1. A realizer of an n-vertex triangular embedded planar graph can be

computed deterministically in O(log n log log n) time with n/ log n log log n processors.
To compute a realizer of the input graph G, we first contract G in three stages:
1. repeat

Distribute the vertices and edges of G evenly over the given processors.
Contract G by means of Lemma 4.10(1).

until G has at most n/log log n vertices.
2. Distribute the vertices and edges of G evenly over the given processors.

repeat
Contract G by means of Lemma 4.10(1).

until G has at most n/log n log log n vertices.
3. Distribute the vertices and edges of G evenly over the given processors.

repeat
Contract G by means of Lemma 4.10(2).

until G is a triangle with a single interior vertex.
The processor allocation steps are done with an algorithm [20] that computes the
prefix sums of an O(n)-cell array in O(log n) time with n/log n processors.

After the third contraction stage, G has a trivial realizer with each Ti consisting
of one edge. We expand this realizer into one for the original G by undoing the
contractions by means of Lemma 3.3. No work is needed to redistribute the processors
because the processor assignment at every contraction step can be recorded.

The correctness of the above algorithm follows from Lemmas 4.10(1), 4.10(2), and
3.3. The time complexity follows from the next lemma.

LEMMA 5.2. The contraction stages take O(log n log log n), O(log n log log n),
and O(log n log* n) time, respectively, and they can be undone in O(log n log log n),
O(log n log log n), and O(log n) time, respectively.

Proof. The proofs for performing the contractions and undoing them are similar;
only that for performing the contractions is given below. Let ni be the number of
vertices in G at the start of the ith iteration of the repeat loops.

Stage 1. In the ith iteration, IGI O(ni). Thus, the load-balancing step, the
contraction step, and the until step take O(logni) time with ni/logni processors.
Because ni >_ n/log log n, the number of given processors is smaller than nil log Hi.

Thus, the running time of this iteration is O( log n log log n) with the given proces-
sors. Because ni decreases at least geometrically, the running time of an iteration also
decreases at least geometrically and the lemma for stage 1 follows.

Stage 2. Because IGI O(n/log log n) and n/log n log log n processors are given,
the load-balancing step takes O(logn) time. In the ith iteration, the contraction
step and the until step take O(log Hi) time with nil log ni processors. Because ni _<
n/log log n, n/logn O(n/log n log log n) and each iteration takes O(log Hi) time
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with the given processors. Because each iteration reduces ni by at least a constant
fraction, O(log log n) iterations suffice and the lemma for stage 2 follows.

Stage 3. Because IGI O(n/log n log log n) and there are n/log n log log n proces-
sors, the load-balancing step takes O(log n) time. In the ith iteration, the contraction
step takes O(log* Hi) time with n processors. The until step takes O(1) time with one
processor. Because n <_ n/log n log log n, each iteration takes O(log* n) time with
the given processors. Since each iteration reduces n by at least a constant fraction,
O(log n) iterations are needed and the lemma for stage 3 follows. D

5.2. Randomized parallel complexity for computing realizers.
THEOREM 5.3. Given a triangular embedded planar graph with n vertices, a

realizer can be computed in O(log n) expected time with n/ log n processors on a prob-
abilistic PRAM.

Proof. Our randomized algorithm is identical to the deterministic one given in
the proof of Theorem 5.1 with only two differences. First, the three contraction stages
contract the input graph by means of Lemma 4.10(3) until it has at most n/log log n
vertices, at most n/log n vertices, and only one interior vertex, respectively. Second,
the processor allocation steps of these three stages and the until steps of the first two
stages are performed with an algorithm [9] that computes the prefix sums of an n-cell
array in O(log n/ log log n) time and O(n) work. The analysis of this algorithm is
similar to that of the deterministic one. [

6. Conclusions. We are now ready to give the main results of this paper.
THEOREM 6.1. Given an n-vertex embedded planar graph with n >_ 3, a straight-

line embedding on a grid of size (n- 2) (n- 2) can be computed deterministi-
cally in O(log n log log n) time with n/ log n log log n processors. Alternately, such an
embedding can be computed in O(logn) expected time with n/logn processors on a
probabilistic PRAM.

Proof. The case n 3 is trivial. So we assume n >_ 4 and compute an embedding
in three stages. First, triangulate the input graph. Next, compute an embedding of
the triangulated graph by means of Theorems 5.1 and 5.3 and the discussion at the
end of 2. Last, delete the added edges to yield a desired embedding for the original
graph. All three stages can be done with the desired complexity. [:]
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TREEWIDTH OF CIRCULAR-ARC GRAPHS*
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Abstract. The treewidth of a graph is one of the most important graph-theoretic parameters
from the algorithmic point of view. However, computing the treewidth and constructing a corre-
sponding tree-decomposition for a general graph is NP-complete. This paper presents an algorithm
for computing the treewidth and constructing a corresponding tree-decomposition for circular-arc
graphs in O(n3) time.

Key words, treewidth, circular-arc graphs, tree-decomposition, complexity
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1. Introduction. The notion of the treewidth of a graph has a large number of
applications in many areas, like algorithmic graph theory, VLSI design, and so forth
[Ar85]. Recently there has been a growing interest in the study of the treewidth and
the tree-decomposition of a graph from the algorithmic point of view.

Robertson and Seymour, in their classic series of papers on graph minors, intro-
duced the notion of tree-decomposition and treewidth of a graph [RS86]. Most of their
results are existential in nature. Several classes of problems that are NP-complete for
an arbitrary graph admit polynomial-time solutions on graphs with bounded treewidth
[ALS88]. Bodlaender [Bo88], [Bo89], [Bo93] has done extensive studies on the sequen-
tial and parallel algorithmic aspects of graphs with bounded treewidth.

Computing the treewidth and the corresponding tree-decomposition is known to
be NP-complete for general graphs [ACP87]. For fixed k, the problem of determining
whether the treewidth of a given graph is at most k can be solved in polynomial time
with dynamic programming [ACP87], and in O(n2) time with graph minor theory
[RS86]. The only known algorithm for computing the treewidth of special classes
of graphs is for cographs IBM90]. In this paper, we show that the treewidth of
circular-arc graphs and the corresponding tree-decomposition can be found in O(n3)
time. We do this by showing that among all possible tree-decompositions of the
given circular-arc graph, only a small fraction need be considered to find one with
minimum tree-width, namely, those corresponding to the planar triangulations of a
certain circuit--and such tree-decompositions can be investigated quite easily with a
polynomial-time algorithm.

The organization of the rest of the paper is as follows. In 2 basic definitions and
preliminary results are given. Section 3 contains constructions, lemmas, and theorems
that are essential to the proof of correctness of the algorithm. In 4 the actual
algorithm and its analysis are presented. Section 5 contains concluding remarks.
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13, 1993. A preliminary version of this paper appeared in WADS’91. This research was conducted
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More results [BKK93], [HM92] in this direction have emerged since the appearance of this paper
in a conference.
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2. Definitions and Preliminary Results. If S is a set, then let IS denote
the cardinality of S. Let G (V, E) be a graph. We also refer to the vertex set and
edge set of G by V(G) and E(G), respectively.

A tree-decomposition of G is a pair ((Xili e I},T (I,F}), with (Xili e I} a
family of subsets of V, and T a tree with the following properties:

(1) LJ e v;
(2) V(u,,)eE iel (u e Xi) A(v e
(3) VveV, the set {il(i e I) A(v e xi)} forms a connected subtree of T.
The treewidth of a tree-decomposition ({Xili e I},T {I,F}), denoted by

treewidth(((Xili e I},T (I,f})), is maxiel(IXl- 1). The treewidth of a graph
G, denoted by treewidth(G), is the minimum treewidth of a tree-decomposition of G
taken over all possible tree-decompositions of G.

A graph is said to be chordal [Go80] if it has no chordless cycle of size greater
than 3. The treewidth of a graph G can be similarly defined to be one less than the
smallest clique number of a chordal graph containing G.

A circular-arc graph [Go80], [SP89] is the intersection graph of arcs around the
unit circle. Consider a unit circle with a fixed reference, say O, on it. Any point on
the circumference of the circle can be uniquely identified by its distance from O along
the circle, say, in the clockwise direction. Thus, we use the same symbol for the point
as well as its distance from O. Let AF {Ao, A1,... ,An-I} be a family of arcs on a
unit circle, and let G (V, E), IVI- n, IEI m, be the circular-arc graph with AF
as its intersection model. The arc Ai is represented by the ordered pair (l(Ai), r(Ai)),
where l(Ai) and r(Ai) denote its left and right end points, respectively. The arc Ai
exists on the circle as a traversal in the clockwise direction from l(Ai) to r(Ai), along
the circumference of the circle. Further, we assume that l(Ai) <_ l(Ai+), 0 <_ <_ n-2.
We represent arcs in AF by uppercase letters and the corresponding vertices in G by
lowercase letters. (See Figs. 1 and 2.)

AF
FIG. 1. An intersection model.

Unless otherwise stated, we assume G (V, E) to be a circular-arc graph with
an arbitrary tree-decomposition ({Xvlv E V(T)}, T).

In general, the arc segment (x, y) exists on the circle as a traversal in the clockwise
direction from x to y. (x, y) is said to contain position s if either x _< s <_ y, or

(x > > x V <
Every vertex ai E G defines a left clique Si, comprising the set of vertices

{ajlA contains/(A)}. An intersection clique Qi for the vertex ai is the clique made
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a a2

a

a4

G

FIG. 2. The circular-arc graph.

up of the vertices in the set {aj]aj e (Si Si+l)}. (See Fig. 3.).

So = { ao, a a }
."0o = { ao, a}

S = { ao, a, a }
O = { ao, a }S. = { ao a. a } -.....

( a. a a }
--Q,. = { a., a }

S = .....-O = { a., a }
S = { a. a a }

S = { a, a, a } 0’ = { a, a}

So = { ao, a, a }--0 = { a, a }

FZG. 3. Corresponding left cliques and intersection cliques.

Note. Unless otherwise mentioned, all indices are assumed to be modulo n.
Let

n--1

VQ [.J Q.
i--0

Let GQ be the subgraph of G induced by VQ.
For every v e V, let ST(v) be the subtree of T with vertices {il(i e V(T)) A(v e

xi)} in the tree-decomposition ({Xili e V(T)}, T). Let ST(Y) veY ST(v), where
Y is a subset of V.

By definition, the vertices of ST(Y) also form a connected subtree of T, although
it may be empty.

LEMMA 2.1 (clique containment lemma.). In any tree-decomposition of G, for
any clique K of G, ST(K) is nonempty [Bo88], IBM90].

LEMMA 2.2. The intersection graph of a set of subtrees of a tree is chordal [Go80].
LEMMA 2.3. Given a cycle C of n vertices, the set of minimal chordal graphs,

which contain C as a subgraph, is equal to the set of planar triangulations of C with
n- 3 diagonal edges.
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LEMMA 2.4. Any vertex v of G is contained in a nonempty consecutive subset
Si, S+1,. Sj of the set of left cliques for some and j, and in a consecutive subset
Q, Q+l,..., Qj_ of the set of intersection cliques, which is empty if j.

LEMMA 2.5. In any tree-decomposition of the circular-arc graph G, ST(Si) and
ST(Si+) are subtrees of ST(Qi).

Further, we assume no Qi is empty, otherwise the graph reduces to an interval
graph whose treewidth is trivial to compute.

COROLLARY 2.6. ST(Q) ST(Qi+) is nonempty for any tree-decomposition of
G.

LEMMA 2.7. Let G be a graph. Let v be a vertex in G with degree d whose
neighbours form a clique. Then treewidth(G) max(treewidth(G- v), d).

Proof. It is obvious that treewidth(G) >_ max(treewidth(G- v), d). To prove the
upper bound, consider any chordal graph containing G- v; adding v yields a chordal
graph containing G. (Recall that the treewidth of G is one less than the smallest
clique number of a chordal graph containing G.) [:]

COROLLARY 2.8. Treewidth(G) max(maxiei(ISil- 1),treewidth(GQ)).
Proof. From the definition of treewidth, it follows that treewidth(G) >_ max(maxex

(IS 1), treewidth(GQ)). The upper bound follows from Lemma 2.7 and the defini-
tion of GQ.

By corollary 2.8, we see that computing treewidth(GQ) is the key to computing
the treewidth of G. In what follows, we are mainly concerned with the treewidth of
GQ. Note that GQ is also a circular-arc graph.

Let G’= (V’,E’) IGST({Xvlv e V(T)},T) be the intersection graph of the
subtrees ST(Qi), 0 <_ <_ n- 1, for a tree-decomposition ({Zvlv e V(T)},T) of the
circular-arc graph GQ. Let V v, v,.. vn , where v’ is the vertex corresponding

Eto ST(Q). From corollary 2.6, we see that (v, v+l) E Let CYQ be the cycle
consisting of the vertices Vo, v,... ,Vn_l,! in that order. CYQ may also be referred to
as the cycle corresponding to the intersection cliques.

LEMMA 2.9. For any tree-decomposition ({Xlv e V(T)},T) of the circular-arc
graph GQ, IGST({X, Iv e V(T)},T) (1) is chordal, and (2) contains CYQ as a

subgraph.
Proof. Part (1) follows from Lemma 2.2. (2) follows from Corollary 2.6.

3. Constructions and Results.
Construction 1. For a given planar triangulation of CYQ, construct a tree-

decomposition ({Xlv V(TQ)},TQ) of GQ as follows: Generate TQ to equal the
dual of the planar triangulation without the vertex corresponding to the external face.

and v be the vertices of the triangular faceLet v be any vertex of TQ and vi,
whose dual is the vertex v. Now, let X, Qi [.J Qj J Qk be the set associated with
the vertex v. For each v e V(TQ) generate Xv. (See Fig. 4.)

Note. Henceforth, we assume the absence of a vertex corresponding to the external
face in all references to the dual of a (planar) graph.

THEOREM 3.1. Construction 1 generates a tree-decomposition of GQ.
Proof. It is easy to see that TQ is indeed a tree.

(i) We prove that UveTQ Xv VQ. For any vertex ai VQ, ai Qi, and since

vi occurs in some triangular face, the corresponding dual vertex v has an associated
set X that contains Qi, and hence hi. Therefore, for every vertex ai VQ, there
exists a v V(TQ) such that ai X. Further, by construction, ,eV(TQ)X, C_ VQ.
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X = { a a
X b { ao a 2 a

X c = { a a

Xd = { a., a

Planar triangulation
of CYQ

FIG. 4. Construction 1.

Therefore,

(1) U X VQ.
v6TQ

(ii) We prove that V(ak,at)6E(GQ w6V(TQ)(ak e Xw)A(a e x). For any
edge (ak, at) E E(GQ), (ak Sk) A(at 6 Sk), or (ak 6 St) A(at 6 St), say ak,at Sk,
without loss of generality. Then ak Qk and at e Qk-1. Since v and v_l are
adjacent in CYQ, they occur in some triangular face, say, one whose corresponding
dual vertex is w. Then w has an associated set X that contains Qk and Qk-, and
therefore both ak and at. Therefore,

(:) V(ak,at)6E(GQ w6V(TQ)(ak e Xw) A (at e X).

(iii) We prove that VaeyQ, {vl(v 6 V(TQ))A(a e X.)} forms a connected
subtree of TQ. By Lemma 2.4, any vertex ai of GQ occurs in a consecutive subset
Qi, Qi+I,..., Qj-1 of the intersection cliques. Let a triangular face be said to intersect
a set of vertices if at least one of the three vertices of the face belongs to the set.
Thus we must prove that, given a planar triangulation of a cycle and a segment of the
cycle, the set of vertices in the dual, whose corresponding triangular faces intersect
the segment, forms a connected subtree (in the dual). The proof follows by induction
on the number of vertices in the segment. If the segment contains exactly one vertex,
then the corresponding subtree is simply a path in the dual tree. Assume that it holds
for all segments containing k vertices. Consider a segment containing k + 1 vertices,
numbered 1 to k + 1 in order along the cycle. Consider the subsegment of k vertices
formed by dropping one of the end vertices, say the k + lth. Corresponding to the
subsegment, we have a connected subtree in the dual (by the induction hypothesis),
and corresponding to the dropped end vertex, we have a path that intersects with the
subtree (the intersection contains at least the dual (vertex) of the common triangular
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face of the kth and k + lth vertices in the segment). Since the dual (TQ) is a tree, we
obtain a connected subtree in the dual that is the union of the subtree corresponding
to the subsegment of k vertices and the path corresponding to the one end vertex of
the segment. Therefore,

(3) VaeyQ, {vl(v e V(TQ)) A (a e Xv)}

is a connected subtree of TQ.
From (1), (2), and (3) we conclude that Construction 1 generates a tree-

decomposition of GQ. D
Consider any tree-decomposition ({Xvlv e V(T’)},T’) of GQ such that G’

IGST({Xvlv E V(T’)},T’), the intersection graph of the subtrees corresponding to
the intersection cliques, is not a planar triangulation of CYQ. By Lemma 2.9, G is
chordal and contains CYQ. Consider any minimal subgraph SG of G that contains
CYQ and is chordal (obviously, SG is an edge-induced subgraph). By Lemma 2.3,
SG’ must be a planar triangulation of CYQ. Let ({Xlv V(TQ’)},TQ’) be the
tree-decomposition corresponding to SG obtained by Construction 1.

THEOaEM 3.2. Treewidth({X, lv V(TQ’)},TQ’) <_ treewidth({X, lv V(T’)},
T’).

Proof. By theorem 3.1, ({X, lv V(TQ’)},TQ’) is a tree-decomposition of GQ.
To prove the theorem, it is sufficient to show that uV(TQ’) vV(T’) Xu Xv.

Consider any u V(TQ’). By Construction 1, X Q [.jQj Qk for some
for each Q.) Hence,i, j, and k. (Remember that in CYQ, there is a vertex v

SG’ contains the edges (v, v), (v, v), and (v, v). Since SG’ is only a subgraph of
G’, these edges are also present in G’. This implies that the sets ST(Q), ST(Qy),
and ST(Qk) pairwise overlap, but because these are subtrees, they have a nonempty
intersection in T’, i.e., ST(Q)ST(Qj)ST(Qk) in T’ is nonempty. Consider
some vertex v V(T) in this nonempty intersection. Xv contains Q, Qy and Qk.
Therefore, X

_
Xu

Hence, it has been proved that treewidth({Xlv V(TQ’)}, TQ’) <_ treewidth({X
Iv e V(T’)},T’).

COROLLARY 3.3. The treewidth of GQ is equal to the minimum treewidth over
all tree-decompositions ({X Iv e Y(TQ) }, TQ) of GQ that satisfy the following: G’
IGST({Xvlv e V(TQ)}, TQ) the corresponding intersection graph of the intersection
cliques, contains CYQ and is a planar triangulation of CYQ.

Proof. It follows from Theorems 3.1 and 3.2, and the fact that IGST({X,Ive
V(T)}, T) is chordal and contains CYQ for any tree-decomposition ({X[v e V(T)}, T)
of GQ.

Construction 2. Given any tree-decomposition ({Zlv e V(TQ)},TQ) of GQ
such that G’= IGST({XIv e V(TQ)}, TQ) contains CYQ and is chordal, construct
a tree-decomposition of G as follows: For each ai V, add a new vertex bi to TQ;
attach bi by an edge to any one vertex v V(TQ) such that Xv contains Q-i and
Qi; and set Xb S. Let ({X.[v Y(TQa)},TQc) denote the resulting tree-
decomposition. (See Fig. 5.).

It is easy to see that Construction 2 is well defined and that it generates a tree-
decomposition of G. Further, by Corollary 2.8, if the tree decomposition ({X, lv
V(TQ)},TQ) achieves the minimum tree-width for GQ, then the treewidth of the
tree-decomposition ({X[v Y(TQa)}, TQa) equals the treewidth of G.

4. Algorithm and its analysis. The basic algorithm now boils down to com-
puting treewidth(GQ), and a corresponding tree-decomposition. The problem of com-
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b 1 . X,o =
b

5bd b X=
b X. =

So
S

S

S

Xb $4

Xb5 $5

FIG. 5. Construction 2.

puting treewidth(GQ) can be rephrased as follows.
Given an n-gon v0, vl,..., vn-1, and sets A associated with each vertex v such

that every element occurs in a consecutive subset A, Ai+l,..., Aj, define the cost
of a triangle with vertices vi, vj, and vk to be IA LJ Aj [.J Akl- 1. Define the cost
of a planar triangulation to be the maximum cost over all triangular faces in the
triangulation. The problem (restated) involves finding the minimum cost over all
planar triangulations, and the corresponding planar triangulation (refer to Corollary
3.3).

Specifically, in this. case it is required to find the minimum-cost planar triangu-
being Q Thislation of the n-gon v), v,... ,vn_1,p with the set associated with v

is done by a dynamic programming approach. TWCYQ(i) is defined to be the
minimum cost over all planar triangulations of the subpolygon v, v+,..., v+j_.
Therefore, treewidth(GQ) TWCYQn(O).

ALGORITHM.
Input (/(A), r(A)) representation of the vertices a of the circular-arc graph

G.

Construct S, 0

_
<_ n- 1 (in sorted order).

Construct Q, 0 <_ <_ n- 1 (in sorted order).
Compute treewidth(GQ) TWCYQn(O) using dynamic programming,
and find a corresponding planar triangulation.

4. Employ Construction 1 on the planar triangulation to obtain the tree-
decomposition of GQ.

5. Employ Construction 2 (using the tree-decomposition of GQ obtained
from step 4) to obtain the tree-decomposition of G and compute the
corresponding treewidth.

Output Treewidth(G) and corresponding tree-decomposition.

Steps
1.
2.
3.

Details of step 3.
3.1. For all i, 0 < < n- 1, compute

TWCYQ (i) TWCYQ2(i) O,

TWCYQ3(i)- IQ Q+ w Q+l- 1.
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3.2. For j 4 to n, and
for i --0 to n- 1, compute

TWCYQj(i)
j--2

i{max(TWCYQk+l (i), TWCYQj_k(i + k),

[Q (J Q+ Q+-I )}.

To actually find the corresponding planar triangulation, pointers and additional
book-keeping, information could be stored so that, by retracing, the optimum trian-
gulation can be constructed.

Proof of correctness. It follows from Theorems 3.1 and 3.2 and Corollary 3.3. [:]

Time complexity. The dynamic programming employed in step 3 itself takes
O(n3) time. But the bottleneck is finding all the IQi[.JQi+k(.JQi+y-l. Since the
union in the innermost loop takes O(n) time, naively it would seem that step 3 takes
O(n4) time. However, finding all the IQi[.JQi+k[JQi+j-I can be done faster than
O(n4). Note that the sets Q and the elements they contain can be represented as
a circular list of events. The events represent the start of an element, the end of an
element, and a set. An element is considered to belong to all those sets whose event
lies in the clockwise traversal from the start event, to the end event of this element.
To show that all the IQi JQi+k JQi+j-ll can be computed in O(n3) time, all we
must show is that for any fixed set B, all the IB [.)QI can be computed in O(n) time.
This is done as follows: Remove all events corresponding to elements in B from the
list, then do a sweep around the circle maintaining a counter that represents the arcs
of Qi B covering the point you are at, decrement the counter when you hit the
end of an arc, and increment it at the start of an arc. When you arrive at the event
corresponding to a set, output the counter plus IBI.

5. Final remarks. In this paper, we presented an algorithm to compute the
treewidth of a circular-arc graph in O(n3) time. Since our algorithm simply uses
straightforward dynamic programming, we conjecture that it is possible to improve
the time complexity substantially. We note that there is an O(n log n) algorithm for
the following problem (which is syntactically very similar to the one we solve).

Given an n-gon v0,v,... ,Vn-, and numbers A associated with each vertex vi,

define the cost of a triangle with vertices vi, vj and vk to be Ai Aj Ak. Define the
cost of a planar triangulation to be the sum over all triangular faces in the triangu-
lation. The problem involves finding the minimum cost over all planar triangulations
and the corresponding planar triangulation.

The fastest known algorithm for this problem was the straightforward O(n3)
dynamic programming algorithm, until Hu and Shing devised an extremely clever
O(n log n) algorithm [HS80], [Ya80]. So it is possible that a closer analysis of the
underlying problem will yield a faster algorithm. Another interesting direction is
to develop an algorithm to compute the treewidth for a substantially larger class of
graphs.

Acknowledgments. The authors thank the anonymous referees for suggesting
the many improvements and corrections that have gone a long way toward improving
the presentation of this paper.
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Abstract. Yannakakis recently presented the first -approximation algorithm for the Maximum
Satisfiability Problem (MAX SAT). His algorithm makes nontrivial use of solutions to maximum flow
problems. New, simple -3a-approximation algorithms that apply the probabilistic method/randomized
rounding to the solution to a linear programming relaxation of MAX SAT are presented. It is shown
that although standard randomized rounding does not give a good approximate result, the best
solution of the two given by randomized rounding and a well-known algorithm of Johnson is always
within -34 of the optimal solution. It is further shown that an unusual twist on randomized rounding
also yields -3a-approximation algorithms. As a by-product of the analysis, a tight worst-case analysis
of the relative duality gap of the linear programming relaxation is obtained.

Key words, approximation algorithm, maximum satisfiability, randomized rounding, proba-
bilistic method, performance guarantee, linear programming relaxations
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1. Introduction. An instance of the Maximum Satisfiability Problem (MAX
SAT) is defined by a collection of boolean clauses, where each clause is a disjunction
of literals drawn from a set of variables (xl, x2,..., xn}. A literal is either a variable
x or its negation 5. In addition, for each clause Cj E C, there is an associated
nonnegative weight wj. An optimal solution to a MAX SAT instance is an assignment
of truth values to variables x1,..., xn that maximizes the sum of the weight of the
satisfied clauses (i.e., clauses with at least one true literal). MAX SAT is known to be
NP-complete, even when each clause contains at most two literals (sometimes called
MAX 2SAT) [4]. Hence there is unlikely to be any polynomial-time algorithm that
can solve MAX SAT optimally.

Many people, however, have proposed c-approximation algorithms for MAX SAT.
An s-approximation algorithm for MAX SAT is a polynomial-time algorithm which,
for every instance, produces a truth assignment with weight at least c times the weight
of an optimal solution. Johnson [7] demonstrates a 1/2-approximation algorithm, which
is also an (1 )-approximation algorithm when each clause contains at least k lit-
erals. In particular, if k

_
2 the performance guarantee is at least -34. Lieberherr and

Specker [9] give a ..52--approximation algorithm (V2--1 --0.618...)when the clause
set does not contain both clauses xi and i for any i. Kohli and Krishnamurti [8]
present a randomized algorithm whose solution has expected weight at least ] of op-
timal. Yannakakis recently improved on these results by showing a -34-approximation
algorithm [13]. Yannakakis’ algorithm transforms a MAX SAT instance into an equiv-
alent instance (in terms of approximability) which does not contain any unit clauses
(i.e., clauses with only one literal). In conjunction with Johnson’s algorithm, this
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leads to the improved performance guarantee. The algorithm uses maximum flow
computations in an elegant way to transform MAX 2SAT instances. However, the
transformation becomes more complicated when general clauses are introduced.

The purpose of this article is to present new --approximation algorithms which
are conceptually simple for all MAX SAT instances. The algorithms presented here
apply the technique of randomized rounding (aaghavan and Thompson [11], [10]) to
the solution of a single linear program that is a linear programming relaxation of a
formulation for the MAX SAT problem. However, a straightforward application of the
technique does not yield a --approximation algorithm. We surmount this difficulty
in two ways: by combining randomized rounding with Johnson’s algorithm and by
using an interesting variation of the standard randomized rounding technique.

The article is structured as follows. In 2, Johnson’s algorithm is reviewed in
terms of the probabilistic method. In 3, we show that a straightforward application
of randomized rounding to a linear programming relaxation of MAX SAT leads to a

(1 )-approximation algorithm (1-1/e 0.632...). The algorithm that selects the
better of the two solutions given by randomized rounding and Johnson’s algorithm
is shown to be a --approximation algorithm in 4. In 5, we describe a class of -34-
approximation algorithms for MAX SAT based on a variant of randomized rounding.
We conclude with a few remarks in 6.

2. Johnson’s algorithm and the probabilistic method. Suppose we inde-
pendently and randomly set each variable xi to be true with probability pi. Then the
expected weight of clauses satisfied by this probabilistic assignment is

where I (resp., I-) denotes the set of variables appearing unnegated (resp., negated)
in Cj. The probabilistic method specifies that there must exist an assignment of
truth values to the variables whose weight is at least this expected value. In fact, the
method of conditional probabilities (see Alon and Spencer [1], p. 223) can be applied
to find such an assignment deterministically in polynomial time. In the method
of conditional probabilities, the value for the ith variable is determined in the ith
iteration: given the values of x,..., x_, calculate the expected weight of clauses
satisfied by the probabilistic assignment, given the current assignment to x,..., x_
and the assignment x 1. Then calculate the expected weight given the assignment
to x,...,x_ and xi 0. The variable x is assigned the value that maximizes
the conditional expectation. Since each conditional expectation can be calculated in
polynomial time, the overall algorithm takes p^olynomial time, and as asserted above,
the assignment produced has weight at least W.

As interpreted by Yannakakis [13], Johnson’s algorithm essentially sets p 1/2 for
all and uses the method of conditional probabilities. It is not hard to see that for
this choice of p,

(1)
Since the optimum assignment can have weight at most -]y wy, this proves that John-
son’s algorithm is a 1/2-approximation algorithm. Moreover, if all clauses have at least
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k literals then

cec
implying that Johnson’s algorithm is a (1- )-approximation algorithm for this
restricted class of instances.

3. A (1- )-approximation algorithm. Consider the following integer pro-
gram:

(IP)

Max

subject to:

By associating Yi 1 with xi set true, y 0 with x set false, zj 1 with
clause Cj satisfied, and zj 0 with clause Cj not satisfied, the integer program (IP)
exactly corresponds to the MAX SAT problem, and its optimal value Zp is equal
to the optimal value of the MAX SAT problem. We can now consider the linear
programming relaxation of (IP) formed by replacing the y e {0, 1} constraints with
the constraints 0 _< y _< 1. Call this linear program (LP). Obviously the optimal
value of (LP) is an upper bound on the optimal value of (IP); that is, Zp >_ Zp.
Whenever there are no unit clauses, the solution yi 1/2 for all and zj 1 for all
j, which is of value "cjec wj, is optimal, independent of the weights wj. Hence, the
relaxation is vacuous in this case. However, when there are unit clauses (the bad case
for Johnson’s algorithm), we shall show in this and later sections that this relaxation
provides some useful information.

We now show that by using randomized rounding in a straightforward fashion we
obtain a (1- )-approximation algorithm for MAX SAT. This algorithm consists of
two simple steps. The first step is to solve the linear program (LP). Let (y*, z*) be an
optimal solution. The second step is to apply the method of conditional probabilities
with pi y for all to derive an assignment. By using Tardos’ algorithm [12] to solve
(LP), the algorithm runs in strongly polynomial time since the constraint matrix of
(LP) has all entries in {-1, O, 1}.

The proof of the performance guarantee of 1 - is similar to the approach de-

scribed in 2 although the expected weight I of a random truth assignment is not
compared to -cec wj but rather to Zp. Notice that if

for any feasible solution (y, z) to (LP) and for any clause Cj then
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implying that the resulting algorithm is an a-approximation algorithm.
LEMMA 3.1. For any feasible solution (y, z) to (LP) and for any clause Cj with

k literals, we have

( 1)
k

k=l- 1-

where

This and subsequent proofs use the following simple results. To show that a
concave function f(x) satisfies f(x) >_ ax + b over the interval [1, u], one only needs
to show it for the endpoints of the interval, namely f(l) >_ al + b and f(u) >_ au + b.
We shall also rely on the arithmetic/geometric mean inequality which states that

al + a2 +... + ak > /ala2 ...ak,
k

for any collection of nonnegative numbers al, a2,..., ak.

Proof. We can assume without loss of generality that all variables in the clause
are unnegated. Indeed, if xi appears negated in clause Cj, one can replace xi by
its negation 5 in every clause and also replace y by 1- y without affecting the
feasibility of (LP) or the claim stated in the lemma. We thus assume that the clause
is xl V... V x with associated constraint y +... + Yk >_ zj. We need to prove that

Applying the arithmetic/geometric mean inequality to {1- y} and using the
constraint on zj, we obtain that

k

i= Yi1-II(1-y >_ 1- 1-
k

i=1

z>_ 1 (1 ---)
k

Since f(zj)= 1-(1- St) k
k is a concave function and since f(0) 0 and f(1) k,

we derive that

proving the desired result.
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Since/k is decreasing with k, Lemma 3.1 and the discussion that precedes it show
that this simple algorithm is a/k-approximation algorithm for the class of MAX SAT
instances with at most k literals per clause. In particular, it is a --approximation
algorithm for MAX 2SAT and a (1- )-approximation algorithm for MAX SAT in

general, since limk_, (1- _)k .
In a certain sense, the analysis we have just performed cannot be improved.

Consider the MAX SAT instance consisting of the clauses Cj Vj xi for j 1,..., n
with weight n and the clauses Cn+j j for j 1,..., n with weight 1. One can show

for all 1 nthat the unique optimum solution to (LP) is given by y n-1
and

z={ 11 j<_n

n--1 j>n.

One can further show that

lim lim 1
n--o Z*Ip n--,c Zp

and thus the inequality Id >_ (1- )Zp is tight. However, applying the method
of conditional probabilities to this optimum (LP) solution yields the optimum truth
assignment.

4. A simple -3a-approximation algorithm. In 2, we have shown that John-
3-approximation algorithm when all clauses contain at least 2son’s algorithm is a

literals, while in the previous section, we have presented a --approximation algorithm
when all clauses contain at most 2 literals (i.e., for MAX 2SAT instances). In this sec-

tion, we show that a -approximation algorithm can be obtained by choosing the best
truth assignment between the two output by Johnson’s algorithm and the algorithm
of the previous section. More formally, we have the following result.

forTHEOREM 4.1. Let IYV1 denote the expected weight corresponding to pi -all and let IV2 denote the expected weight corresponding to pi y for all where
(y*, z*) is an optimum solution to the (LP) relaxation. Then

max(l, 2) _> ll+l)d2 >3
2 -ZLP"Proof. The first inequality is trivially satisfied. Let Ck denote the set of clauses

with exactly k literals. From 2, we know that

kkl CjEC kkl CjEC
OkWjZj

where ok (1- ). On the other hand, Lemma 3.1 implies that

k_ CjCk

where

(1)k=l- 1-
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As a result,

3 while for k > 3, ak +/k > + 1- > . Therefore,Clearly, al +/1 a2 -t-/2

kk1CEC

The previous theorem also demonstrates that the following algorithm is a 3_
4

approximation algorithm: with probability , set the vector p of probabilities to
be either p 1/2 for all or p y for all i, and apply the method of conditional
probabilities. In this scheme, x is set true with probability + 1/2y but this algorithm
does not fit in the framework described in 2 since the xi’s are not set independently.

5. A class of -approximation algorithms. The standard randomized round-
ing scheme of 3 can be modified to lead directly to -approximation algorithms. For
this purpose, instead of using pi y for all i, we let pi f(y) for some carefully
selected function f [0, 1] -- [0, 1] and, as before, apply the method of conditional
probabilities. Possible choices of f are discussed below. As far as we know, this is the
first application of randomized rounding in which the probabilities pi are not identical
to or scaled versions of the linear program solutions y’.

As in 3, if we can show that

(1)
3

1- H (1- f(yi)) H f(Yi) >- -zj

for any feasible solution (y,z) to (LP) and for any clause Cj, then the resulting
algorithm is a -34-approximation algorithm. Inequality (1) together with the constraints
on zj motivates the following definition.

DEFINITION 5.1. A function f’[0, 1]--. [0, 1] has property if

k
3 (1 II(1 f(yi)) II f(Yi) >- - min

i=1 i=/+1
I’EYi+ E (1-yi)

i=1 i--/+1

for any k, with k >_ and any yl,..., Yk E [0, 1].
3 induces a 3-approximationBy the discussion of 3, any function f with property

algorithm. The following theorems show that not only do there exist functions with
property - but also that there is some flexibility in choosing such a function.

THEOREM 5.2. Any function f satisfying

1- 4-y <_ f(y) <_ 4

for all y [0, 1] has property .
THEOREM 5.3. The linear function f (y) a + (1 2a)y, where

3 1

2-- <a<-
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3has property (2 - .11).
THEOREM 5.4. The function

f(y)
ifO<_y<_2
1 2if-_y_-

3has property .
The possible choices for f following from Theorems 5.2-5.4 are depicted in Fig. 1.

Before proving these theorems, we would like to make a few remarks regarding the
functions with property given in these theorems.
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F,G. 1. Functions with property from Theorems (a) 5.2, (b) 5.3, and (c) 5.4.

1. There exist functions satisfying the conditions of Theorem 5.2 since, by the

arithmetic/geometric mean inequality, (4-+4-1) > 1/2 i.e. 1- 4-y < 4y-1
3 for which f(1) 12. By Theorem 5.2, there exist functions f with property

and f(0) 0. This is the case, for example, for

4y-1 ify >_
f(Y)

1-4-y ify<.
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The property f(1) 1 and f(0) 0 implies that the randomized rounding sets the
value of a variable xi deterministically according to y when y E {0, 1}.

3. For k and Yl Yk , notice that any function f with property
must satisfy

for all integers k >_ 1. This partially explains the choice of the lower bound in Theorem
5.2. The upper bound can be similarly obtained by considering 0..

4. Although f(y) y is not a function with property -34, there exist linear
functions with property as demonstrated in Theorem 5.3.

5. The linear function fl/4(Y) of Theorem 5.3 corresponds to setting xi to be
true with probability + yi. However, the resulting algorithm differs from the one
mentioned after Theorem 4.1 since in the latter the xi’s are not set independently of
each other.

6. The function described in Theorem 5.4 is the "closest" to Johnson’s scheme
in the sense that, for any y e [0, 1], the function f of Theorem 5.4 minimizes If(y)- 1/2]
over all functions with property -. Indeed, by considering the case k 1, 0 or 1,
one derives that any function f with property satisfies

3 3 1< f() < +
for any y G [0, 1].

Our proofs of Theorems 5.2-5.4 use similar ideas, but the proof of Theorem 5.4 is
more tedious than the others since we have to differentiate between several cases. For
this reason, we have omitted its proof, but the reader can find it in an earlier version
of this paper [6]. To prove the theorems, we use the following lemma to restrict our
attention to the case k (corresponding to a clause with no negated variable).

LEMMA 5.5. Let g: [0, 1] -- [0, 1] be a function satisfying

(2) 1 H(1 g(yi)) >_ - min 1, y’ y{

i--1

for all k and all yl,y2,...,yk [0, 1].
satisfying

Consider any function f [0, 1] --+ [0, 1]

(3) < <

Proof. Consider any k, with k >_ and any Yl,..., Yk [0, 1]. Then

k k

i--1 i=/+1 i--1 i---l+1
k

1 H(I
i=1

> min 1, y
4

i=l

_amin 1,i+ (1-i)
4

i=1 i=/+1
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where y yi for i 1,...,l and y 1 yi for + 1,...,k.
Proof of Theorem 5.2. By Lemma 5.5, we only need to show that g(y) 1 -4

satisfies (2). We have

k k

1 H(1 g(Yi)) 1 H
i=l i=l

I 4-Y g(Y)

kwhere Y =1 Y" Since g(Y) is increasing with Y, in order to prove (2) we only
need to show that g(Y) >_ }Y for any Y E [0, 1]. This follows from the concavity of

3g(Y) and the facts that g(0)= 0 and g(1)= . cl
3 < a < 1/4 Since f(y)=a+(1-2a)yProof of Theorem 5.3. Suppose 2- -satisfies 1 f(1 y) f(y), we only need to show that fa(y) satisfies (2) in order

to use Lemma 5.5. We have

k k

1 H(1 fa(yi)) 1 H (1 c (1 2c)yi)
i--1 i--1

by the arithmetic/geometric mean inequality. Letting y (Eik=l yi)/k, we need to
show that

(4)
3
min(1 ky),1 (1-a- (1 2a)y)k >_

for any y E [0, 1]. Since the left-hand side is increasing with y, we can restrict our
attention to y e [0, }]. Furthermore, since it is concave in y, we can just check (4) for
y 0 (for which it is trivially satisfied) and for y }. For this latter value, we need
to prove that

(5/

while (5) always holds forfor any integer k >_ 1. For k 1, (5) reduces to a <_
k 2. For k >_ 3, (5) is equivalent to

(6) a >_ k- 1 k4-/k

One can show that h(x) (x- 1 x4-/x)/(x 2) is decreasing in x for x > 2 and,
3thus, (6) holds provided that c _> h(3)= 2- -. D

6. Concluding remarks. The existence of functions with property } proves a
worst-case bound on the relative duality gap associated with (LP), namely that
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Moreover, this worst-case analysis is tight, as can be seen from the MAX 2SAT in-
stance

x Vx2
Xl /2

/x2
/2

with unit weights. As we observed previously, the LP solution Yi 1/2 for all i and
zj 1 for all j is optimal for any instance without unit clauses and has value -j wj.
In this case, Zp 4, while Zip 3.

The performance guarantee of - for our algorithms is also tight. For any instance
without unit clauses, all of our algorithms reduce to Johnson’s algorithm, since yi 5for all i is an optimal solution to (LP) and all the functions given above have f(1/2) 3"
Johnson’s algorithm is a -approximation algorithm on this class of instances, and
he gives instances of this type that are tight for his algorithm [7]. Furthermore, any
function f with property -3

a must satisfy f(1/2) 1/2. This follows from the definition
Therefore, withoutof property for the values k 2, 0 or 2, and yl Y2 3"

changing our analysis or strengthening the linear programming relaxation, one cannot
expect to beat the performance guarantee of -.

Results of Arora et al. [2] imply that there exist constants within which MAX
2SAT and MAX 3SAT (every clause has at most 3 literals) cannot be approximated
unless P NP. As of the writing of this paper, the best known constant for MAX
3SAT is 112/113 [3]. There is much room for improvement between this hardness
result and the approximation algorithms presented here and by Yannakakis [13].

Thus it is an interesting open question as to whether the linear programming re-
laxation can be strengthened so that a better performance guarantee is possible using
these techniques. Recent work of the authors [5] has shown that using a form of ran-
domized rounding on a nonlinear programming relaxation gives a .878-approximation
algorithm for the MAX 2SAT problem. It is not yet clear whether this result can be
extended to MAX SAT in general. Another interesting open question is that of com-
pletely characterizing the functions with property . Finally, we would like to know
if the technique used here of randomized rounding with a function other than the
identity function can be applied to other problems with natural linear programming
relaxations.

Acknowledgments. We would like to thank Rick Vohra for suggesting the search
for simple functions with property .
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HOMOMORPHIC ZERO-KNOWLEDGE THRESHOLD SCHEMES
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Abstract. A threshold scheme is an algorithm in which a distributor creates shares of a
secret such that a fixed minimum number (t) of shares are needed to regenerate the secret. A
perfect threshold scheme does not reveal anything new from an information theoretical viewpoint to
t- 1 shareholders about the secret. When the entropy of the secret is zero all sharing schemes are
perfect, so perfect sharing loses its intuitive meaning. The concept of zero-knowledge sharing scheme
is introduced to prove that the distributor does not reveal anything, even from a computational
viewpoint. New homomorphic perfect secret threshold schemes over any finite Abelian group for
which the group operation and inverses are computable in polynomial time are developed. One of
the new threshold schemes also satisfies the zero-knowledge property. A generalization toward a
homomorphic zero-knowledge general sharing scheme over any finite Abelian group is discussed and
it is proven that ideal homomorphic threshold schemes do not always exist.

Key words, threshold scheme, secret sharing, zero-knowledge, Lenstra constant, algebraic
integers
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1. Introduction. Secret sharing schemes [5], [29], [17] provide a means to dis-
tribute shares of a secret so that any subset of individuals (shareholders) specified
by an access structure can recompute the secret. Threshold schemes [5], [29] have
an access structure where t out of individuals can recompute the secret. As an
example, in Shamir’s threshold scheme [29] the distributor generates a random poly-
nomial, f(x), of degree t- 1 over a finite field such that f(0) k is the secret and
gives each individual the share f(i). Lagrange interpolation may be used by any t
shareholders, at a later stage, to regenerate k: In addition to their use in recomputing
secrets, threshold schemes are used, for example, in fault tolerant computing [27] and
threshold signatures [9]. Threshold schemes have been studied from many viewpoints
such as combinatorics (e.g., [33]) and guarding against cheaters (e.g., [7]). In this
paper we study some algebraic and computational aspects of threshold schemes.

Benaloh [1] discussed homomorphic sharing (threshold) schemes as those having
the property that when si,1 is i’s share of kl and si,2 is i’s share of k2, then si,.si,2 is
i’s share of kl * k2.. For such threshold schemes t shareholders can reconstruct k k2
using their si,1 .si,2. All of the schemes we will discuss have this property. When
both operators "." and "." are identical or when there is no confusion possible, we
will simply speak of multiplicative threshold schemes (when the operation is addition,
we could speak about additive). Homomorphic threshold schemes can be used to
set up secret ballot election schemes [1], and existing threshold authentication (and
threshold signature) schemes [9] are based on them. To authenticate a message in such
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a system, t shareholders out of use their shares. In such a threshold authentication
system no other message can be authenticated without using t shares.

Existing sharing schemes are over fields or over some finite geometries (for an
overview on current sharing schemes consult [31]). In this paper we present a method
to create a multiplicative (homomorphic) perfect threshold scheme over any finite
Abelian group. We require that the group is finite [6].

At first glance it may seem trivial to make a multiplicative secret threshold scheme
over a finite Abelian group because of the fundamental theorem of Abelian groups [18]
and an appropriate homomorphism [1, p. 255]. However, there are several mathemat-
ical and computational problems with this solution (see 4). We solve these problems
by requiring only that the group operation and inverses in the group can be calculated
in polynomial time.

To guarantee that a threshold scheme is secure Stinson and Vanstone [33] intro-
duced perfect threshold schemes. Perfect threshold schemes do not reveal anything
new from an information theoretic point of view about the secret when t- 1 shares are
used. We require more. Our scheme does not reveal anything new (about the secret or

about whatsoever) even from a computational viewpoint to any t- 1 shareholders. To
formally prove this we introduce a new concept called zero-knowledge secret sharing.
Perfect zero-knowledge incorporates both aspects. An application of zero-knowledge
secret sharing may be found in [9].

In 2 we overview the concept of threshold scheme. Zero-knowledge sharing
schemes are defined in 3. The mathematical foundations of this paper are laid in

4. A multiplicative threshold scheme over any finite Abelian group which requires
the distributor to know a nontrivial multiple ( 0) of the exponent of the group is
presented in 5. In 6 we present a multiplicative zero-knowledge threshold scheme
over finite Abelian groups. Generalizations and optimizations are discussed in 7.

2. Notation. We now introduce formal definitions and notation used in this
paper. When J( is a set, 141 will denote the cardinality of the set; when a is a string,

lal will denote the length of the string; and when r is a real, Irl will denote the absolute
value of r.

DEFINITION 2.1. Let ] be a set with elements called keys, or secrets. A threshold
scheme contains two algorithms, one that creates shares of a secret key k E ]C for
individuals so that any t individuals (t is fixed and t <_ l) can regenerate the secret
using the second algorithm, yet less than t individuals cannot using any method. Let
A {1,..., l} and $ be the set of possible shares. The distributor generates the secret
shares SA s st where si and the public directory
For each B {i,’"i11} c ,4 with ij < ij+l, we define the selection function
a S -- ,Sll (s,...,st) (sil,...,sl,). More formally, a (t, 1)-threshold
scheme satisfies

1. VB c A where IB t- 1 holds: if n(k) = 0 then 0 < H(k S, XA) <_ H(k)
for H the entropy function [12] and S

2. VB C A where IB[ t, there exists a function ,x such that ,x(S) k.
Schemes in which for any B C ,4 with IB] t- 1 holds that H(klS, A’A) H(k) are
called perfect. When a sharing scheme is perfect and IICI/ISI 1, it is called an ideal
sharing scheme.

A more formal definition of the above may be found in [10] and a definition of
threshold schemes based on design theory may be found in [33]. We distinguish two
phases. The distribution phase occurs when a distributor D using a threshold scheme
generates A’A and SA (s,..., st) and then publishes A’A and privately transmits
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si to each shareholder i. In Shamir’s threshold scheme the xi are different nonzero
elements of the finite field identifying i. We call the phase in which k is recomputed
using rt,xa the recomputation phase.

DEFINITION 2.2. Let Kn be a family of finite Abelian groups indexed by n E
J, where is an infinite subset of {0,1}*. We say that a family of groups ln
is polynomial time when (1) the group operation and inverses may be computed in
polynomial time in function of Inl; (2) generating uniform random elements of lCn can
be performed in probabilistic polynomial time; and (3) it is easy to check membership in
( E BPP [13]). For a polynomial time family of groups, ln, we say that a family

of (t, l)-threshold schemes is practical when their distribution phase and recomputation
phase can be computed respectively in polynomial time in function of max(l, Inl) and
max(t, Ill, in[).

From now on we say K instead of a family of Abelian groups K; and we say a
threshold scheme over/ instead of a family of threshold schemes over K;. Without
loss of generality, we assume that K(,) is a multiplieative Abelian group. We will
usually write a b as ab when the context is clear. Let etc denote the exponent of K;

(i.e., the smallest positive integer such that x 1 for all x in/). We now overview
the definition of homomorphic threshold schemes [1].

DEFINITION 2.3. If we have the operation "." over $ (so S is closed under "."),
and rl,xa is a homomorphism from St(.) to l(,) for all B c A with IB[ t, then the
threshold scheme is called a homomorphic threshold scheme. When both operations
are identical we will just speak about multiplicative threshold scheme (or additive when
appropriate).

3. Zero-knowledge sharing scheme.

3.1. Informal discussion. When the entropy of a secret is zero all sharing
schemes are perfect, so perfect sharing loses its intuitive meaning. Notice that the
secret key in a public key system has entropy zero. So a sharing scheme that gives the
secret key when its entropy is zero to all shareholders would satisfy the requirement
of being perfect. However, it is clear that this is not secure. This is not the intent .of
threshold schemes. We now discuss how to solve this problem.

First observe that in a threshold scheme a key distributor gives shareholders
that allow any t of the shareholders tosecret shares si and public information x

recalculate the secret. So it is clearly desirable that t- 1 shares will not enable those
shareholders to calculate anything new about the secret. However, the public informa-

could reveal something too--for example, the exponent etc of the group--buttion x
e: must be kept secret in many cryptographic algorithms [25], [28]. To formalize
this we introduce zero-knowledge threshold schemes which broaden the concept of
perfect threshold schemes. Informally a zero-knowledge threshold scheme satisfies the
property that the key distributor is not giving anything new from a computational
viewpoint to any subset of t- 1 shareholders. Observe that the definition of perfect
threshold scheme informally says that the key distributor does not give, to any subset
of t- 1 shareholders, anything new about the secret from an information theoret-
ical viewpoint. Our concept implies that nothing is revealed to t- 1 shareholders
about anything. Perfect zero-knowledge encompasses the information theoretical and
computational viewpoints.

Because the key k could reveal something about the group that t shareholders
could not calculate, we used t- 1 in the above discussion. Indeed when the key k is a

If the threshold scheme is not perfect then the above definition must be slightly adapted.
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nontrivial square root of 4 modulo n p. q, p and q being primes, then t shareholders
can factor n.

Informally a threshold scheme is perfect zero-knowledge when t- 1 shares and the
public information can be simulated by anyone who does not know the secret, such
that the simulated information and the real one occur with the same probability.

To guarantee that t shareholders (or more) do not learn anything more than
what follows from their joint knowledge of k, we require that the protocol is minimal
knowledge [11]. Informally a threshold scheme is perfectly minimal knowledge when
t shares and the public information can be simulated given the secret key k.

The concepts of zero-knowledge and minimal-knowledge threshold schemes can
easily be broadened toward sharing schemes with other access structures.

We now give a formal definition. Readers who understand the above informal dis-
cussion about zero-knowledge threshold scheme can skip the formal definition below.

3.2. Formal definition. Let us first adapt the definition of zero-knowledge [14]
to our needs. We have to take into consideration that when r is exponential in length
of the input, r machines have more power than a single one.

DEFINITION 3.1. For a language (a set) L C {0, 1}* and x e L, two families of
random variables {U(x)} and {Y(x)} are equal on L when {U(x)} {Y(x)} for all
x E L. These families of random variables are r-parallel statistically indistinguishable
on L if, for all constants c > 0 and all sufficiently long x L,

prob(U(x) a)- prob(V(x) a)l </.-1.
e{o,}*

When appropriate a probabilistic Turing machine D of which the expected compu-
tation time is bounded by rlxl c, with c a constant, will be called a simulator. For
a protocol (D,B) where IBI r, the Joint-view of B is what B sees (i.e., the con-
catenated strings received from D, and when the machines in B use randomness, the
string is concatenated with these random strings) and the Joint-viewD,t(x, h) is the
random variable whose value is their view (i.e., B’s view) for input x and history tape
h.

History tapes allow the parties to be involved in many consecutive protocols.
Therefore, they are a crucial part in the definition of zero-knowledge [14].

DEFINITION 3.2. Let the Joint-view ofB for a fixed k e ) be ($, XA)k. Let Dk be
the distributor of the key k . Let B be a set of possibly dishonest shareholders such
that IB’I

_
t-1. Let D’ be a simulator. A threshold scheme is called perfect (statistical)

zero-knowledge when: VB’ _D’ Vk e ] {D’(x,h)} and {Joint-viewDk,,(x,h)}
are equal (IB’l-parallel statistically indistinguishable) on L’ {(x,h) Ix e L and
h e {0,1}* and Ihl <_ IB’I. Ixl c for c a constant} where n {(n,t, 1) t, e Z+,
O < t <_ and n ,7}.

Observe that our definition is very strong, indeed a weak (less secure) definition
would allow D’ to run in tdlnl c for c and d constants. The simulator D does not know
k. The’order of the quantifiers is therefore crucial. Computational zero-knowledge
sharing schemes can be defined similarly using [14].

DEFINITION 3.3. Let B be a set of shareholders such that IBI >_ t. Let D’ be a
simulator who has a one-time access to an oracle that gives D the secret key k. A
threshold scheme is called perfect (statistical) minimal-knowledge when: B D
Vk e ] {D’(x,h)} and {Joint-viewDk,(x,h)} are equal ([BI-parallel statistically
indistinguishable) on n’ {(x,h) lx e L and h e {0, 1}* and [h <_ IBI Ixl for c a

constant} where L {(n, t, 1) If, Z+, 0 < t <_ and n ,7}.
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4. Foundation.

4.1. First approach. Let {gl,..., gh} be a set of generators for K:. Using [29],
the distributor chooses independent uniformly random polynomials fj(x) for 1 _< j
h of degree t- 1 such that the secret k gl.., gh 6/C with ,j f (0). Let the share

fh()for individual be si g{l(i).., gh 6 /C. Then if e: is known to the shareholders,
any subgroup of t shareholders can easily recompute k using Lagrange interpolation.
However, there are mathematical and computational problems with this solution [1,
p. 255]. First, this scheme is useless when e: 2 since can only be 1. Second, the
distributor must solve the discrete logarithm problem, which is considered hard [8],
[22], [24] for many groups even when generators are known. Third, a multiple of
must be known by the distributor and shareholders to use Lagrange interpolation,
but this reduces the usefulness of this scheme since multiples of e: must be kept
secret for many cryptographic algorithms, e.g., the order of Z [25], [28]. Finally, the
distributor must know a set of generators.

4.2. Basic solution. To solve the above first problem (i.e., etc 2) our schemes
work over ](:d ]( X X ](, the direct product of/C’s. We initially assume that the
exponent of ]C is a prime q and treat the Abelian group (:d 3S 3 vector space over
GF(qd). This will be modified to a module over Z[u], an algebraic extension of Z.
We consider ]C as a multiplicative group, but denote the operation in (d &S vector
addition.

Let d be an integer such that qd_ 1 >_ l. Let u be the root to a monic irreducible
polynomial p(z) of degree d used to define GF(qd), so ud ao +... + ad-lUd-. Ele-
ments of the vector space d are written as fc [k0,..., kd-1] and the identity element
is [1,..., 1]. We remark that this vector space is not necessarily of dimension
d and the notation [k0,... ,kd-1] should not be confused with coordinates. Addi-
tion in/Cd is defined as [k0,..., kd-] + 0,.., k_] [k0 * k,., kd- * k_1] For
(bo+" "+bd-lUd-) GF(qd) and [k0,... ,kd-] ]Cd the scalar operation "." for the
vector space is defined as (b0+ +bd.-ud-l) [ko,.. .,kd-] i=od- biui[ko,..., kd-],
where b. [k0,...,kd-] [k0b,...,k_l] for b G GF(q) and u. [k0, k,...,kd-]

.ad--[1 ko, kd-2] + [k,k, ,,d_l ], recursively bu [k0,... ,kd-] u. (u- (b.
[k0,..., kd-])). We leave it to the reader to prove that this is a vector space.2

5. Elementary approach. Only in this section we assume that a nontrivial
multiple (# 0) of the exponent, e:, is known to the distributor.

5.1. Exponent is a prime. We now discuss a sharing scheme over an Abelian
group where the exponent is a prime q.

Scheme 1.

Distribution phase. The distributor D chooses p(z) as specified in 4 using [4],
[26]. Then D chooses different elements xi G GF(qd) \ 0 and t- 1 independent
uniformly random elements ’i 6 (d (1 i _< t- 1). Let k0 be the secret in ]C and
f- [k0, 1,..., 1] represent the secret in/Cd. Then D computes

2 So (:d is the tensor product of modules: GF(qd) (R)GF(q) IC.



672 YVO G. DESMEDT AND YAIR FRANKEL

for t <_ j <_ where (:j (1, 2,..., t- 1, j} and

(:) l-I (x,- l-[ (0-

(xi,p(z)) for all E J[ and privately transmits to shareholder i theD publishes xi
share ’i [si,0,. Si,d-1].

Recomputation phase. The t shareholders in B compute Yi,B in Z[u] and then
calculate ko Fo(f) YlieB Fo(y,. ) where F0" d

__
K:" [k,..., k_l] - k.

Observe that the shareholders do not need to know q.
LEMMA 5.1. For any finite Abelian group where ec is a prime q, Scheme 1 is a

multiplicative perfect (t, l)-threshold scheme.
Proof. We will prove a more general result, i.e., that our scheme can be adapted

to an ideal sharing scheme over tgd. The lemma then follows trivially.
Let (gl,...,gh} be an independent set of generators for K. Due to the fun-

damental theorem of Abelian groups, h is invariant. We first show that d is a
vector space of dimension h. For i [gi, 1,..., 1] E d for 1 _< i _< h, note that

bd--1(bo /"" / bd-lUd-1) i [gbo,... ,g, ]. Thus (Yl,... ,h} is a basis for the vector
space K:d. Note that the yi, is a unit since we are working in GF(qd) and xi xj if
and only if j.

First observe that Shamir’s threshold scheme over a finite field can be modi-
fied. Instead of giving shareholder i the share f(xi), one can give as share ci
f(x)/YI (x-x). The key may then be computed by performing f(0) eYi,"

with yi,B as in (2). Second, it is easy to prove that Shamir’s scheme is also an idealC

threshold scheme over any module provided xi and xi xj are units.

All ’i for 1 _< i _< can be written as al,i" tl +"" + ah,i" th and k . 1 +
"+h’h. For allm (1 _< m_< h) it holds that’m and(m,i for 1 _< i <_ t-1

define a polynomial fro(x) of degree t- 1 over GF(qd) such that f,(0) "m- To
prove that our scheme is a threshold scheme, we need only to remark that for all
i" Cm,i f,(xi)/YI (xi xj) due to our first observation and that we have the

isomorphism Kd(+) --. GF(qd) ... GF(qd) /’tl +’" "+/h’h -* (,..-, "h).
To demonstrate that the scheme is perfect it is sufficient to prove that prob(k

f18,= S,) prob( ) for any B’ such that I/’1 t- 1. This can be proven by
showing that for any given fd d and S, there exists a unique element *j ](:d
such that f’ ’ie Yi,B" ’i where B B’t2 {j}. Indeed yy, are invertible, so

We say a vector space n over 9vn is polynomial time if its additive group is

polynomial time, if the scalar operation can be performed in polynomial time and
when generating uniform random elements of ]Cn can be performed in probabilistic
polynomial time.

COROLLARY 5.2. For any polynomial time finite vector space n over a finite
field JZn, Scheme 1 can be adapted to a practical additive ideal (t, 1)-threshold scheme
when < IJzl and to a perfect one otherwise.

Although many of the earlier proposed sharing schemes over finite geometries [31]
can trivially be adapted to vector spaces, not all are practical for any polynomial time
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vector space. Indeed using 4, it is not difficult to make vector spaces for which it is
believed to be hard to find coordinates.

5.2. General case. Let e: ql...
prime (1 < m < c), qm < qm+l and Wm are integers > 0, and all qm are known to the
distributor.

Scheme 2.

Distribution phase. Let d be an integer such that qd_ 1 > l. The distributor D
chooses monic irreducible polynomials pro(z) of degree d over Zq, for all m < c [4],
[26]. Using the Chinese remainder theorem on the coefficients of the polynomial, D
creates a new polynomial p(z) e Ze, [z] with root u, so that p(z) Pm (z) mod q’ for
all m. For each
Zq. [u] and then computes xi Ze= [u] where x _: w,, mod q’ using the Chinese
remainder theorem on the coefficients of W,m for each m < c. To compute the ’,
the distributor proceeds as before except that ’i are elements3 of the module d over

[u].
Recomputation phase. The recomputation phase is similar to the recomputation

in Scheme 1, but working in a module over Z[u].
THEOREM 5.3. For any finite Abelian group C and any l, Scheme 2 is a mul-

tiplicative perfect (t, 1)-threshold scheme and when is less than the smallest prime
factor of e’r Scheme 2 is an ideal homomorphic threshold scheme.

Proof. Observe that all that is needed is a polynomial p(z) and x{ for each
such that x{ and (x{ xj) are relatively prime to p(z) in Zq, for all i,j ,4 and m
such that i j and 1 <_ m _< c. The distribution phase of Scheme 2 constructs such
a p(z) and x{. A similar proof as in Lemma 5.1 is used to prove that this is a perfect
threshold scheme.

When is less than the smallest prime ql, then the scheme can work in Z= since

xi- xj has an inverse when 1 < x, xj < and x @- xj, making it ideal for this
case.

5.3. A security problem. The disadvantage with Schemes 1 and 2 is that the
polynomial p(z) can reveal information about e: to the shareholders. Indeed if p(z)
is not irreducible modulo a prime q then the shareholders will know that q does not
divide e:. Moreover to execute the algorithm in Theorem 5.3, the distributor needs to
know the factorization of ec (although by modifying above, knowing ec is sufficient).
In the next section these problems will be resolved.

6. Zero-knowledge version. In this section we do not assume that a multiple
of the exponent, e:, is known to the distributor. We now propose a multiplicative
perfect zero-knowledge (t, /)-threshold scheme for any family of finite Abelian groups
K:n and any reasonably large without requiring that the exponent be known to
anyone. The concept of zero-knowledge threshold scheme will be used to prove that
t- 1 shareholders will not obtain any additional information (about the group) from
the distributor.

Scheme 3.

Distribution phase. Let q be a prime greater than or equal to + 1. Let u be a
q--1 i--1root4 of the cyclotomic polynomial p(z) ’j=0 zy and x i=0 uy" Let k0 be the

3 We abuse the vector notation to make the analogy with the vector space case clear.
4 Formally, Z[u] is isomorphic to Z[z]/(p(z)).
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secret in K: and f [k0, 1,..., 1] represent the secret in Eq-1. Then D chooses t- 1
independent uniformly random elements gj E K:q-1 (1 <_ j <_ t- 1) and computes *j
as in (1) for t _< j <_ except

w,, II e

and the computation for gj is performed in the module/q- over Z[u]. The distributor
D privately transmits to shareholder the share gi [si,0,..., s,q-2].

Recomputation phase. The t shareholders in/3 compute y,B as in (3) in Z[u] and
then calculate k0 F0(f) 1-I Fo(y,. g). See Corollaries 6.2 and 6.3 for details
about the algorithm.

THEOREM 6.1. Scheme 3 is a multiplicative perfect zero-knowledge, miminal-
knowledge (t,1)-threshold scheme for any polynomial time finite Abelian group
provided that l= O(]nl c) for c a constant.5

Proof. We note that the gcd(zm- 1, zn- 1) zd- 1 for d gad(re, n) over
any field [3, p. 29]. Thus over any field gcd(p(z),x) gcd((zq 1)/(z- 1), (z-1)/(z- 1)) 1 for a prime q and 1 _< < q. Moreover, gcd(p(z),z) 1, thus y,
is invertible in Z[u] (see also [15]) and can be calculated in polynomial time without
having any knowledge of e: or a multiple of it. The rest follows from Theorem 5.3.

It is obvious that this is a perfect zero-knowledge, minimal-knowledge threshold
scheme. Any t- 1 shares (i 13"1131 t- 1) occur with uniform probability as
proved in Lemma 5.1 and x (i 4) are a polynomial time deterministic function of i.
So a simulator D can generate t- 1 of such g and all x with the same distribution.

Finally, due to Bertrand’s Postulate [16] (first proved by Tschebyschef) there
exists a prime q between and 21. [:]

COROLLARY 6.2. In the zero-knowledge threshold scheme each shareholder in the
recomputation phase performs O(tl2) group operations and O(l) inverses. In addition
to the time needed to choose t- 1 shares, the distribution phase takes O(t212(1 t))
group operations and O(tl(1- t)) inverse operations. So when O(InlC), with c a

constant, the threshold scheme is practical.

Proof. Using Horner’s rule (bu+bi_u- +...+bo)gj (... u(u(bgj)+b_gj)+
+ boFj) takes (2i + +=olbh])(q- 1) group operations where Ibhl- [log2bh].

Observe that ((-1)Vla(u)(-1)V2b(u)) ’= (-1)v+v2a(u)(b(u). ’) for a(z) and b(z)
polynomials. When > j, the elements (x- xj)

+ u-j-))- and by Lemma A.1 in the Appendix (1 + u + + u-j-)- is
q--2of the form -]=0 bui where b e {-1, 0} or b e {0, 1}. This time the shareholder

does not compute y, in Z[u] and y,. g. Now the shareholder will compute (xi-
xj)-( ((x xj,)-((O xj)(... ((0 xj) ’i)))...),-.) where j,...,jt e B \
{i} taking our previous remarks into consideration. Therefore it takes O(tl2) group
operations and zero or q- 1 inverses for each shareholder to compute y,. g and

O(t) group operations to compute ko Fo(f) 1-Ie Fo(yi,. ) given y,. g for all
i E B. The distributor takes O(t212(1- t)) group operations and O(tl(1- t)) inverse
operations to compute all the shares.

5 A weaker form of zero-knowledge could allow the simulator D to run in tdlnl c, for c and d
constants. Using this weaker definition could be O(td- Inle), e a constant.
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When the distributor for { 1, 2,-.., t 1} splits up the computation of y,c as

Y,c Y’Y,c where y is independent of j, the distribution phase can be sped up.
Hereto he precomputes y. *.

A different method may be used when the group operation is slower than integer
multiplications.

COROLLARY 6.3. In the zero-knowledge threshold scheme each shareholder in the
recomputation phase performs O(tl log2 l) group operations, O(1) inverses, and O(t312
(log2/)2) elementary integer multiplications. In addition to the time needed to choose
t-1 shares, the distributor performs O(t21(l t)log2 l) group operations, O(tl(1- t))
inverse operations, and O(t412(1- t)(log2/)2) elementary integer multiplications.

q-1Proof. The shareholder will first compute y, in Z[u]. Let p(z) Ej=o zY be the
q--2cyclotomic polynomial used in Scheme 3 and u be its root. Let A(u) y=0 a,yuY

2q--4where ai,j {-1 0} or ai,j {0 1}. Note that B(u) A(u)A2(u) i=0 biui
q-2where bi Ey=o al,y .a2,i-j. Observe that uq- Ey=o uJ and u uJ mod p(u)

where j mod q. Thus the absolute value of the largest coefficient in B(u) mod p(u)
is 3(q- 1). Inductively, the largest coefficient of B(u) =1 Ay(u) in absolute
value is 3h-(q- 1)h-1. Therefore the number of bits required to represent the
largest coefficient in absolute value in y,s is in O(t log21). There are O(tl2) integer
multiplications giving O(t312(log2/)2) elementary integer multiplications (FFT speeds
this up).

Let [so,...,sq-2], sq-1 1 and the indices be calculated mod q. Then
by induction Fo(u Fo([s_j sq_, sq_ sq_+,..., sl_ sq-+q-2])

q2s_j.Sq_y because u- =0 -uJ" When y, y,,o+y,,u+...+yi,B,q-2Uq-2
q--2where y,,y Z, then Fo(y," ) is cMculated as y=o(FO(UY))Y,,. Thus each

shareholder performs O(lt log2 l) group operations and O(1) inverses. The distributor
takes O(t21(1-t) log2 l) group operations and O(tl(1-t)) inverse operations to compute
all the shares.

7. Generalization and optimization.

7.1. Perfect general sharing over a group. General sharing schemes with
an access structure different from that of a threshold scheme were introduced in [17].
Monotone access structures satisfy the property that when a set of shareholders B
can recompute a secret then any superset B B can also recompute the secret. We
now present a multiplicative general sharing scheme over any finite Abelian group.

Using finite projective geometry, a method to create sharing schemes for any
monotone access structure has been developed [32]. Because our next approach is
an adaptation of their scheme, let us briefly review their scheme. In their scheme
a public hyperplane Vd intersects with a secret hyperplane at a point that is the
secret. Points are given to each shareholder in such a way that they meet the following
two conditions. First, when a set of shareholders allowed by the access structure work
together, they will be able to generate the secret hyperplane . Second, when a set
of shareholders not allowed by the access structure work together, they do not obtain
any information about the secret point (other than it is contained in Vd).

LEMMA 7.1. There exists a perfect multiplicative sharing scheme over any finite
Abelian group.

Proof. We modify the scheme developed in [32]. When in [32] the distributor
gives a point pi to shareholders {j,...,jh}, the distributor here will give si

to shareholders {j,...,jh}. Let the total number of such points p in [32] be m,
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then YIl<i<m 8i k where sl,..., Sm- have been chosen as independently uniformly
random elements in/C. The fact that the sharing scheme is perfect follows from the
one-time-pad [30]. E]

Note that the scheme is also a sharing scheme over any finite group, but then
it is not necessarily homomorphic. The scheme is zero-knowledge if for each set of
shareholders B, which is not allowed by the access structure to recompute k, the
total number of si that B’ have is O(IB’Ilnl c) (this condition is sufficient, but it is
not necessary). Unfortunately, the scheme in [32] generates an exponential number
of points for many access structures (including those of some threshold schemes). For
those, clearly the scheme in the proof of Lemma 7.1 does not satisfy the zero-knowledge
condition.

7.2. Ideal homomorphic threshold schemes. Since the zero-knowledge thresh-
old scheme in 6 is not ideal, one wonders if it is possible to make ideal homomorphic
threshold schemes over any (family of) finite Abelian groups. We now answer this
question.

THEOREM 7.2. There exists an infinite number of Abelian groups for which
there does not exist an ideal homomorphic threshold scheme when > 2, even when
l< IlCI and t= 2.

Proof. Let be finite. We first prove that in any ideal (i.e., IS[ []C[) threshold
scheme when sil,..., sit E S then S (sil,..., sit) is a valid tuple of shares. Clearly,

s: is also for theifS (si,.. s:) is a valid tuple of shares then S (si s.
scheme to be perfect. Repeating this process for i2,..., it proves that any combination
of t elements of $ can be valid tuple of t shares.

We now prove that if a homomorphic threshold scheme is ideal then the set S is
a group that is isomorphic to/C. Let s E S and u,x(s,..., s) k E K:. For the
threshold scheme to be perfect one needs that r/u,x (s,..., s, S) =/C. First s.
since ],x(s,...,s) ,x(s,...,s,$) r/,x(s, s,...,s, s,s. S) k
Since s. $ $ and S is finite, there exists an element ex for every x S such that
x.ex x. From this we note that ,x(e,..., e) 1 /C since r,x (x,... ,x)

Now,
l,x(x,... ,x,y. e). Since ISI IK:I and the scheme is perfect, y.e y. Thus
e is a right identity element. Similarly we can prove a left identity element. So
there exists an identity element 1 S. Let ,,xa (x) /,xa (1,..., 1, x) where x is
the ith share. The mapping i,,xa is a homomorphism from S to K;. Observe that
,,x is an onto mapping because the scheme is perfect. The fact that
implies i,,x is bijective. Thus, S is isomorphic to/C. Also observe that

(4)

Let be a finite Abelian group such that/C Z2 x Zq. x... x Zqc (+) where

qh 2 are primes and a2h are integers > 0 (2 _< h <_ c). We denote the identity in this
group as 0. We prove by contradiction that when > 2 there is no ideal homomorphic
threshold scheme over such K:. Assume that there is one, then to s corresponds
a (s’, s") where s’ E Z2 and s" E Zq" x... x Z, similarly k E E corresponds to
(k’, k"). So l,x S 1 corresponds to ,x (Z2 X (Zq2 x X Zqc))
Z2 (Zq2 x... x Z{c) and similarly we can define ,,x" Because ,,x gives

a group isomorphism we have i,,x((s,0)) (k,0) and using (4) we obtain that

?,x((s 0), (s: 0))= (k’ 0) Similarly r/,x’((0, si" (0 s:’ )) (0, k")
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Now when " (s, " k’ k"r,x((sl,sl),. ,s,)) (a,b) then a mod2 and b in

Zq. ... Zq;,c, because U,x’ is a function. So this induces a threshold scheme
over/C’ ---- Z2 with > 2. According to [19], the maximum in any threshold scheme
is /MAX <_ [K:I q- t- 2, so we have a contradiction. [:1

Theorem 7.2 shows chat some homomorphic threshold schemes cannot be ideal.
Perfect sharing schemes for some access structures have similar properties. The prob-
lem for general access structures was first addressed in [2]. Its is also known that for
some t and no ideal threshold schemes exist [19].

In the proof of Theorem 7.2 we used Z2; using Zp with p 7 qi gives a general-
ization. Theorem 7.2 leads to the question: What is the optimal size of the shares
in homomorphic threshold schemes and in zero-knowledge homomorphic threshold
schemes (which is O(l). log2]IC] in our zero-knowledge scheme). We now discuss
whether the size of the shares in our scheme can be reduced.

Our zero-knowledge threshold scheme is related to the Lenstra constant [15], [23].
Let Z[u] be an algebraic extension of the integers. The Lenstra constant L(Z[u])
is the cardinality of the largest set 5/ of integers in Z[u] whose nonzero differences
are units. (The Lenstra constant was developed to provide a method to find new
Euclidean fields, as used [15], [20], [21].) Observe that the set XA U {0}, where
is the set of x for the zero-knowledge threshold scheme, is the set b/where Z[u] is
defined in 6. The scheme presented in 6 can be improved when for each positive
integer (1 is as before, the total number of shareholders), an algebraic extension Z[u]t
of small degree can be constructed such that < L(Z[u]t). Finding such a family of
algebraic extensions with small degree (in function of l) and large Lenstra constant
is unfortunately an open problem [23]. Comparing the approach followed in 6 with
the state of the art [21], the degree of the extension can only be reduced by a factor
of two. So it seems to be difficult to reduce the size of shares of our scheme.

8. Conclusion. We introduced zero-knowledge sharing schemes and motivated
them. Existing perfect sharing scheme have been studied over finite fields or over some
finite geometry. We have presented a homomorphic perfect zero-knowledge threshold
scheme which works for any finite Abelian group provided that is polynomial (to be
more precise O(In[c)). Whether such schemes exist for any /is a natural open
problem.

Although not necessarily zero-knowledge, we have proposed a homomorphic per-
fect threshold schemes over any finite Abelian group for any 1. The distributor must
know the exponent of the group for these schemes. When zero-knowledge is of little
importance, e.g., when the exponent is public, these schemes have certain advantages
such as requiring less memory. This introduces the following open problems. Can the
efficiency of the schemes presented in this paper be improved? We proved that ideal
homomorphic threshold schemes over some Abelian groups do not exist and we argued
that reducing the size of shares seems a difficult problem if a similar approach as in
this paper is followed. Finally, what other algebraic structures allow for homomorphic
perfect (zero-knowledge) sharing schemes?

A. Appendix. The following lemma is used in Corollary 6.2.
LEMMA A.1. The elements hm

,-1

-i=0 u for 1 <_ rn <_ q- 1 have an inverse in

Z[u]/(uq-1 +. + 1) of the form -2Ei=0 biui where bi e {-1, 0} or b e {0, 1}.
Proof. Observe that hi and hq_l clearly satisfy the condition. For the rest of

the proof we assume 2 _< rn _< q- 2. To prove this lemma we first create the regular
matrix representation [18, p. 424], p(h,). The inverse of h, is represented by a vector
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fm (a0,... ,aq-2) such that p(hm) (1, 0,..., 0)T over the rationals where T
indicates the transpose. Let p q and n m. It can be verified that p(hm) is
with 0

_
i _< p- 2 and 0 _< j

_
p- 2 where

1
bi,j 1

0

forj=0,...,p-(n+l) andi=j,...,j+n-1,
for j p- n,...,p- 2 and j -p+ n,...,j 1,
otherwise.

So we start to solve (b,y) ’T (1, 0, 0)T where f’ hm-’’ We now simplify (5)
by reducing the number of unknowns and equations. Observe that ap-(n+l) 0 since
bp-2, 0 for p-(n+l). Also ap-2-i ap-(n+2)-i for 0 _< < n-1 when n < p-n
since subtracting row p-2-i from p-3-i gives the equation ap-2--ap-(n+2)-i 0
for 0 <_ <_ n- 2. With these conditions we can make a new set of equations and
have as unknowns km (ao,..., ap-(n+2)) and p-(n+ 1) equations. The new matrix
(bi,y), corresponding to the new set of equations, satisfies (5) except p is now p- n,
sop:=p-n.

When n > p- n, the number of unknowns and equations may be reduced in
another way. We note that ap-(n+) 0 for the same reason as before. This time

ap-2-i ap-(n+2)- for 0 _< < p- (n + 1) for a similar reason as before. With
these conditions we can make a new set of n- I equations and have as unknowns
k, (-1 ap-n,..., -1 ap-2). By multiplying the so obtained matrix by -1 and
rearranging the columns we can create a new matrix (bi,) satisfying (5) except p is
now n and n is now p n, so trnp p, p := n, n trnp n.

These reductions on the matrix will be performed until n becomes 1 or p- 1.
It is obvious that the remaining a are 1 or 0. Observe that p and n are reduced
in the same way as in the calculations of gcd(p, n) using the "primitive" Euclidean
algorithm. This explains why the process of reduction terminates.
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